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The ecological impacts of expanding nearshore aquaculture demand accurate

monitoring and a mechanistic understanding of underlying drivers. This study

employed Landsat remote sensing images spanning 2000 to 2023 and a U-Net

deep learning model to extract spatiotemporal patterns of laver aquaculture in

Haizhou Bay, China, while also investigating the natural, technological, and

socioeconomic factors influencing its growth. Key findings include: The U-Net

model achieved an overall accuracy of approximately 98.9% and an F1 score of

around 0.887, significantly outperforming traditional classification methods

(MLE, SVM, NN) by effectively reducing spectral confusion. The aquaculture

area followed a “growth-peak-decline” pattern, peaking in 2018 at 10,872.45

hm², with a strong correlation to local government data. Among natural factors,

only the 2-meter temperature showed a significant positive correlation with

aquaculture expansion, while other factors like sea surface temperature and wind

speed had minimal impact, suggesting that the region’s environmental stability

supports large-scale production. Technological advancements, such as deep-

sea farming and shellfish-algae intercropping, contributed to industry growth,

while policy changes after 2019 resulted in a reduction of aquaculture area.

Economic and policy interactions played a central role in spatial restructuring,

with GDP positively correlating with aquaculture expansion during the growth

phase (2000-2018), but negatively decoupling during the policy adjustment

phase (2019-2023). This research provides a comprehensive framework for the

sustainable management of coastal aquaculture by integrating remote sensing

data with an analysis of multiple driving forces.
KEYWORDS

U-net model, remote sensing, Landsat, Haizhou Bay, laver aquaculture,
economicsocial-policy
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1 Introduction

China’s coastal aquaculture industry, with its high stocking

densities, plays a crucial role in the marine economy, economic

development, and in meeting the public’s demand for high-quality

seafood, especially fine protein (Cheng et al., 2022). However, along

with its economic benefits, aquaculture development poses

significant challenges to marine ecological environments,

including water pollution and waste discharge, which threaten the

stability of marine ecosystems (Boyd et al., 2020; Gao et al., 2022).

Effective monitoring of marine aquaculture is crucial for protecting

the marine ecological environment, encouraging sustainable

resource utilization, and fostering green development initiatives.

In recent years, research on the spatiotemporal dynamics and

influencing factors of coastal ecosystem aquaculture regions has

received increasing attention (Chen et al., 2024; Ying et al., 2020).

Although beneficial, traditional field survey techniques are

frequently constrained by their labor intensiveness, length of

time, and inefficiency, especially when used for large-scale

monitoring projects (Hou et al., 2022). Consequently, remote

sensing technology has emerged as an effective mean of offering

extensive spatial coverage, shorter revisit cycles, and greater cost-

effectiveness (Zhang et al., 2020a). Various remote sensing methods

have been applied in marine aquaculture research, including visual

interpretation, spectral characteristic-based, and object-

oriented methods.

Earlier studies, such as those by Wu et al. (2006), utilized visual

interpretation methods for mariculture areas analysis in Hainan

Province, highlighting the simplicity of the approach but also its

significant limitations, including time-consuming and poor

generalizability (Pan et al., 2020). Using data from the Advanced

Spaceborne Thermal Emission and Reflection Radiometer

(ASTER), Ma et al. (2010) identified the marine region adjacent

to Yantai City in Shandong Province as the research area. Drawing

on these spectral properties, they developed a water body index and

spectral band operation algorithm that successfully mitigated the

impact of deep-sea areas on the recognition of coastal aquaculture

zones. This approach offers a novel perspective for accurately

delineating the boundaries of the aquaculture areas. Lu et al.

(2015) utilized Rapideye multispectral images to establish

characteristic spectral indices for detecting nearshore aquaculture

areas, resulting in the high-precision automated extraction of such

areas. Spectral characteristic-based methods can be used to extract

offshore aquaculture areas; however, these methods have low

accuracy and data redundancy (Hu et al., 2022; Zhu et al., 2019).

Nguyen et al. (2013) combined remote sensing imagery and

geographic information systems to extract the aquaculture areas

of Phu Quoc Island in Vietnam using an object-oriented approach.

Xue et al. (2010) utilized an object-oriented approach to extract

aquaculture areas and overcome the interference of “ salt-and-

pepper noise,” thereby achieving a good classification effect. The

object-oriented extraction method can reduce the impact of “salt

and pepper noise” that is difficult to solve in traditional image

extraction methods. However, in the extraction process, the

subjectivity of the segmentation scale and “spectral similarity of
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foreign objects” of some pixels may lead to a decrease accuracy

(Zheng et al., 2018).

In recent years, the field of deep learning has made significant

advancements, offering new opportunities for remote sensing data

interpretation. Deep learning models, such as U-Net, have proven

particularly effective for the classification and semantic

segmentation of remote sensing imagery by leveraging both

spectral and textural features, reducing the need for manual

intervention (Cui et al., 2019; Lu et al., 2021; Su et al., 2022a). U-

Net’s architecture, known for its high accuracy and ability to handle

complex spatial features, has become a preferred method in remote

sensing applications, including aquaculture monitoring.

This study specifically focuses on the laver aquaculture areas in

Haizhou Bay, Lianyungang City, utilizing Landsat remote sensing

images from 2000 to 2023 to extract and analyze the spatiotemporal

distribution of these areas. While previous studies have applied U-

Net to aquaculture monitoring, this research introduces several key

innovations. First, it evaluates U-Net’s performance across long-

term remote sensing images with different spatial resolutions

(Landsat, GF-1, Sentinel-2), which has not been extensively

explored in the context of aquaculture monitoring. Additionally,

this study investigates the driving forces behind the expansion of

laver aquaculture areas, incorporating natural environmental

conditions, technological advancements, and economic-social-

policy. By doing so, it not only contributes to more accurate

remote sensing-based monitoring of aquaculture areas but also

provides insights into the sustainable management of laver

aquaculture in Haizhou Bay, with implications for the broader

marine environment.

2 Materials and methods

2.1 Study area

The study area, situated with in Haizhou Bay at the convergence

of Jiangsu and Shandong provinces, spanning between 119°10′ E and

119°40′ E longitude and 34°30′ N to 35°10′ N latitude, represents a

vast bay adjoining the Yellow Sea (Sun et al., 2020), as shown in

Figure 1. Extending approximately 42 km in width with a coastline

stretching over 87 km, the Haizhou Bay covers an expansive area of

876 km2 (Su et al., 2020). Nestled within a transitional climate zone

from warm temperate to northern subtropical, it enjoys a coastal and

shallow marine environment characterized by regular semidiurnal

tides (Wang et al., 2021). The average annual temperature is

approximately 14.3°C, with annual precipitation exceeding 920 mm

(Wang et al., 2017). These favorable natural conditions provide an

ideal growth environment for laver aquaculture in Haizhou Bay and

are key factors driving the thriving development of the laver industry

in this area (Ai et al., 2023).
2.2 Data source and preprocessing

The data employed in this study comprised multispectral

remote sensing imagery from Landsat-5 TM, Landsat-7 ETM+,
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Landsat-8 OLI, and Landsat-9 OLI-2, sourced from the United

States Geological Survey (USGS). Additionally, information from

Sentinel-2, retrieved from the Copernicus Data Space Ecosystem,

and GF-2, supplied by the China Centre for Resources Satellite Data

and Application, were employed. These datasets were

complemented by the ECMWF Reanalysis v5 (ERA5) analysis,

which included total precipitation, sea surface temperature, 2-m

temperature, and wind speed. Photosynthetically Available

Radiation (PAR) data were obtained from the GlobColor dataset.

Furthermore, area data for laver aquaculture in Jiangsu Province

were sourced from the China Fishery Statistical Yearbook, and for

aquaculture in Haizhou Bay from the Lianyungang Yearbook. The

Producer Price Indices were retrieved from the China Yearbook of

Agricultural Product Price Survey. All data were acquired through

website downloads or literature references, as listed in Table 1.

In Haizhou Bay, aquaculture primarily employs raft culture,

with laver being the main crop. The period of vigorous laver growth

is from November each year to March of the following year (Cui

et al., 2023). During this period, laver aquaculture areas were

distinctly visible in remote sensing imagery. Therefore, Landsat

images from the Haizhou Bay were selected for each year between

2000 and 2023, one image per year, from strip number 120, row

number 36, and cloud cover of less than 10%. Additionally, the

downloaded Sentinel-2 and GF-1 images for this region had less

than 10% cloud cover and were captured on the same day as the

2023 Landsat images.
Frontiers in Marine Science 03
It was essential to preprocess the remote sensing images

appropriately before starting the experiment. The quality,

accuracy, and utility of images may be greatly enhanced by a

sequence of processing and corrections, thus offering a

trustworthy database for subsequent research (Bunting, 2017).

The 26 images, including Landsat, Sentinel-2, and GF-1, were

initially processed using the remote sensing image processing

software ENVI 5.7 for radiometric calibration and FLAASH

atmospheric correction to mitigate various distortions in the

radiometric brightness of the image data. For Landsat-7 ETM+

images, band gap filling was required before radiometric calibration,

and for GF-1 images, orthorectification was required after FLAASH

atmospheric correction. Subsequently, the images were cropped to

cover the experimental area and satisfy the experimental

requirements. Finally, image normalization was performed to

ensure that the preprocessed data were confined within a certain

range, thereby eliminating the adverse effects caused by outlier data.
2.3 Methodology

This study utilized the U-Net model as an extraction tool to

identify the laver aquaculture area in Haizhou Bay. Initially,

samples from the laver aquaculture area were selected based on

visual interpretation of high-resolution remote sensing images and

field survey data to form a sample dataset. Subsequently, the U-Net
FIGURE 1

Marine aquaculture area of Haizhou Bay in Jiangsu province, China. (Four interest zones are labeled as (A–D), respectively.).
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model, integrated into the deep learning module, was employed to

train and classify the interpretation model for the seawater

aquaculture area. Finally, post-processing tasks were conducted

on the classified data, encompassing accuracy verification and

data format conversion, to derive recognition results for the

seawater aquaculture area. These results were then compared

horizontally with the supervised classification outcomes.

2.3.1 U-net
In recent years, the field of image segmentation has witnessed

the emergence of numerous advanced convolutional neural

network (CNN) models. However, several of these models suffer

from drawbacks, such as slow execution speed, redundancy in

information, and limitations in positional information (Cui et al.,

2019; Chen et al., 2024). In contrast, the U-Net architecture has

garnered widespread adoption because of its superior accuracy and

low parameter count (Qin et al., 2021). Introduced by Ronneberger

et al. (2015), the U-Net model, characterized by its U’-shaped

structure (Hou et al., 2021), features a symmetrical network

comprising a left-sided encoder, right-sided decoder, and

intermediary skip connections (Su et al., 2022b).

The left-side encoder is composed of convolutional layers,

followed by activation functions and downsampling operations.

Specifically, the encoder employs two 3 × 3 convolutions, followed

by ReLU activation and max-pooling operations with a stride of

two. Following each downsampling step, the size of the output

feature maps is halved while doubling the number of feature
Frontiers in Marine Science 04
channels. Through a series of four convolutions and pooling, five

preliminary effective feature layers are obtained. Conversely, the

right-side decoder involves upsampling and 2 × 2 transposed

convolutions to double the size of the output feature maps while

halving the number of feature channels. The decoded feature maps

are then concatenated with the corresponding feature maps from

the encoder via skip connections, followed by two convolutional

operations. In addition, the 1 × 1 convolutional layer after the final

convolutional layer produces feature maps with the same number of

channels as the target classes, and then performs pixel by pixel

classification through an activation function (Ibtehaz and Rahman,

2020; Liu et al., 2019; Zhang et al., 2020b).

The utilization of skip connections facilitates the transmission

of the encoder feature information to the decoder. By integrating

the features obtained by the decoder with the reconstructed images

(Mulliqi et al., 2020), skip connections aid in recovering spatial

information lost during pooling operations, thereby enhancing the

precision of the model. Overall, the innovative design of the U-Net

architecture, along with its effective integration of skip connections,

has significantly contributed to its widespread adoption and

exceptional performance in various image segmentation tasks.

2.3.2 Interpretation process
The recognition process of the U-Net model in this study relies

on the Deep Learning Toolbox within geographic information

system software. This model utilizes multiple layers in a neural

network to detect features within images. The interpretation
TABLE 1 Data information.

Data Types Names Time Resolution Source

Satellite data

Landsat-5 TM 2000-2006 30 m

United States Geological Survey
https://glovis.usgs.gov/

Landsat-7 ETM+ 2007-2012 30 m

Landsat-8 OLI 2013-2022 30 m

Landsat-9 OLI-2 2023 30 m

Sentinel-2 2023 10 m
The Copernicus Data Space
Ecosystem
https://dataspace.copernicus.eu/

GF-1 2023 16 m
China Centre for Resources Satellite
Data and Application
http://www.cresda.com/CN/

ERA5 reanalysis data

Total precipitation,
Sea surface temperature,
2-meter temperature,
10-meter wind speed

2000-2023 0.25°
ECMWF Reanalysis v5 (ERA5)
https://cds.climate.copernicus.eu/

Remoting sensing data
Photosynthetically
Available
Radiation

2000-2023 4 km
The GlobColour data set
https://hermes.acri.fr

Statistical data 2000-2023 《Lianyungang Yearbook》

Statistical data
Statistical data

2000-2023
2002-2022

《China Fishery Statistical
Yearbook》
《China Yearbook of Agricultural
Product Price Survey》
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workflow can be divided into three stages: creating and importing

sample datasets, training the deep-learning model, and classifying

features using the deep-learning model.

First, sample datasets were created by selecting four images

from Landsat remote sensing data corresponding to 2006, 2013,

2015, and 2017. These images were manually annotated for

aquaculture areas based on the visual interpretation of results.

Efforts have been made to magnify the remote sensing images

during the annotation process of aquaculture areas to minimize

unnecessary errors in labeling, thereby improving the accuracy of

sample annotation. Aquaculture areas were labeled 1, whereas

background and non-aquaculture areas were labeled 0. After

annotation, the images and corresponding label images were

sliced into 256 × 256 pixels, with a stride of 128 pixels. To

augment the dataset and enhance the generalization capability of

the model, the images and label images were horizontally and

vertically flipped and rotated (90°, 180°, and 270°) during the

slicing process, thereby achieving the purpose of data

augmentation. Therefore, a training dataset was prepared for the

model. Next, the training dataset was imported and the aquaculture

area interpretation model was trained. Finally, a deep learning

model was used for the interpretation. This involved running the

trained aquaculture area interpretation model to generate raster

classifications of aquaculture areas and producing aquaculture area

classification patches.

2.3.3 Supervised classification
Supervised classification, also known as training classification, is

a process in which users identify unknown classes of pixels by

utilizing the pixels of the confirmed classes (Han et al., 2023). Prior

to the classification, several sample areas with known classes were

manually selected from the images. Different classifiers or

algorithms have been chosen to classify other areas into different

samples (Li et al., 2017). Supervised classification typically involves

three steps: selecting training samples, extracting statistical

information, and selecting the appropriate classification

algorithms. In this study, we employed ENVI 5.7 software for the

supervised classification of remote sensing imagery. We chose three

classifiers: Maximum Likelihood Estimation (MLE), Support Vector

Machine (SVM), and neural networks (NN).
2.4 Evaluation metrics

In this study, Landsat image pixels were used as the basic

sampling units, with a total of approximately 4,220,000 pixels in the

study area. To avoid potential sampling bias that could lead to

distortion, we did not employ the more commonly used random

sampling method (Olofsson et al., 2014). Instead, we utilized all

pixels within the study area to construct the confusion matrix.

Specifically, pixels belonging to the aquaculture area were treated as

target points, while all other non-aquaculture pixels were treated as

background points. This approach allowed for a comprehensive

evaluation of the classification results across the entire image,

ensuring robust and unbiased accuracy assessment.
Frontiers in Marine Science 05
The confusion matrix, also known as the error matrix, is a

widely used standard for evaluating the accuracy of classification

models (Zhang et al., 2021). It provides a structured, tabular

representation of a model performance by categorizing

predictions into four distinct groups based on their agreement

with the true labels: true positives (TP), true negatives (TN), false

positives (FP), and false negatives (FN). By leveraging the confusion

matrix, various evaluation metrics can be computed to assess

classification accuracy and effectiveness.

One of the key metrics derived from the confusion matrix is

precision (P), which measures the proportion of correctly predicted

positive samples out of all samples classified as positive. It is defined

as follows (see Equation 1):

P =
TP

TP + FP
(1)

Another essential metric is recall (R), which quantifies the

proportion of actual positive samples that have been correctly

identified by the model. It is calculated as (see Equation 2):

R =
TP

TP + FN
(2)

In classification tasks, precision and recall often exhibit a trade-

off: increasing one typically leads to a decrease in the other. To

balance these two metrics, the F1 score is introduced as their

weighted harmonic mean, providing a single measure of a

model’s overall effectiveness. A higher F1 score indicates superior

model performance, as it reflects both high precision and high

recall. It is defined as (see Equation 3):

F1 =
2� P � R
P + R

� �
=

2� TP
2TP + FP + FN

(3)

Additionally, Overall Accuracy (OA) is used to evaluate the

model’s general performance. It represents the proportion of

correctly classified samples across all categories and is calculated

as follows (see Equation 4):

OA =
TP + TN

TP + FP + TN + FN
(4)

These metrics collectively offer a comprehensive assessment of a

classification model’s performance, enabling a more detailed

comparison between different methodologies.
3 Results

3.1 Experiments and accuracy evaluation

To identify the optimal extraction method for the Haizhou Bay

laver aquaculture area, this study employed various techniques,

including U-Net, Maximum Likelihood Estimation (MLE), Support

Vector Machine (SVM), and Neural Network (NN), to extract

features from Landsat images captured in 2022. The classification

results are shown in Figure 2. Upon examination, the recognition

results show that, despite some limitations, all four methods can
frontiersin.org
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identify the approximate outlines of laver aquaculture areas.

Initially, an examination of the white-circled areas in the four

images of Figure 2 reveals that, in comparison to the U-Net

extraction results depicted in Figure 2A, the three supervised

methods shown in Figures 2B-D all exhibit varying degrees of

‘same-spectrum foreign object’ phenomena. Specifically, these

supervised methods mistakenly classify seawater regions with

spectral characteristics similar to those of aquaculture areas as

actual aquaculture zones, leading to misidentifications and

reduced classification accuracy. This highlights a common

challenge in remote sensing image classification, where spectral

similarity can lead to misclassification. In contrast, the U-Net model

effectively handles spectral similarity, resulting in fewer false

positives and more accurate delineation of aquaculture areas.

Furthermore, the images within the purple frames in the four

figures were magnified. Compared with Figure 2A, the magnified

details corresponding to Figures 2B-D exhibit significant instances

of missed detection, no detection, and adhesion. For example, the

three supervised classification methods fail to detect small-scale

laver aquaculture areas (missed detection), and the results obtained

using the Maximum Likelihood Estimation (MLE) method show

that aquaculture areas are not clearly separated from the

background (adhesion). These issues underscore the limitations of

these supervised methods in accurately delineating the boundaries
Frontiers in Marine Science 06
of laver aquaculture areas. In contrast, the U-Net model

demonstrates superior performance in boundary delineation,

clearly distinguishing between aquaculture and non-aquaculture

areas even in challenging conditions.

To verify the effectiveness of the four classification methods in

identifying laver aquaculture areas, confusion matrices were

employed to calculate the Overall Accuracy (OA) and F1 score for

each method, with the evaluation results presented in Table 2.

Additionally, to minimize the randomness in the identification

results of the U-Net model, repeat experiments were conducted

using Landsat remote sensing imagery from 2016. The results

demonstrate that the U-Net identification method achieved the

highest values in both OA and F1 score. Specifically, the U-Net

model achieved an Overall Accuracy of 0.989 and an F1 score of

0.887 for the 2022 Landsat remote sensing imagery. In the repeat

experiments using the 2016 imagery, the Overall Accuracy further

increased to 0.993, with an F1 score of 0.899. In contrast, the

Maximum Likelihood Estimation (MLE), Support Vector Machine

(SVM), and Neural Network (NN) methods achieved OA of 0.857,

0.832, and 0.788, respectively, with F1 scores significantly lower

than those of the U-Net model. These metrics objectively

demonstrate the U-Net model’s significant superiority in terms of

overall accuracy and robustness in eliminating the influence of

spectrally similar objects on the experimental outcomes. U The-Net
FIGURE 2

Comparison results of different recognition models. (A) U-Net; (B) MLE; (C) SVM; (D) NN.
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model’s ability to effectively distinguish between aquaculture areas

and non-aquaculture areas, even in the presence of similar spectral

characteristics, highlights its superior performance in this context.

In conclusion, the U-Net identification method outperforms the

three supervised classification methods and is well-suited for the

extraction of laver aquaculture areas in Haizhou Bay. Therefore, this

study selected the U-Net network model to extract laver

aquaculture areas in Haizhou Bay from 2000 to 2023.
3.2 Laver aquaculture dynamics and policy
adjustments

By utilizing remote sensing images from 2000 to 2023 and

employing the U-Net deep learning network model, the area of

laver aquaculture in Haizhou Bay was extracted. According to the

area information, the laver aquaculture area showed fluctuating

growth from 2000 to 2011, a sharp increase from 2012 to 2018, and

a decrease from 2019 to 2023, as shown in Figure 3A. The extracted

laver aquaculture area data were subjected to correlation analysis

with the data obtained from the “Lianyungang Yearbook”. The
Frontiers in Marine Science 07
analysis yielded a high correlation coefficient of approximately 0.92

(Figure 3B), indicating a strong agreement between the U-Net-

derived data and authoritative records. It is reasonable to expect

that other classification methods might also yield relatively high

correlation coefficients when compared with the Lianyungang

Yearbook. However, U-Net was selected in this study as the most

effective method based on its superior accuracy, robustness against

spectral confusion, and ability to delineate aquaculture boundaries

more precisely compared to traditional supervised classification

methods such as MLE, SVM, and NN. The fact that the U-Net

results align so closely with ‘Lianyungang Yearbook’ data further

reinforces the reliability and superiority of this approach in

accurately mapping and monitoring laver aquaculture areas in

Haizhou Bay over an extended time period. in Haizhou Bay.

Figure 4 illustrates four-line charts with four Y-axes,

representing the laver aquaculture area of Jiangsu Province, the

proportion of laver aquaculture area in Haizhou Bay to the total

area of Jiangsu Province, the growth rate of laver aquaculture area in

Haizhou Bay, and the growth rate of laver aquaculture area in

Jiangsu Province. Analysis of the data from the charts revealed a

significant and consistent trend in the growth rate of the laver

aquaculture area in Haizhou Bay compared with the overall growth

rate of the laver aquaculture area in Jiangsu Province since 2012.

This finding reflects the significant role that the Haizhou Bay has

played in the laver aquaculture industry in Jiangsu Province since

2012. The data from the U-Net model indicates that the proportion

of laver aquaculture area in Haizhou Bay within Jiangsu Province

has grown significantly since 2012. Initially, accounting for

approximately 11% of the provincial total, this figure expanded

year by year, reaching approximately 50% by 2018. This substantial

increase not only underscores the significance of the Haizhou Bay in

the aquaculture of laver in Jiangsu Province, but also reflects the

rapid expansion of aquaculture scale in this region and its

substantial contribution to the overall growth of the provincial

aquaculture area. The trend of the green line in the chart intuitively

reveals the dynamic changes in the growth rate of the laver
FIGURE 3

(A) Area of laver aquaculture based on U-Net model in Haizhou Bay from 2000 to 2023; (B) Correlation between the actual area and area of U-Net
model’s extraction.
TABLE 2 Evaluation index of Haizhou Bay.

Method Satellite P R F1 OA

U-Net (2016) 0.944 0.857 0.899 0.993

U-Net (2022) 0.936 0.843 0.887 0.989

MLE (2022) 0.971 0.735 0.837 0.857

SVM (2022) 0.970 0.685 0.803 0.832

NN (2022) 0.993 0.580 0.732 0.788

Sentinel-2 0.971 0.499 0.659 0.982

GF-1 0.947 0.443 0.603 0.984

Landsat 0.973 0.421 0.588 0.971
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aquaculture area in Jiangsu Province. From 2011 to 2017, the

growth rate remained close to zero, indicating that the laver

aquaculture area in Jiangsu Province was nearly stagnant. This

suggests that during this period, the total area of laver aquaculture

in Jiangsu Province did not undergo significant expansion or

reduction but remained relatively stable. Since 2019, the area of

laver aquaculture in Jiangsu Province and the proportion of laver

aquaculture area in Haizhou Bay have been decreasing. The growth

rates of the laver aquaculture area in Haizhou Bay and Jiangsu

Province are both negative, indicating a declining trend in the laver

aquaculture area in Haizhou Bay and Jiangsu Province. The main

reasons for this decline are the economic downturn caused by the

epidemic outbreak at the end of 2019 and the deterioration of laver

quality due to marine pollution (Yang and Xu, 2024).

Based on the data presented in Figure 3A, the laver aquaculture

area in Haizhou Bay exhibits an initial increase, followed by a

decrease from 2000 to 2023. Consequently, we divided the period

from 2000 to 2023 into four stages of laver development based on

the trend in aquaculture areas: the slow development stage (2000-

2007), exponential growth stage (2008-2012), plateau stage (2013-

2018), and policy adjustment stage (2019-2023). A representative

year from each of these four stages was selected to generate a trend

chart illustrating the expansion of laver aquaculture area, as shown

in Figure 5. During the slow development stage, laver aquaculture in

Haizhou Bay was primarily nearshore and distributed in a band-like

pattern along the coastline, mainly around Qianshan and Dongxi

Lian Islands (Su et al., 2020). Beginning in 2008, the laver

aquaculture industry entered an exponential growth stage, with

aquaculture areas continuously expanding and gradually extending

into broader sea areas. In the plateau stage, the laver aquaculture

area around Qinshan Island and the East and West Linked Islands

developed on a larger scale. The laver aquaculture areas exhibited an

irregular patchy distribution in the sea and showed a trend of

extending towards deeper waters (Lu et al., 2018). Since 2019, with

the maturity of aquaculture technologies such as fiberglass support
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poles, laver aquaculture in Haizhou Bay area of Lianyungang has

moved towards deeper waters. The aquaculture area continued to

expand, but the overall aquaculture area began to decrease, marking

the beginning of the policy-adjustment stage (Lin et al., 2021). By

averaging the growth rates across the four periods, we obtained

average growth rates of 97.42%, 212.81%, and 50.44% for the

respective periods. These data strongly indicated that the laver

aquaculture area in Haizhou Bay showed an overall positive growth

trend. Notably, the growth rate peaked during the transition from

the second to third period, highlighting the rapid development of

the laver aquaculture industry.

According to the “Lianyungang City Waters and Tidal Flat

Planning”, the sea area of the Haizhou Bay is divided into three

categories: aquaculture zones, restricted aquaculture zones, and

prohibited aquaculture zones. As shown in Figure 6, by comparing

the aquaculture waters and tidal flat planning maps in 2017 and 2023,

and combining them with the in-depth analysis of the aquaculture

area data obtained from U-Net recognition technology for 2023, we

can observe significant changes in the aquaculture area planning.

Specifically, aquaculture zones in 2017 were confined to the territorial

baseline. By 2023, these zones had expanded to the marginal waters of

the territorial sea. However, large-scale aquaculture activities have not

yet extended beyond territorial baselines, possibly because of

limitations in aquaculture technology and other factors. Within the

territorial baseline, the prohibited aquaculture zones have remained

relatively stable from 2017 to 2023; however, the boundaries of the

aquaculture zones and restricted aquaculture zones have undergone

significant adjustments. Notably, the coastal and nearshore areas

within Haizhou Bay (area S1), which were designated as aquaculture

zones in 2017, were reclassified as restricted aquaculture zones by

2023, potentially contributing to the reduction in the aquaculture

area. The aquaculture policy in region b underwent significant

adjustments. Previously designated prohibited and allowed

aquaculture zones were uniformly reclassified as restricted zones.

Additionally, minor adjustments were made in the downstream area
FIGURE 4

Four-Y line chart.
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FIGURE 5

Distribution map of laver aquaculture area in 2000 (red), 2008 (purple), 2015 (bule) and 2022 (yellow).
FIGURE 6

Tidal flat planning maps and aquaculture waters in (A) 2017; (B) 2023.
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(area S3), where a small, newly restricted aquaculture zone was

added. With the expansion of the Tianwan Nuclear Power Plant

and the increase in thermal discharge, the spatial distribution of laver

aquaculture zones has shifted noticeably offshore. This change is

likely due to the environmental impact of nuclear plant operations,

necessitating the re-planning of aquaculture zones to adapt to new

ecological conditions (Lu et al., 2018). Based on the identification

results for the 2023 aquaculture area, we performed an overlay

comparison of these two planning maps. According to the overlay

comparison results of the two maps, it was found that area S2

(nuclear power special utilization area) and area S4 (port area)

both had laver aquacultures. These areas do not conform to the

spatial distribution requirements of the Lianyungang Marine

Functional Zoning Plan.
3.3 Analysis of laver aquaculture area in
Haizhou Bay

Building on the detailed division of the sea area in Haizhou Bay,

this study conducted an in-depth analysis of four different zones

with respect to the proportion of aquaculture area to their respective

sea areas: Zone A (north of the Haizhou Bay), Zone B (south of the

Haizhou Bay), Zone C (outer bay area), and Zone D (nuclear power

plant influence area) (Figure 1). The heatmap Figure 7 shows the

correlation coefficients among the laver coverage rates in four

distinct aquaculture regions within Haizhou Bay as well as the

correlation with the total aquaculture area. Each cell within the

heatmap represents the degree of correlation between the coverage

rates of the two regions, with red shading indicating a more similar

pattern of change. Zones C and D exhibited relatively low
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correlation compared with the others, which suggests that policies

and the construction of nuclear power plants had an impact on the

aquaculture areas of laver.

The trend of data change in the four regions is visually presented

by multi-series line charts (Figure 8). Of particular note is the

proportion of laver aquaculture area in Zone C, the offshore area,

represented by the blue line. This proportion was negligible between

the years 2000 and 2014. However, in 2015, with the leapfrog

development of aquaculture technology and the proposal of a

strategy for the development of the deep sea and far sea, the scale

of aquaculture in this area expanded significantly. Nevertheless, this

growth trend did not continue for a long time, and by 2021, owing to

policies and the impact of the COVID-19 pandemic (Tang et al.,

2025), the proportion of aquaculture area began to decline in Zone C

(Figures 6, 8). The black and red lines depict changes in the

proportion of laver aquaculture areas in Zones A and B,

respectively. From 2000 to 2023, the increasing and decreasing

trends of these two lines showed a high degree of consistency, with

an R2 value of 0.89 for high correlation (Figure 7). This not only

indicates the similarity in aquaculture conditions and market

environments between the north and south of the Haizhou Bay but

also reflects the possibility that similar strategies and methods may

have been adopted in aquaculture practices in these two regions.

The proportion of laver aquaculture area in the nuclear power

plant influence area, represented by the green line (Figure 8),

experienced a decline in 2007 compared to the surrounding years.

This phenomenon may be associated with the official commercial

operations of Units 1 and 2 of the Tianwan Nuclear Power Station

in 2007. As an important achievement of Sino-Russian

technological cooperation, the Tianwan Nuclear Power Station

has milestone significance in the energy field and profound effects
FIGURE 7

Annual trend lines of proportion of laver rafts in different zones in Haizhou Bay.
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on the ecological environment and economic activities in the

surrounding marine areas. At the beginning of the operation of a

nuclear power station, there may have been concerns and

uncertainties regarding the surrounding environment. These

factors may have led to a reduction in the aquaculture area. For

example, residents and aquaculture farmers may be concerned

about the safety of the nuclear power station and its potential

environmental impacts, thereby affecting their willingness and scale

of laver aquaculture within the influence area. Additionally, the

construction and operation of nuclear power stations may bring

about changes in the marine environment, such as changes in water

temperature, flow, and quality, which may adversely affect laver

aquaculture. However, as time passed and nuclear power stations

operated safely and steadily, public understanding and acceptance

of nuclear power stations gradually increased. Furthermore, the

government and relevant departments may have implemented a

series of environmental protection and ecological compensation

measures to help alleviate the initial concerns and negative impacts.

Therefore, despite the decrease in aquaculture area in 2007, in

subsequent years, with the gradual optimization and adjustment of

various factors, the proportion of laver aquaculture area gradually

recovered and showed new development trends (Figures 5, 8).
4 Discussion

4.1 Practicality verification of models

The core focus of this study was the application of the U-Net

deep learning model for the interpretation of long-term series
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Landsat satellite images to extract laver aquaculture areas. The

model demonstrated outstanding performance and achieved

satisfactory results during the extraction process. In this section,

we further explored the applicability and effectiveness of the U-Net

model trained with Landsat images when processing images from

sensors with different resolutions. To gain a deeper understanding

of this issue, we selected satellite images with three different

resolutions: 30-meter resolution Landsat images, 16-meter

resolution GF-1 images, and 10-meter resolution Sentinel-2

images. The selected raw images were all from the same region

and were captured on the same day, and they underwent identical

preprocessing. Subsequently, we performed FLAASH atmospheric

correction on these preprocessed images, resulting in three

atmospherically corrected images, as shown in Figure 9 and

Table 2. The comparative analysis results indicate that under the

conditions of this experiment, the U-Net deep learning model

trained with Landsat remote sensing images can be successfully

applied to remote sensing images from sensors with

different resolutions.

The ability of the U-Net model to generalize across different

image resolutions within a certain range highlights its potential for

broader remote sensing applications. However, this capability is

contingent on the resolution being sufficient to distinguish the

smallest unit of the laver aquaculture areas. This capability can

reduce the need for extensive retraining and calibration when the

model is applied to various satellite datasets. These findings

underscore the versatility and practicality of the U-Net model in

remote sensing applications, particularly agricultural monitoring

and resource management (Chen et al., 2021; Wu, 2023). Future

research should explore the performance of the model across a
FIGURE 8

Correlation heatmap of the laver coverage rate in different zones of Haizhou Bay.
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wider range of environmental conditions and resolutions to further

validate its generalizability and robustness.
4.2 Analysis of driving force for laver
aquaculture

4.2.1 Natural factors
From 2000 to 2023, the rapid development of laver aquaculture

in Hai Zhou Bay witnessed a substantial increase in aquaculture

area from 1006.74 hm2 in 2000 to 10872.45 hm2 in 2023, as

observed from the U-Net model’s extraction results. Regression

analysis revealed distinct environmental drivers of this expansion:

2-m temperature showed the strongest positive correlation with
Frontiers in Marine Science 12
aquaculture area (R²=0.26, p<0.05), while other factors like wind

speed (R²=0.04, p>0.05) and sea surface temperature (R²=0.11,

p>0.05) demonstrated statistically insignificant relationships

(Supplementary Figure S1). These findings indicate that natural

factors played a limited role in driving the expansion of laver

aquaculture, suggesting that the environmental conditions in Hai

Zhou Bay are relatively stable and inherently suitable for

laver aquaculture.

Among these, seawater temperature plays a crucial role. Laver, a

cold-water seaweed, thrives best within an optimal temperature

range of 0.5 and 18°C (Kim, 2013), with deviations from this range

—either too high or too low—adversely affecting its growth rate and

quality. The significant positive correlation between 2-m

temperature and aquaculture expansion (Supplementary Figure
FIGURE 9

Identification results of satellite images with atmospheric correction. (A) Sentinel-2; (B) GF-2; (C) Landsat-9.
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S1A, R² = 0.26, p<0.05) suggests that subtle warming within the

optimal range may have enhanced aquaculture suitability. As the

growth cycle of laver typically spans November to March of the

following year (Ai et al., 2023), it is important to note that the 2-m

temperature and sea surface temperature in Hai Zhou Bay remained

within the optimal range for laver growth throughout the

aquaculture period, as shown in Figures 10A, B. Despite the lack

of statistical significance in sea surface temperature trends

(Supplementary Figure S1B, R²=0.11, p>0.05), their sustained

stability within the 0.5-18°C window likely provided essential

thermal stability for large-scale aquaculture.

Wind speed is another crucial natural factor affecting laver

aquaculture in Haizhou Bay. As depicted in Figure 10C, the

monthly average wind speeds in Haizhou Bay from 2000 to 2023

fluctuated between 3 and 3.5 m/s. Notably, regression analysis

showed minimal correlation between wind speed and aquaculture

area (R²=0.04, p>0.05), indicating that interannual wind variations

played a secondary role in driving spatial expansion compared to

thermal factors (Supplementary Figure S1C). Adequate wind speeds

contribute to sufficient oxygen supply and vertical mixing of

seawater, which is essential for providing the necessary nutrients

to the laver. However, excessively high wind speeds may lead to

increased wave action, which may disrupt the growth environment

and cause physical damage to aquaculture facilities. Additionally,

sustained strong winds may alter the direction of seawater, affecting

the attachment and growth of laver spores (Chen, 2021).

Figure 10D illustrates the monthly average total precipitation in

Haizhou Bay from 2000 to 2023, ranging from 20 to 100 mm within

the laver growth period. The precipitation showed the weakest

correlation with aquaculture area (Supplementary Figure S1D;
Frontiers in Marine Science 13
R²=0.002, p>0.05), despite its theoretical importance for nutrient

dynamics. Precipitation is an important factor influencing the water

quality and nutrient availability for laver aquaculture. Adequate

rainfall helps provide freshwater and nutrients to the aquaculture

areas, promoting laver growth. However, excessive precipitation

may reduce seawater salinity, negatively affecting laver adaptability

to its environment, ultimately impairing photosynthesis and growth

(Ren et al., 2020). Heavy precipitation may also introduce land-

based pollutants into the sea, increasing suspended solids and

affecting the water quality in the aquaculture zones (Lian

et al., 2020).

Photosynthetically Active Radiation (PAR) refers to solar

radiation that plants can use for photosynthesis. PAR is another

key environmental factor that directly influences laver growth in

Haizhou Bay. As shown in Figure 10E, the monthly average PAR in

Haizhou Bay fluctuated between 17-35 einstein/m2/day during the

laver growth period. The weak negative correlation between PAR

and aquaculture area (Supplementary Figure S1E; R²=0.02, p>0.05)

challenges conventional assumptions. Adequate PAR is crucial for

leaf photosynthesis, which in turn supports growth and biomass

accumulation. However, variations in cloud cover, seasonal

changes, and water depth can reduce the intensity of PAR

reaching the seabed, which can affect laver growth. In Haizhou

Bay, laver aquaculture predominantly takes place in the winter

months, when daylight hours are shorter; however, a relatively

stable PAR level during this period is conducive to consistent laver

growth. If PAR is too low, it may limit photosynthesis, thereby

affecting growth and yield. Seasonal and daily variations in PAR

also affect the laver aquaculture cycle, requiring adaptive

management in aquaculture practices (Xue et al., 2023).
FIGURE 10

Monthly average variations of natural factors from 2000 to 2023. (A) 2-m Temperature; (B) Sea Surface Temperature; (C) Wind Speed; (D) Total
Precipitation; (E) PAR.
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4.2.2 Modern technological breakthroughs
With the continuous advancement of technology, significant

progress has been made in various aspects of laver aquaculture,

including seedling collection, breeding, cultivation, and processing

(Lu et al., 2018). The continuous improvement of aquaculture

technology has brought about revolutionary changes in the laver

industry, enabling the comprehensive upgrading of traditional

aquaculture methods.

Traditional laver aquaculture is mostly concentrated in

nearshore intertidal zones, while the application of modern

aquaculture technology has expanded laver aquaculture into the

vast blue realms of the deep sea. For example, in Jiangsu

Lianyungang, the successful experiment of the full-floating laver

aquaculture research test area has expanded the traditional

aquaculture sea area. This deep-sea aquaculture method, like the

full - floating type using foam instead of bamboo poles, not only

effectively avoids environmental pressures in nearshore areas, such

as pollution and disease invasion, but also maximizes the utilization

of broader marine resources, further expanding the scale of

aquaculture (Wei et al., 2018).

The widespread application of modern biotechnology has

injected continuous vitality into the laver industry, making laver

varieties more diverse, with stronger resistance, and higher yields.

Breakthroughs in laver genetic breeding, as evidenced by research

from relevant scholars, have injected strong momentum into

industrial development, providing reliable guarantees to produce

high-quality laver products (Ding and Yan, 2019). In addition, new

aquaculture models have emerged. In Xishu Village, Lianyungang, a

new model of intercropping shellfish and algae has been adopted,

with half of the original laver-aquaculture sea area now used for

laver cultivation and the other half for shellfish aquaculture, mainly

including triploid Pacific oysters, as well as some two-headed razor

clams, American red clams, and blue mussels. This new model can

not only make full use of sea area resources and increase the yield

per unit area of laver and oysters, promoting the increase of

fishermen’s income, but also effectively prevent the eutrophication

of the breeding sea area and the explosive diseases of shellfish,

achieving sustainable development. Each year, the income from this

new model in the area has increased significantly, with the average

income per mu of oyster aquaculture reaching 1000-2000 RMB, and

the income from laver has also increased due to the improvement of

the ecological environment.

The continuous development of new aquaculture facilities and

materials has provided strong support for the sustainable

development of laver aquaculture. For example, the application of

antifouling coating technology has effectively improved the

durability and efficiency of aquaculture equipment, making

production more efficient and stable (Tang et al., 2022). In

addition, in the face of the problem of green algae affecting laver

cultivation, the acid - treatment technology for green tide algae has

been developed. After two-year in-situ tests in the sea area, it has

been verified that applying the acid- treatment solution for 1 minute

can remove more than 90% of the attached green algae on the laver

raft cables and nets, and has no obvious impact on the growth of

laver and the sea area environment. Through this technology, the
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impact of green algae on laver grade and yield is reduced, and the

aging laver bodies are also reduced to a certain extent, improving

the quality and yield of laver. Cooperating with enterprises to use

mixed - acid reagents to kill Enteromorpha prolifera, the average

value - added per mu of laver can reach 540 RMB, achieving a win-

win situation of economic and ecological benefits.

Simultaneously, the application of ecological three-dimensional

control technology has provided new ideas and effective means for

environmental protection in laver aquaculture areas, ensuring the

harmonious coexistence of aquaculture activities and the

surrounding ecological environment. These technological

innovations not only collectively promote the optimization of

laver aquaculture spatial distribution but also open broad

prospects for the sustainable development of laver (Wang et al.,

2021). While meeting the market demand for high - quality laver

products, these innovations also contribute positively to

safeguarding the sustainable development of the marine

ecological environment.

4.2.3 Economic-social-policy factors
The thriving development of laver aquaculture in Haizhou Bay

can be attributed to the combined impetus of economic, social, and

policy factors. First, the rapid economic growth in Lianyungang

City provided a solid market foundation and capital support for the

laver aquaculture industry. The city’s GDP increased from 29.319

billion RMB in 2000 to 436.4 billion RMB in 2023, reflecting nearly

a fifteen-fold growth, indicative of the city’s economic

diversification and industrial expansion, thereby promoting the

development of laver aquaculture.

From 2000 to 2018, the area of laver aquaculture reached its

peak in Haizhou Bay, with a significant relationship observed

between GDP and laver cultivation area (Figure 11A, R² = 0.84,

P<0.05). This trend can be divided into two periods: the

development phase (comprising a slow development stage from

2000 to 2007, exponential growth stage from 2008 to 2012, and a

plateau stage from 2013 to 2018) and a subsequent phase focusing

on high-quality development marked by policy adjustments.

Growing market demand is also crucial; people’s increasing

focus on healthy foods has made laver a favored choice, significantly

benefiting the aquaculture industry. Furthermore, the relationship

between the Producer Price Index and laver cultivation area showed

no significant impact (Figure 11B, R² = 0.12, P>0.05), indicating

that social price trends have not substantially influenced the scale of

laver aquaculture, which remained relatively stable over the years.

Additionally, laver aquaculture has provided numerous

employment opportunities in the Haizhou Bay area, particularly

for farmers and fishermen in coastal regions. It has become an

important economic resource for improving the living standards of

residents (Lu et al., 2018). The tradition of laver aquaculture has

fostered local community identity and cohesion, enhanced social

consensus and promoted a spirit of cooperation that drives stable

industrial development.

From the analysis of policy impacts, a scoring system was

introduced to evaluate the impact of policies. Specifically, policies

supporting the industry (e.g., subsidies, technological incentives)
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were assigned a score of +1, while policies aiming to optimize or

reduce over-expansion (e.g., environmental regulations) were

assigned a score of -1. This scoring system allowed us to

systematically incorporate policy effects into our framework. The

details for the policies and scores are shown in Supplementary Table

S1. It is evident that from 2000 to 2018, policies were predominantly

supportive, encouraging and endorsing the development of the

laver aquaculture industry, which peaked in 2018 (Figure 11C).

However, from 2019 onward, the government implemented policies

aimed at optimizing and adjusting the industry, transitioning

towards high-quality development by promoting technological

transformation and upgrading. This shift has led to a reduction in

laver cultivation scale, with a gradual move away from nearshore

intertidal farms to offshore deep-sea areas (Figure 5), reflecting the

policy-driven nature of the industry. Such policy measures, which

include subsidies and technical guidance, serve as robust guarantees

for industrial growth while emphasizing ecological protection and

the rational use of marine resources. These policies have become

vital in shaping the spatial distribution of laver aquaculture

(Su et al., 2020).
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Ultimately, these economic, social, and policy factors interact

and mutually reinforce each other, collectively promoting the

healthy development of laver aquaculture in Haizhou Bay. Under

this comprehensive influence, laver aquaculture continues to

flourish, significantly contributing to the overall progress of the

local economy and society.
4.3 Model applicability, scalability, and
future exploration

The U-Net model, validated for the Haizhou Bay region,

demonstrates significant potential for aquaculture monitoring.

However, its applicability to other regions with varying

environmental and spectral characteristics remains uncertain.

Environmental factors such as water temperature, salinity,

turbidity, and species-specific spectral properties can differ

significantly across geographic locations, potentially impacting the

model’s performance (Ronneberger et al., 2015). Future research is

needed to assess U-Net’s generalizability to regions with different
FIGURE 11

The correlation between area of laver aquaculture and (A) GDP, (B) Producer Price Indices, and (C) Policy Score, respectively.
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climatic conditions, species, or environmental challenges, such as

tropical aquaculture or deep-sea aquaculture, where spectral

signatures and environmental dynamics may vary considerably.

Despite these uncertainties, the methodology and findings of

this study offer valuable insights for global aquaculture

management. The integration of long-term remote sensing data

and environmental parameters like sea temperature, wind speed,

and photosynthetically active radiation (PAR) can be adapted for

monitoring aquaculture areas worldwide. This approach could also

be extended to monitor different species, enabling more

comprehensive management strategies. However, scalability may

be influenced by data resolution, availability, and local

environmental characteristics. For instance, regions with lower

spatial resolution or limited historical remote sensing data may

experience reduced classification accuracy.

The scalability of the U-Net model is further influenced by the

temporal and spatial variability of aquaculture sites. While U-Net

has proven effective for stable zones like Haizhou Bay, it may face

challenges in more dynamic environments or regions with higher

variability in farm distribution. Environmental factors such as water

quality fluctuations, seasonal changes, and species-specific growing

conditions could also complicate model performance in new

regions. Nevertheless, the methodology developed in this study

provides a robust framework for large-scale aquaculture monitoring

using remote sensing. Future work should focus on validating and

refining the U-Net model in diverse environmental conditions to

enhance its global applicability.

In terms of model selection, U-Net was chosen over other state-

of-the-art deep learning models, such as ResUNet (Su et al., 2022a)

and DeepLabV3+ (Ai et al., 2023), due to its balance between

performance and computational efficiency. U-Net’s distinctive skip

connections allow for the preservation of fine spatial details, which

is crucial for accurately delineating aquaculture areas in coastal

environments (Ronneberger et al., 2015). Its simpler architecture

made it ideal for handling long-term datasets, like those used in this

study (2000–2023), where computational efficiency was a key

consideration. Future exploration could involve exploring more

complex architectures, such as ResUNet and DeepLabV3+, to

evaluate their potential for improving performance in larger-scale

aquaculture monitoring tasks. The potential benefits of these

models in handling multi-scale and more diverse aquaculture

regions could offer insights into further improving classification

accuracy for larger and more complex monitoring projects.
5 Conclusion

Based on multi-temporal Landsat remote sensing imagery from

2000 to 2023, this study utilized the U-Net convolutional neural

network as a deep learning interpretation model to extract marine

aquaculture areas. We conducted research on the spatiotemporal

distribution of laver aquaculture areas in Haizhou Bay of China. In

addition, we discussed the recognition performance of the remote

sensing images acquired by sensors with different resolutions.

Meanwhile, we explored the driving forces behind the evolution
Frontiers in Marine Science 16
of laver aquaculture areas from various aspects, including natural

factors, aquaculture techniques, and economic-social-policy.

This study concludes that the U-Net model is an effective tool

for extracting and analyzing aquaculture areas from remote sensing

images in Haizhou Bay, demonstrating superior performance

compared to traditional methods. The aquaculture area exhibited

distinct phases of growth and decline, influenced by a combination

of natural environmental factors, technological advancements, and

socio-economic policies. The period from 2000 to 2018 was

characterized by supportive policies and technological

improvements that contributed to peak aquaculture areas.

However, post-2018, policy adjustments targeting high-quality

development and environmental sustainability led to a decrease in

aquaculture scale. This research highlights the critical role of

economic growth, particularly economic development, in driving

the initial expansion of laver aquaculture. However, market price

impacts were minimal, indicating that technological innovations

have been crucial for enhancing productivity and sustainability.

Policy measures have decisively shaped the industry’s trajectory,

underscoring the need for balanced strategies that integrate

economic and ecological considerations. Ultimately, this study

emphasizes the importance of combining remote sensing

technology with economic and policy analysis to effectively

understand and manage aquaculture systems. Future research

should explore the applicability of this approach in other regions

and investigate the long-term environmental impacts of

aquaculture policies and practices. Additionally, Future research

could explore complex architectures like ResUNet and DeepLabV3

+ to improve performance in large-scale aquaculture monitoring,

particularly in handling multi-scale and diverse regions.
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