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Effects of hypoxia on the heart
of the juvenile four-finger
threadfin (Eleutheronema
tetradactylum) based on
physiological indicators and
transcriptome analysis
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Jing-hui Jin1, Rui-tao Xie5, Eric Kwabena Droepenu2

and Jian-sheng Huang1,3,4*

1Fishery College, Guangdong Ocean University, Zhanjiang, China, 2Department of Water Resources
and Aquaculture Management, University of Environment and Sustainable Development, Somanya,
Eastern Region, Ghana, 3Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and
Healthy Culture, Zhanjiang, China, 4Guangdong Marine Fish Science and Technology Innovation
Center, Zhanjiang, China, 5Guangdong Evergreen Feed Industry Co. Ltd, Zhanjiang, China
This study evaluated the effects of hypoxia on the heart of juvenile four-finger

threadfin (Eleutheronema tetradactylum) through physiological and

transcriptome analysis. Juveniles with an average weight of 122.82 g and

length of 24.60 cm were used. Hypoxia significantly increased serum

myocardial enzyme activities, including creatine kinase (CK), creatine kinase-

MB isoenzyme, lactate dehydrogenase (LDH), and a-hydroxybutyrate
dehydrogenase (HDBH). These indicators initially rose and then declined,

reflecting cardiac stress and suggesting their potential as early hypoxia

biomarkers for real-time aquaculture monitoring. Histological analysis revealed

structural damage in myocardial fibers under hypoxia, with increasing severity

over time. This underscores the need to minimize oxygen fluctuations to prevent

cardiac tissue degeneration. Transcriptome analysis identified upregulated genes

involved in cell communication, immune responses, and intracellular signaling,

offering potential targets for breeding hypoxia-tolerant species. Kyoto

Encyclopedia of Genes and Genomes pathway enrichment analysis highlighted

key pathways such as mitogen-activated protein kinase (MAPK), hypoxia-

inducible factor-1 (HIF-1), endocytosis, and phagosome formation. The MAPK

pathway plays a critical role in cellular stress responses, including survival,

proliferation, and apoptosis. Hypoxia-induced activation of MAPKs like ERK,

JNK, and p38 regulates stress-responsive genes. HIF-1 signaling regulates

oxygen homeostasis, with HIF-1a stabilizing hypoxia-responsive genes such as

VEGFA, which promotes vascular remodeling and enhances oxygen delivery.

These findings collectively offer practical applications for enhancing aquaculture

management, such as monitoring biochemical markers, adopting hypoxia-
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tolerant breeding, and adjusting environmental conditions to mitigate stress,

ensuring better productivity and sustainability. This research provides a

foundation for further studies on the molecular mechanisms of hypoxia stress

in aquaculture species.
KEYWORDS

Eleutheronema tetradactylum, hypoxia stress, heart tissue, transcriptome,
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1 Introduction

The four-finger threadfin (Eleutheronema tetradactylum) holds

substantial aquaculture value, especially in coastal regions in Asia

where it is cultivated for its economic potential (Soe et al., 2023; Xuan

and Wang, 2023). However, due to intensive aquaculture practices,

hypoxic conditions frequently arise, posing a significant threat to its

survival and growth. Hypoxia affects several vital physiological

processes in E. tetradactylum, with a particularly adverse impact on

the heart (Gu et al., 2023), which is crucial for oxygen transport and

metabolic regulation (Xuan andWang, 2023; Iqbal et al., 2023; Wang

et al., 2023; Li et al., 2022). The heart is particularly vulnerable to

hypoxia due to its high metabolic demand and reliance on aerobic

metabolism to sustain contractile function. Unlike some other organs,

which can temporarily switch to anaerobic pathways for energy

production, the heart’s dependence on oxygen for ATP synthesis is

critical for maintaining its continuous pumping action (Cerra et al.,

2023; Doenst et al., 2013; Essop, 2007; Osť’ádal and Kolár,̌ 1999). This

makes it highly susceptible to reduced oxygen levels. Prolonged

exposure to low oxygen levels disrupts myocardial enzyme activity,

damages cardiac tissue, and triggers a series of gene expression

changes (Yohana et al., 2024; San et al., 2021; Jiang et al., 2021;

Chen et al., 2021, 2017).

Dissolved oxygen is a key environmental factor affecting fish

growth, metabolism, and survival (Wang et al., 2023; Ali et al., 2022).

Hypoxia, generally defined as dissolved oxygen concentrations below

3 mg/L, impacts multiple physiological processes in fish, including

growth, reproduction, and metabolic regulation (Yohana et al., 2024;

San et al., 2021; Jiang et al., 2021; Chen et al., 2021, 2017). Different

species and even tissues within the same organism exhibit varying

levels of oxygen tolerance. In E. tetradactylum, hypoxia

predominantly affects the gills, liver, and intestines, resulting in

changes in physiological and biochemical activities, enzyme

function, gene expression, and signaling pathways, such as the

hypoxia-inducible factor-1 (HIF-1) pathway (Liu et al., 2024; Wang

et al., 2023; Gu et al., 2023; Huang et al., 2021). These processes

underscore the complexity of the physiological responses to oxygen

deprivation and highlight the importance of studying the molecular

mechanisms underlying hypoxia tolerance.

Despite fish having well-documented capacities to survive low

oxygen conditions, research on the molecular regulatory
02
mechanisms of their response to hypoxia is still developing.

Understanding how fish respond to hypoxic stress at a

physiological and molecular level is crucial for breeding programs

aimed at enhancing hypoxia tolerance in aquaculture species.

Juvenile fish, in particular, are more vulnerable to environmental

stressors like hypoxia, which can significantly affect their growth

and survival (Canosa and Bertucci, 2023). Studying the responses of

juvenile E. tetradactylum to hypoxia will help improve aquaculture

practices and management strategies.

The heart, being central to oxygen transport and metabolic

regulation, plays a critical role in the hypoxic response of fish (Zhao

et al., 2023). Physiological indicators such as heart rate, cardiac

output, and oxygen consumption provide valuable insights into

how hypoxia affects cardiac function (Galli et al., 2023). Studies

have shown that acute hypoxia may lead to the preferential

perfusion of vital organs like the heart, temporarily maintaining

cardiac function. However, sustained hypoxia can impair

myocardial contractility, reduce cardiac output, and potentially

lead to heart failure (Everett et al., 2012). Investigating the

mechanisms by which the heart adapts to hypoxic stress is,

therefore, essential to understanding the overall resilience of E.

tetradactylum to environmental challenges.

Transcriptome sequencing is a powerful tool for studying gene

expression and regulation at the molecular level. It has been

extensively used to investigate stress responses, metabolic

regulation, and the genetic basis of various physiological

processes in fish. Transcriptome analysis offers a detailed

understanding of the molecular mechanisms underlying

physiological changes in response to environmental stressors,

including hypoxia (Sun et al., 2021). In recent years, genes and

signaling pathways related to hypoxia stress have been identified in

several fish species, such as cobia (Rachycentron candum) (Huang

et al., 2023), bighead carp (Hypophthalmichthys nobilis) (Chen et al.,

2021), and large yellow croaker (Larimichthys crocea) (Mu et al.,

2020). However, hypoxia response mechanisms are species-specific,

underscoring the need for species-focused research.

The study integrates physiological indicators with transcriptomic

profiling, enabling a multi-faceted approach to assess hypoxia’s impact

on cardiovascular function, which provides a deeper understanding of

metabolic, structural, and genetic adaptations. Specifically, it identifies

unique hypoxia-responsive genes linked to energy efficiency and
frontiersin.org

https://doi.org/10.3389/fmars.2025.1530224
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Lu et al. 10.3389/fmars.2025.1530224
reduced oxidative stress, supporting the resilience of the heart under

low-oxygen conditions. This dual analysis approach, combining

physiological changes with molecular insights, offers a

comprehensive view of hypoxia-induced cardiac adaptations,

facilitating the development of strategies for hypoxia-tolerant

aquaculture species.These insights are critical for the conservation

and sustainable management of E. tetradactylum populations and

contribute to the broader understanding of hypoxia’s impact on

marine fish species. The findings also provide a theoretical basis for

breeding new hypoxia-resistant strains and serve as a reference for

improving the health and cultivation practices of four-finger threadfin

in aquaculture systems.
2 Materials and methods

2.1 Experimental fish and
feeding management

The experimental fish were derived from juveniles bred in the

biological research base of Donghai Island, China, by the fish seed

engineering and breeding team of the Fisheries College of

Guangdong Ocean University. Five hundred healthy individuals

with an average weight of 122.82g and average length of 24.60cm

were randomly selected and transported to the Guangdong

Evergreen Feed Industry Co., Ltd., breeding base, Zhanjiang,

China, with a special fry transport vehicle. The breeding facility is

an indoor 1000 mL breeding tank with a 24-hour continuous

inflatable microwater aquaculture system. As feeding water,

natural seawater was used that had undergone sedimentation and

sand filtration to ensure that the experimental water meets the

national fishery water quality standard (GB 11607-89). Throughout

the experiment, several critical water quality parameters were

meticulously monitored and controlled to ensure consistency.

These parameters included pH, temperature, dissolved oxygen,

ammonia, and salinity. A multiparameter apparatus (HI 9828,

Hanna Instruments, Keison Co., Chelmsford, UK) was utilized to

maintain these parameters at stable levels, thereby enhancing the

reliability of the experimental outcomes (Noureen et al., 2023).

During the temporary maintenance period, the dissolved oxygen

(DO) level was ≥ 5 mg/L, ammonia nitrogen was 0.10 ± 0.03 mg/L,

pH was 8.1, water temperature was 28 ± 0.5°C, and salinity was 28–

30. At both 8:00 and 17:00 every day, feed with special formula was

given once (Guangdong Evergreen Feed Industry Co., Ltd., crude

protein content ≥ 55%, crude fat content ≥ 8%, crude fiber content ≤

3%, and crude ash content ≤ 16%). One hour after the start of the

feeding, fish feces and residual feed were removed. The experiment

started after two weeks of acclimatization.
2.2 Experimental design and
sample collection

At the end of the holding period, fish were fasted for 24 h and

randomly divided into two treatment groups: a hypoxic stress group

(DO: 3.1 ± 0.26 mg/L) and a control group (CG; DO: 5.74 ± 0.23
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mg/L), with three replicates per group and 20 fish per replicate. The

tanks of CG were continuously aerated and circulated with water. A

DO meter (AZ8403, Hengxin, Taiwan) was used to monitor the

changes in DO every 10 min. In the hypoxic group, DO levels were

adjusted by controlling the flow of circulating water, closing the

inflow, and covering the water tank with a membrane from above; a

DO meter (AZ8403, Hengxin, Taiwan) was used for real-time

monitoring (Wang et al., 2021; Xie et al., 2021; Zhang et al., 2021).

All experimental processes were performed in accordance with

the regulations for laboratory animals of Guangdong province,

China. This study was conducted in compliance with the guide of

the Guangdong Ocean University Research Council for the care and

use of laboratory animals. Five juveniles were randomly sampled

from CG and hypoxic group on days 1, 4, and 7. Fish were

euthanized using ethyl-3-aminobenzoate methanesulfonate (MS-

222, Sigma, USA) to facilitate blood and heart tissue collection.

After their collection, hearts of fish were frozen in liquid nitrogen

and quickly moved to -80°C until further studies. The sampling

time of experimental group and CG was the same. The group

exposed to hypoxia stress for 1 day was named HG-1d, that exposed

to hypoxia stress for 4 days was named HG-4d, and the group

exposed to hypoxia stress for 7 days was named HG-7d.
2.3 Measurement of myocardial
enzyme activity

Creatine kinase (CK), creatine kinase myocardial band

isoenzyme (CK-MB), lactate dehydrogenase (LDH), and a-
hydroxybutyrate dehydrogenase (HBDH) were determined in

heart tissues of juvenile fish by relevant test kits (Nanjing

Jiancheng Technology Co., Ltd., http://www.njjcbio.com/). The

steps are briefly described as follows: Cryopreserved heart tissue

was thawed and weighed accurately; then, nine times normal saline

was added according to the ratio of weight (g): volume (mL) = 1:9.

The frozen heart tissue was homogenized in an ice water bath for 3–

5 min, and then centrifuged at 4°C and 2,500 r/min for 10 min.

According to the instructions of the relevant kit, the supernatant

was used to determine CK, CK-MB, LDH, and HBDH levels. CK-

MB was determined by immunosuppression, CK and LDH were

determined colorimetrically, and HBDH was determined by the a-
ketobutyrate substrate method.
2.4 Fabrication and observation of heart
tissue microsections

The paraformaldehyde-fixed heart was rinsed with water,

dehydrated with a 70–95% ethanol gradient, and transparented

with xylene. After paraffin embedding, the heart was continuously

sectioned (Leica microtome RM2016, Leica, Shanghai, China) to a

thickness of 5–6 mm. Hematoxylin and eosin staining and neutral

resin mounting were used to observe sections and photos were

taken under an optical microscope (Nikon E80i microscope with

Nikon Y-TV55 imaging system, Nikon, tochigi, Japan).
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2.5 RNA extraction, cDNA library
construction, and raw sequencing
data acquisition

Heart tissue samples of three fish from each of the hypoxia

stress group (HG-7d) and CG were removed from -80°C

refrigeration, ground to powder by adding liquid nitrogen in a

pre-cooled mortar, and total RNA was extracted using TRIzol

reagent (Invitrogen, Waltham, MA, USA) according to the

manufacturer’s instructions. The purity of RNA was tested using

a Nanodrop2000 spectrophotometer (Thermo Fisher Scientific,

Waltham, MA, USA). Agarose gel electrophoresis was used to

detect RNA integrity, and an Agilent2100 was used to determine

the RNA integrity number. mRNA was purified from total RNA

using Oligo(dT)-labeled magnetic beads. Fragmentation was

performed using divalent cations at high temperature in NEBNext

first-strand synthesis reaction buffer (5×). First-strand cDNA was

synthesized using random hexamer primers, followed by second-

strand cDNA. To select cDNA fragments with a length of 240 bp,

library fragments were purified using the AMPure XP system

(Beckman Coulter, Brea, CA, USA) and then PCR amplified.

After the library quality inspection had passed, the cDNA library

was sequenced using the Illumina HiSeq high-throughput

sequencing platform. To eliminate individual differences

according to the method of mixing tissue samples by Liu et al.

(2013), in this experiment, heart tissue samples of three fish per

group were mixed in equal amounts. Then, 1 mg of RNA from each

group was used for cDNA library construction and Illumina

sequencing. The library construction and Illumina sequencing in

this study were completed by Genedenovo Co., Ltd. (Guangzhou,

China). As reagents used for library construction, the Truseq TM

RNA sample prep Kit (Illumina, CA, USA) was used and the

sequencing system was Illumina Novaseq 6000 (Illumina, San

Diego, USA), with the sequencing mode 2 × 150 bp.
2.6 Data processing, assembly, and
functional annotation

The raw data obtained by sequencing were obtained by

removing sequencing adapters and primer sequences from the

reads and filtering low-quality data to obtain clean data, which

were then assembled from scratch using Trinity (v2.5.1). Longer

transcript sequences were obtained by overlapping splicing, and the

longest transcript in the same gene was selected as unigene. The

transcripts obtained after de-redundancy of the assembled

transcripts were annotated. The obtained assembled transcripts

were compared with the non-redundant protein (NR), Kyoto

Encyclopedia of Genes and Genomes Orthology (KEGG), and

Swiss-Prot databases using the Diamond program. The obtained

assembled transcripts were compared with the clusters of

orthologous groups for complete eukaryotic genomes database by

NCBI blast v2.2.29+, and the transcripts were annotated.
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2.7 DEG analysis, GO enrichment, and
KEGG enrichment

Bowtie was used to align the reads obtained by sequencing with

the unigene library. The expression level was estimated based on the

alignment results combined with RSEM. The fragments per kilobase

of transcript per million fragments mapped value was used to

represent the expression abundance of the corresponding

unigene. DESeq2 was used to perform differential expression

analysis between sample groups to obtain the differentially

expressed gene (DEG) set between two conditions. The

Benjamini–Hochberg method was used to correct the significance

obtained by the original hypothesis test; further, the P value was also

corrected, i.e., FDR < 0.01 and log2FC obtained by the original

sample groups, to obtain the DEG set between the two conditions;

various annotation information corresponding to DEGs

was obtained.
2.8 Real-time fluorescence quantitative
PCR verification

Ten DEGs (five of which were upregulated and five were

downregulated) were randomly selected from the sequencing

results. Primers were designed using Primer premier 5 software

(Table 1) using Rps4 as the internal reference for quantitative real-

time PCR (qRT-PCR) verification. The reaction procedure was

performed in three steps: pre-denaturation at 94°C for 30 s, and

40 cycles including denaturation at 94°C for 5 s, annealing at 60°C

for 15 s, and extension at 72°C for 20 s. Each sample was tested three

times, and the results were calculated by the 2-△△Ct method (Song

et al., 2020; Rao et al., 2013). Finally, the results were drawn

according to the data of the relative expression levels between

samples and CG.
TABLE 1 Primer sequences of genes used for quantitative real-time PCR.

Genes Primer sequences(5′−3′)

ldha GTCATCGGCTCTGGCACCAA, CCTCCTTCCACTTCTCGCTGTC

PTGS2 ACAGTCTGGAGAGGCAACACAA, AGCGAAGCGGTGAGAGTCTG

jak1 CGTGAAGGAGTCTCGTGCTGTT, GCTGGAAGTGGAGGTTGTCTGT

cfl1-a AGCGGTTGCGATTGGTGGTA, TGGCAGTCATACAGCAGGTAGC

KSR1 GACAACCGCTTCCACTTC, CTCGTCACACTCCTCAGA

CNDP2 CCTCCGTCCTGCTGCTCATT, CCTGTTCTCCGATGTCCACCA

lipt2 ATGGTTTGACCACATCGTGC, CGTTGTCCTCGTCACCTCC

IP6K2 CAGGCTGAGGTGCTCTACTACA, GCTTGGCGTTCTCCTTCATCC

tmem205 GGAGCCGACAGACTTCATCAA, AGTTACCTGCTTCACCAACACA

unc45b GTGTGCCTCTGCTGCTCAAC, TGCCAGTGCGATCTCTTCATTG

Rps4 GGCGAGCACTTCCGTCTGAT, CGGTGTCGTTGACCTTGATGAG
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2.9 Data analysis

Graphpad prism 10 software was used to process and map the data.

Paired t-tests were used to analyze differences between CG and hypoxia

stress groups. The difference was considered significant at P < 0.05, and

extremely significant at P < 0.01. Statistical methods used to verify the

significance of cardiac enzyme activity: All values are expressed as mean

± standard error (M± SE). Statistical analysis was performed using Prism

10 software. The hypoxia group and the control group were compared

using t test. P < 0.05 was considered a significant difference, and P < 0.01

was considered an extremely significant difference.
3 Results

3.1 Effects of hypoxia on myocardial
enzyme activities in the four-
finger threadfin

The effect of hypoxia stress on myocardial enzyme activities in the

four-finger threadfin is shown in Figure 1. Hypoxia caused significant

fluctuations in myocardial enzyme activities which initially increased,

then stabilized or returned to baseline, suggesting a biphasic response

involving initial stress and subsequent adaptation.With the extension

of hypoxia stress time, the activities of CK, LDH, and HDBH first

increased and then decreased. The activity of CK-MB followed a

significant increasing trend. Among them, CK activity and HDBH

activity reached peak values after 4 days of hypoxia stress, and were

significantly higher than those in CG (P < 0.01); moreover, LDH

activity was also significantly higher than in CG (P < 0.05). After 7

days of hypoxia stress, CK activity and LDH activity returned to the

level of CG (P > 0.05), while CK-MB activity and HDBH activity were

still significantly higher than those of CG (P < 0.01).
3.2 Effects of hypoxia on the cardiac tissue
structure of the four-finger threadfin

The effect of hypoxia on the cardiac tissue structure of the four-

finger threadfin is shown in Figure 2. Prolonged hypoxia exposure led
Frontiers in Marine Science 05
to progressive structural damage in cardiac tissue, marked by

increased cell gaps, disordered fibers, and cell swelling, indicating

that sustained hypoxia can severely impair heart tissue integrity. The

myocardial fibers of the fish of CG were continuously and neatly

distributed, and myocardial cells were arranged in longitudinal,

oblique, and circular bundles without expansion or breakage

(Figure 2A). However, the degree of structural damage of the

cardiac tissue in the hypoxia group increased gradually with the

extension of time under stress. This damagemanifested as the gradual

enlargement of the intercellular gaps in the myocardium, and the

disorder, swelling, and even rupture of muscle fibers (Figures 2B–D).
3.3 Transcriptome analysis

3.3.1 Results of transcriptome sequencing data
quality assessment

Transcriptome analysis identified several differentially

expressed genes (DEGs), showing a strong initial upregulation, a

modulation phase at four days, and then increased gene activation

at seven days. These DEGs were associated with immune responses,

oxidative stress management, and cell communication, pointing to

adaptive mechanisms aimed at maintaining heart function under

low oxygen conditions.The base distribution and sequencing quality

of the quality control sequences of 12 samples were obtained. The

GC content was 47.86–49.21%, Q20 (sequencing accuracy 99%) was

97.21–97.72%, and Q30 (sequencing accuracy 99.9%) was 92.43–

93.63%, which can be used for subsequent analysis and research.

The results of the comparison are presented in Table 2.

3.3.2 DEG screening results
Differentially Expressed Genes (DEGs), these are genes that

show a significant difference in expression levels (upregulation or

downregulation) between experimental conditions, such as hypoxia

and normal oxygen levels. Identifying DEGs helps reveal genes

associated with stress responses and adaptations. DEGs were

screened in three comparison groups: CG vs HG-1d group, CG vs

HG-4d group, and CG vs HG-7d group. The results are shown in

Figure 3. A total of 729 DEGs were screened in the CG vs HG-1d

group, 674 of which were upregulated and 55 were downregulated.
FIGURE 1

The effect of hypoxia stress on myocardial enzyme activities of four-finger threadfin. ** indicates extremely significant difference (P<0.01), * indicates
significant difference (P<0.05). (A) Creatine kinase (CK), (B) creatine isokinase (CK-MB), (C) a-hydroxybutyrate dehydrogenase (HBDH), and (D) lactate
dehydrogenase (LDH) activities under hypoxic conditions. The X-axis represents time, 1d represents one day of hypoxia stress, 4d represents four
days of hypoxia stress, and 7d represents seven days of hypoxia stress. The Y-axis represents enzyme activity.
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TABLE 2 Statistical comparison of the raw and clean sequencing of the RNA-seq library of heart samples of the four-finger threadfin.

Sample Raw reads Clean reads Clean bases ratio (%) Q20 (%) Q30 (%) GC contents (%) Total mapped(%)

CG-1 40690034 40521192 99.59 97.63 93.40 48.37 65.45

CG-2 42880586 42701114 99.58 97.70 93.63 48.18 68.72

CG-3 39749026 39561504 99.53 97.61 93.38 49.21 68.72

HG-1d-1 39647326 39489126 99.60 97.69 93.59 48.41 71.54

HG-1d-2 47263258 47045704 99.54 97.40 92.94 48.54 71.91

HG-1d-3 45337108 45103744 99.49 97.21 92.43 47.86 66.92

HG-4d-1 37802902 37652372 99.60 97.57 93.25 48.59 70.78

HG-4d-2 38953094 38817176 99.65 97.72 93.53 48.24 66.80

HG-4d-3 38081188 37912272 99.56 97.57 93.30 48.83 68.19

HG-7d-1 39008042 38846388 99.59 97.64 93.50 48.77 73.21

HG-7d-2 38296944 38151754 99.62 97.58 93.28 49.04 74.59

HG-7d-3 41199634 41031946 99.59 97.47 93.09 48.15 66.16
F
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Raw reads refer to unfiltered reads that have been downloaded. Clean reads refer to reads from which low-quality reads were filtered out. Raw bases refer to the total number of bases that have
been downloaded (number of reads × read length). Clean bases refer to the total number of bases from which low-quality reads were filtered out. Clean reads ratio (%) refers to the ratio of reads
with filtered out low-quality reads to Raw reads. Clean bases ratio (%) refers to the ratio of bases with filtered out low-quality bases to Raw bases; Q20 and Q30 refer to the percentage of bases with
values greater than 20 and 30, respectively, among total bases. GC refers to the percentage of the sum of the number of calculated bases G and C to the total number of bases.
FIGURE 2

Effects of hypoxia on the cardiac tissue structure of four-finger threadfin. (A) control group (CG); (B) hypoxia stress 1d (HG-1d); (C) hypoxia stress 4d
(HG-4d); (D) hypoxia stress 7d (HG-7d).
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A total of 150 DEGs were screened in the CG vs HG-4d group, 100

of which were upregulated and 50 were downregulated. A total of

1,479 DEGs were screened in the CG vs HG-7d group, 1,184 of

which were upregulated and 295 were downregulated (Figure 3).

3.3.3 GO functional annotation analysis results
of DEGs

To determine the physiological regulation involved in the DEGs in

the heart tissue of the four-fingered threadfin during its adaptation to

hypoxia, Gene Ontology (GO) functional annotation analysis of DEGs

was performed. Gene Ontology is a framework that categorizes genes

and their products based on known biological processes, cellular

components, and molecular functions. GO analysis enables

researchers to understand the roles of DEGs in specific biological

contexts, such as how genes are involved in cellular responses to

hypoxia. The results showed that DEGs were distributed in biological

process, cellular component, andmolecular function, among which the

number of DEGs enriched in cellular component was the largest. In the

CG vs HG-1d group (Figure 4), the main functions were cell

communication (GO: 0007154), cell periphery (GO: 0071944), and

plasma membrane (GO: 0005886), with 250, 188, and 171 DEGs

annotated, respectively. In the CG vs HG-4d group (Figure 5), the

main functions were catalytic activity (GO: 0003824), immune system

process (GO: 0002376), and oxidoreductase activity (GO: 0016491),

with 70, 31, and 26 DEGs annotated, respectively. In the CG vs HG-7d

group (Figure 6), the main functions were plasma membrane (GO:

0005886), intracellular signal transduction (GO: 0035556), and

immune system process (GO: 0002376), with 354, 258, and 232

DEGs annotated, respectively. In addition, other functional

categories, such as biological regulation (GO: 0065007), vesicle (GO:

0031982), cytoplasmic vesicle (GO: 0031410), intracellular vesicle (GO:

0097708), and cell activation (GO: 0001775) found in the heart were

also significantly enriched, with 391, 209, 199, 199, and 125 DEGs,

respectively. During hypoxic stress, the enrichment of DEGs in the
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regulatory processes of cell membranes and immune systems was

stronger. This showed that the heart tissue produced a large number of

processes involved in cellular immunity and other related activities.
FIGURE 3

Statistical results of DEGs in different treatment groups. (A) volcano plot of DEGs; (B) Venn diagram of DEGs; (C) column chart of DEGs.
FIGURE 4

GO functional annotation analysis of DEGs (CG vs HG-1d
comparison group).
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FIGURE 5

GO functional annotation analysis of DEGs (CG vs HG-4d comparison group).
FIGURE 6

GO functional annotation analysis of DEGs (CG vs HG-7d
comparison group).
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FIGURE 7

KEGG signaling pathway enrichment analysis of DEGs (CG vs HG-1d
comparison group).
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3.3.4 KEGG signaling pathway enrichment
analysis results of DEGs

To further explore the biological functions of DEGs under

hypoxic stress, KEGG pathway enrichment analysis was

performed. In the CG vs HG-1d group (Figure 7), DEGs were

mainly enriched in cancer pathways (ko05200), mitogen-activated

protein kinase (MAPK) signaling pathway (ko04010), followed by

endocytosis (ko04144), with 41, 31, and 28 DEGs annotated,

respectively. In the CG vs HG-4d group (Figure 8), DEGs were

mainly enriched in the HIF-1 signaling pathway (ko04066),

phagosome signaling pathway (ko04145), and hematopoietic cell

lineage (ko04640), with 6, 5, and 4 DEGs annotated, respectively. In

the CG vs HG-7d group (Figure 9), DEGs were mainly enriched in

regulation of actin cytoskeleton (ko04810), endocytosis signaling

pathway (ko04144) with a large number of enriched DEGs, followed

by Rap1 signaling pathway (ko04014), with 48, 46, and 45 DEGs

annotated, respectively. Other enriched signaling pathways

included the Ras signaling pathway (ko04014) and the JAK-STAT

signaling pathway (ko04630).

3.3.5 Analysis of DEG expression trends
According to the expression patterns of 11,578 DEGs at

different time points, they were clustered into 20 profiles. Among
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these, five profiles, namely profile 17, profile 19, profile 15, profile

12, and profile 10, were significantly clustered (p < 0.05), containing

2,607, 1,675, 1,098, 780 and 877 DEGs, respectively (Figure 10). In

profile 17, the expression pattern of DEGs first increased and then

plateaued. In profile 19, the expression pattern of DEGs showed a

continuous increasing trend. In profile 15, the expression pattern of

DEGs first increased, then decreased, and then increased again. In

profile 12, the expression pattern of DEGs first plateaued, then

increased, and then plateaued again. In profile 10, the expression

pattern of DEGs first plateaued and then increased. In addition, GO

and KEGG enrichment analysis was performed on the genes in

profile 17 and profile 19, and the results were similar to those

obtained by the above DEG analysis.
3.4 Real-time fluorescence quantitative
PCR verification results

To verify the accuracy of RNA-seq, 10 DEGs (five upregulated

and five downregulated) were randomly selected for RT-qPCR

quantitative verification. The results showed that although there

were differences in the expression levels of up-regulated DEGs and

down-regulated DEGs according to RT-qPCR quantification and
FIGURE 8

KEGG signaling pathway enrichment analysis of DEGs (CG vs HG-4d comparison group).
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RNA-seq expression, their change trends were consistent. This

consistency proves that the results of RNA-seq were accurate and

reliable and can be used for subsequent research and

analysis (Figure 11).
4 Discussion

4.1 Effects of hypoxia stress on myocardial
enzyme activities in the juvenile four-
finger threadfin

The present study reveals significant variations in enzyme

activities, including creatine kinase (CK), lactate dehydrogenase

(LDH), and a-hydroxybutyrate dehydrogenase (HBDH), in the

juvenile four-finger threadfin (Eleutheronema tetradactylum)

under hypoxia. These findings align with previous research on

hypoxia responses in various aquatic species, providing a contextual

framework for understanding species-specific and conserved

physiological mechanisms (Baldissera and Baldisserotto, 2023). In
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Trachinotus ovatus, CK activity similarly showed significant

increases under hypoxic conditions, indicating myocardial stress

as a rapid adaptive mechanism to oxygen deficiency (Ou et al.,

2014). Similarly, Hypophthalmichthys molitrix (silver carp)

exhibited elevated serum LDH levels, highlighting damage to

cardiac and other tissues under prolonged hypoxia (Ding et al.,

2018). These responses suggest that CK and LDH serve as general

markers of hypoxia-induced stress across teleosts, corroborating

their diagnostic value in aquaculture management.

However, variations in enzyme responses among species also

underscore distinct adaptive strategies. In bighead carp

(Hypophthalmichthys nobilis), the increase in HBDH under

hypoxia was less pronounced than in E. tetradactylum, potentially

reflecting differences in metabolic reliance on aerobic pathways

(Chen et al., 2021). This divergence may be attributed to ecological

adaptations, as species inhabiting hypoxia-prone environments

likely evolve mechanisms favoring anaerobic glycolysis. The time-

dependent changes observed in E. tetradactylum, peaking enzyme

activities around four days followed by partial normalization align

with patterns in Megalobrama amblycephala (blunt snout bream),
FIGURE 9

KEGG signaling pathway enrichment analysis of DEGs (CG vs HG-7d comparison group). Notes: Gene Ratio refers to the number of differentially
expressed genes in the differentially expressed genes to the pathway divided by (/) the number of differentially expressed genes in the background
genes enriched to the pathway.
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where an initial surge in stress markers transitions into a stabilized

metabolic state (Chen et al., 2017). This biphasic response

highlights a shared ability among fish species to activate acute

compensatory mechanisms before engaging longer-term structural

and molecular adaptations (Farhana and Lappin, 2024). The results
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indicate that the myocardial enzyme activities in the four-finger

threadfin are sensitive to hypoxia stress.

These enzymes are involved in the energy metabolism, with CK

playing a crucial role in maintaining ATP levels through the

creatine phosphate shuttle; LDH and HDBH are key enzymes in
FIGURE 10

Expression trend analysis results of common DEGs in different comparison groups. Note: Profile17, profile19, profile15, profile12 and profile10 with
red, green, yellow and purple backgrounds in the figure represent significant trends. Curves reflect changes in gene expression over time. The
colored trend blocks indicate a trend of significant enrichment (P<0.05). Profile 17 and Profile 19 showed a trend of continuous upregulation; Profile
15 showed a trend of first upregulation, then downregulation, and finally upregulation; Profile 12 showed a trend of first leveling off and then
upregulation. Profile 10 indicates a flattening trend followed by an upward adjustment.
FIGURE 11

Validation of RNA⁃seq results by RT⁃qPCR.
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anaerobic glycolysis and oxidative metabolism, respectively

(Wallimann et al., 2011). The elevation of the levels of these

enzymes may reflect the attempt of the fish heart to compensate

for the reduced oxygen availability by enhancing anaerobic energy

production and maximizing available ATP resources. The return of

CK and LDH to baseline levels after 7 days of hypoxia suggest a shift

towards metabolic exhaustion or a stabilization phase where the

initial compensatory mechanisms are no longer effective; a further

possibility is that the heart has adapted to hypoxic conditions. The

sustained elevation in CK-MB and HDBH activities indicates that

these enzymes might be more involved in long-term adaptations or

stress responses to prolonged hypoxia (Kurapati and Soos, 2023).

The myocardium of the four-finger threadfin shows a distinct, time-

dependent response to hypoxia, with an initial increase in key

enzyme activities, likely representing a compensatory mechanism

initiated to sustain ATP production under reduced oxygen

conditions. The peaking of enzyme activities at 4 days indicates a

critical phase in the response to hypoxia, where metabolic demands

are high and compensatory mechanisms are fully engaged. Research

has shown that fish can adapt to hypoxic stress, and to maintain

survival, the fish antioxidant system regulates its own physiology

according to the environment (Jiang et al., 2015).

HDBH mainly exists in heart tissue. A significant increase in its

activity means that the heart was damaged (Ye et al., 2024). In this

study, after 4 days of hypoxic stress, the HDBH activity of the four-

fingered threadfin was significantly higher than that of CG,

indicating that hypoxia caused a certain degree of damage to the

heart tissue. Its activity in tissues is much higher than in the blood.

Elevated activity of LDH in the blood indicates that the structure of

tissue cells such as the heart, liver, and muscles had been damaged

(Anigol et al., 2023). In this study, the serum LDH levels in four-

fingered threadfin were significantly higher than those in CG after

being subjected to hypoxic stress, indicating that hypoxic stress

caused a certain degree of damage to the heart, liver, and muscle

tissues (Ma et al., 2023). Particularly CK-MB and HDBH activities

can serve as biomarkers for chronic stress or as early indicators of

potential myocardial damage in these fish (Popa et al., 2023; Omran

et al., 2021). The increased levels of myocardial enzymes suggest

they could serve as biomarkers to detect hypoxia-induced stress in

aquaculture settings. By routinely monitoring these enzymes,

farmers can assess the early stages of hypoxia exposure, allowing

for timely intervention to mitigate adverse effects on fish

health.These results underscore the importance of time for

understanding the effects of hypoxia on fish physiology. Potential

applications can improve aquaculture management and ensure the

well-being of cultured species in environments prone to fluctuating

oxygen levels.
4.2 Effects of hypoxia stress on cardiac
tissue structure in juvenile four-
finger threadfin

The heart is the most important energy supply organ in fish,

and is closely related to the transport of substances, the stability of

the internal environment, and the defense function of fish (Shaftoe
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et al., 2023). Research has shown that hypoxia stress causes an

increase in the gaps between myocardial cells in the heart of silver

carp (Hypophthalmichthys molitrix), and disorder, swelling, and

rupture of myocardial fibers (Li et al., 2021).

In this study, the rupture of myocardial fibers in juvenile four-

finger threadfin became increasingly severe with the passage of time

under hypoxia stress. The damage caused by hypoxia stress in four-

fingered threadfin mainly manifested in the increase of the

intercellular space between myocardial cells, disorder, swelling,

and even rupture of myocardial fibers, which is consistent with

relevant research results of the silver carp (Li et al., 2021). This study

found substantial structural changes in the cardiac tissue of juvenile

four-finger threadfin exposed to hypoxic conditions. In CG

(Figure 2A), the myocardial fibers displayed a well-organized and

continuous arrangement, with myocardial cells oriented in

longitudinal, oblique, and circular bundles. This orderly structure

is indicative of healthy cardiac tissue, in which cells are aligned to

facilitate optimal contraction and function. In contrast, hypoxia-

exposed groups (Figures 2B–D) exhibited progressive deterioration

of the cardiac tissue structure. With increasing duration of hypoxic

stress, intercellular gaps within the myocardium enlarged, and the

muscle fibers became disordered. Swelling of myocardial fibers was

observed, and in more severe cases, rupture of fibers occurred. This

level of structural damage suggests that hypoxia imposes substantial

stress on the cardiac tissue, disrupting the normal architecture and

potentially impairing the functional capacity of the heart (Iwoń

et al., 2024; Shati et al., 2022; Rocca et al., 2022; Burtscher et al.,

2022; Su et al., 2021). The disorganization and swelling of

myocardial fibers indicate cellular edema, which is a common

response to hypoxic conditions. The rupture of muscle fibers in

severe cases suggests that prolonged exposure to hypoxia may lead

to irreversible damage, compromising the ability of the heart to

contract effectively (Alvarenga et al., 2022; Cummins et al., 2019;

Chaillou, 2018; Miller and Zachary, 2017). Prolonged hypoxia led to

visible cardiac tissue damage, including disordered and ruptured

myocardial fibers. Observing fish for symptoms like abnormal

swimming behavior could indicate underlying hypoxia stress.

Aquaculture practitioners could use behavioral observation

alongside enzyme monitoring to gauge hypoxia levels in real-

time.These findings align with the understanding that hypoxia

disrupts cellular homeostasis, leads to tissue damage and

potentially to long-term functional impairments.
4.3 Effects of hypoxia stress on the
transcriptome of cardiac tissue in juvenile
four-fingered threadfin

In aquaculture, hypoxia affects several physiological and

biochemical enzymes, alters gene expression in key signal

pathways, and impacts fish behavior, growth, immunity, and

survival. Studying how four-fingered threadfin cope with hypoxia

is essential for cultivating hypoxia-resistant varieties. The heart is a

major organ susceptible to hypoxic stress. Research showed that

hypoxic stress can cause myocardial hypertrophy in mammals,

thereby changing both the composition of the extracellular matrix
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and the myocardial metabolism (Gattuso et al., 2018). This study

utilized high-throughput sequencing to compare the transcriptome

and differentially expressed genes (DEGs) in cardiac tissues of four-

fingered threadfin under hypoxia stress (1 d, 4 d, and 7 d) with a

control group. The results revealed a predominance of upregulated

genes across all groups, consistent with other species like

Megalobrama amblycephala (Chen et al., 2017) and Larimichthys

crocea (Mu et al., 2020). This indicates that the heart tissue responds

to hypoxia primarily through increased gene expression, unlike gill

tissue, which tends to inhibit gene expression under hypoxia

(Zhang et al., 2023a, b).

This reduction in the number of DEGs from the 1-day to the 4-

day group suggests that the organism is entering a phase of

adaptation, where the acute stress response is being modulated.

The smaller number of DEGs reflect a stabilization of gene

expression patterns as the organism adjusts to the hypoxic

environment. The high number of up-regulated genes suggests

that the fish might be experiencing ongoing stress or that

additional pathways are being activated in response to the

prolonged hypoxic conditions. The concurrent increase in down-

regulated genes also points to the repression of certain processes

that are non-essential or even detrimental under prolonged

hypoxic conditions.

In the early phase of the fish’s adaptation to hypoxia, DEGs were

predominantly associated with cell communication, cell periphery,

and plasma membran. This association suggests that the initial

response to hypoxia involves changes in the structural and

communicative properties of cells, likely triggered to maintain

cellular integrity and signaling under a hypoxic environment. The

enrichments of catalytic activity, immune system process, and

oxidoreductase activity suggest that the heart tissue had established

a more robust cellular signaling and immune response, potentially

with the aim to cope with prolonged hypoxic conditions (Burtscher

et al., 2024; Mallet et al., 2022). Enrichment in the biological

regulation, various vesicle-related processes, and cell activation

further highlights the involvement of complex regulatory

mechanisms, including vesicular transport and immune cell

activation, which are critical for cellular adaptation and survival

under hypoxic stress. The initial adaptation of the heart tissue to

hypoxia involves considerable changes in the cellular component,

particularly in cell communication, cell periphery, and plasma

membrane structures (Zhao et al., 2023; Rocca et al., 2022; Lee

et al., 2020). These changes likely reflect an immediate cellular

response aimed to maintain communication and structural

integrity under reduced oxygen availability. As hypoxia persists, a

shift towards molecular functional adaptations can be observed,

including upregulation of catalytic activities, immune responses,

and oxidoreductase activities (Burtscher et al., 2024; Mallet et al.,

2022). These changes suggest increasing metabolic demand and

initiation of immune responses to counter the stress induced by

prolonged hypoxic conditions. Prolonged exposure to hypoxia leads

to further reinforcement of cellular signaling pathways, particularly

those associated with plasma membrane and intracellular signal

transduction (Bae et al., 2024; Ducsay et al., 2018).

The Mitogen-Activated Protein Kinase (MAPK) pathway plays

a pivotal role in cellular responses to stress, including hypoxia.
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Activation of MAPKs, such as ERK, JNK, and p38, triggers cascades

that regulate cell survival, proliferation, and apoptosis. In this study,

the MAPK pathway’s enrichment indicates its role in the adaptive

response to hypoxia by regulating stress-responsive genes (Chen

et al., 2017). For instance, JNK activation under hypoxic stress

mediates apoptosis and mitochondrial biogenesis, a crucial

compensatory mechanism in myocardial cells (Bae et al., 2024).

The involvement of cancer-related pathways suggests an early

cellular response involving proliferation, survival, and apoptosis

mechanisms, similar to those seen in tumorigenesis (Terekhanova

et al., 2023; Ren et al., 2022; Bajrai et al., 2021). The activation of the

MAPK pathway likely reflects a rapid stress response to maintain

cellular homeostasis, while enrichment in endocytosis highlights the

role of membrane dynamics and nutrient acquisition under low

oxygen conditions (Guo et al., 2020).

The HIF-1 pathway is a key regulator of oxygen homeostasis. In

hypoxic conditions, stabilization of HIF-1a promotes the

transcription of genes like VEGFA and LDHA, enhancing

angiogenesis and anaerobic glycolysis (Wu et al., 2023).

Upregulation of VEGFA in your study suggests enhanced

vascular remodeling, critical for improving oxygen delivery to

cardiac tissues under hypoxic stress. HIF-1 plays a critical role in

cellular adaptation to hypoxia by regulating oxygen homeostasis,

metabolism, and angiogenesis (Yfantis et al., 2023; Infantino et al.,

2020). The activation of the phagosome pathway suggests enhanced

cellular mechanisms for removing damaged cells or pathogens. The

involvement of hematopoietic pathways indicates a potential

compensatory response to enhance oxygen transport by

increasing blood cell production (Westman et al., 2020; Lee P. et

al., 2020). This response may be essential for maintaining cellular

integrity during prolonged stress. Enrichment in hematopoietic

pathways suggests that prolonged hypoxia may impact blood cell

formation, which could be a compensatory response to enhance the

oxygen transport capacity of the fish (Rhodes et al., 2022).

The regulation of the actin cytoskeleton pathway, enriched on

Day 7, highlights its role in maintaining cellular integrity under

prolonged hypoxia. Actin remodeling facilitates cellular motility

and structural integrity, essential for tissue repair and survival

during hypoxic stress (Tang and Gerlach, 2017). GO enrichment

of immune system processes reflects the activation of cellular

defense mechanisms. Increased phagosome activity suggests

enhanced autophagic responses to clear damaged organelles and

maintain cellular homeostasis (Westman et al., 2020). The

regulation of the actin cytoskeleton reflects necessary structural

adjustments in cells to cope with sustained stress (Tang and

Gerlach, 2017). The continued enrichment of endocytosis further

emphasizes its role in cellular remodeling and nutrient acquisition.

Rap1 signaling, involved in cell adhesion, growth, and

differentiation, indicates a need for more extensive signaling

modifications under prolonged hypoxic conditions (Gibieža and

Petrikaitė, 2021; López-Hernández et al., 2020; Hilbi and Kortholt,

2017). Rap1 signaling modulates cell adhesion and vascular

permeability, crucial under hypoxia for maintaining tissue

integrity (Xie et al., 2024; Yu et al., 2021; López-Hernández et al.,

2020). Concurrently, the PI3K/Akt pathway, enriched in this study,

supports cell survival and energy homeostasis by upregulating anti-
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apoptotic proteins and promoting glycolysis (Hu et al., 2023;

Sarapultsev et al., 2023; Rah et al., 2022; Gehringer et al., 2020).

These genes play crucial roles in cell metabolism, growth regulation,

immune response, and glucose metabolism (Gehringer et al., 2020;

Weir and Olschewski, 2006). The dynamic and time-dependent

gene regulation in response to hypoxia in juvenile four-finger

threadfin is characterized by early activation of stress and survival

pathways, a mid-stage shift towards immune and oxygen

homeostasis mechanisms, and long-term structural and metabolic

adjustments. These responses highlight the complex interplay of

signaling pathways aimed at maintaining cellular integrity and

function under sustained hypoxic stress.

Hypoxia-inducible factor-1 (HIF-1) is a key pathway in fish

response to hypoxic stress, playing a vital role in adaptive strategies

by regulating basal metabolism, inhibiting red blood cell

proliferation, and stimulating compensatory mechanisms like

angiogenesis (Elbassiouny et al., 2024). In this study, 23 genes

were significantly enriched in the HIF-1 signaling pathway, with

important genes such as HO-1, LDH, HK, and VEGFA upregulated

(P < 0.05). The gene HO-1, a downstream target of HIF-1, plays a

critical role in protecting against oxidative stress by generating

carbon monoxide, biliverdin, and free iron during the breakdown of

heme. These products have antioxidant and anti-inflammatory

effects in both in vitro and in vivo models of stress and organ

injury (Xie et al., 2021; Lin et al., 2019; Kim et al., 2006). Lactate

dehydrogenase-A (LDH-A), a key enzyme in glycolysis (Sharma

et al., 2022), was significantly upregulated in the heart of juvenile

four-fingered threadfin, indicating enhanced anaerobic metabolism

under hypoxic conditions (Wu et al., 2023; Pei et al., 2021).

Moreover, vascular endothelial growth factor A (VEGFA) is

upregulated during hypoxia, promoting angiogenesis and

enhancing oxygen delivery by increasing blood vessel formation

and regulating cell proliferation. VEGFA’s role in the response to

hypoxic stress suggests that four-fingered threadfin enhance their

oxygen delivery capacity through increased angiogenesis. The

enrichment of genes related to metabolic pathways, such as the

HIF-1 signaling pathway and anaerobic glycolysis, suggests

metabolic shifts under hypoxic conditions. Feed formulations

tailored to these metabolic needs, emphasizing easily digestible

proteins and energy sources, can help optimize fish health and

growth. Nutritional adjustments could support energy production

in hypoxia-prone environments, improving overall efficiency.

Transcriptomic analysis revealed a marked upregulation of genes

associated with the HIF-1 and MAPK signaling pathways in E.

tetradactylum, indicative of metabolic shifts to enhance anaerobic

energy production and maintain cellular integrity under hypoxic

conditions. These pathways have also been identified in cobia

(Rachycentron canadum), Eurasian perch (Perca fluviatilis)

(Rimoldi et al., 2012). and large yellow croaker (Larimichthys

crocea) as central to hypoxia tolerance. The activation of the HIF-1

pathway supports adaptive processes like angiogenesis and glycolysis,

as evidenced by upregulated VEGFA and LDHA genes in both

species (Xie et al., 2021; Rimoldi et al., 2012). In Larimichthys

crocea (large yellow croaker), hypoxia-responsive pathways such as
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hypoxia-inducible factor-1 (HIF-1) signaling and MAPK pathways

were significantly upregulated, similar to the findings in E.

tetradactylum (Mu et al., 2020). These pathways are pivotal for

cellular survival under hypoxia, underscoring conserved genetic

and signaling mechanisms that transcend species boundaries. The

identification of hypoxia-responsive genes, particularly those

involved in energy metabolism and oxidative stress, highlights

candidate genes that could be targeted in selective breeding

programs to develop hypoxia-resilient strains of E. tetradactylum.

By selectively breeding individuals with favorable expressions of these

genes, aquaculture can enhance the resilience of fish populations in

environments prone to low oxygen conditions.

The comparison between RNA-seq and RT-qPCR results

demonstrates consistency in gene expression trends, despite

differences in absolute expression levels. RNA-seq, a high-

throughput, genome-wide method, and RT-qPCR, a targeted, highly

sensitive technique, both identified similar patterns of upregulated and

downregulated genes. Differences in methodologies, including sample

preparation and sensitivity, contribute to discrepancies in expression

levels, but the consistent directional changes (upregulation or

downregulation) between the two methods validate the RNA-seq

results (Micheel et al., 2024; Aguiar et al., 2023). RT-qPCR

validation of 10 DEGs confirmed these trends, underscoring the

reliability of the RNA-seq data for further analysis. This consistency

supports RNA-seq as a dependable tool for studying gene expression

changes under experimental conditions (Sampathkumar et al., 2022).
5 Conclusion

This study investigates the effects of hypoxic stress on

myocardial enzyme activity, cardiac tissue structure, and gene

expression in juvenile four-finger threadfin (Eleutheronema

tetradactylum) over various exposure periods. Hypoxic stress led

to a significant increase in CK, CK-MB, HDBH, and LDH levels,

indicating cardiac stress. Histological analysis revealed increased

gaps between myocardial cells, and myocardial fibers became

disordered, swollen, and ruptured with prolonged hypoxia

exposure. Transcriptome analysis identified differentially expressed

genes (DEGs) primarily enriched in the phosphatidylinositol

signaling pathway, endocytosis, Rap1 signaling pathway, regulation

of the actin cytoskeleton, and MAPK signaling pathway. Hypoxia

induced the upregulation of genes such as HO-1, LDHA, and

VEGFA, indicating the heart’s self-protection mechanisms.

Notably, the PI3K-Akt and MAPK signaling pathways were

enriched, suggesting their role in reducing hypoxic damage. The

study revealed dynamic changes in gene expression over time. An

initial upregulation of stress-related genes was observed, followed by

stabilization around day 4, and reactivation of stress-adaptive

pathways by day 7, suggesting a shift toward chronic stress

responses. Immune system processes remained significantly

enriched, underscoring the importance of sustained immune

responses in hypoxia adaptation. The temporal pattern of pathway

enrichment transitioned from early protective responses (e.g.,
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MAPK signaling and cancer pathways) to specialized adaptations

(e.g., HIF-1 signaling and actin cytoskeleton regulation). The

clustering of DEGs into distinct temporal profiles highlighted

complex gene expression dynamics, with different groups of genes

activated at various stages of hypoxia response. This study

emphasizes the vulnerability of cardiac tissue to hypoxic stress and

the progressive structural damage in the heart with prolonged

exposure. The findings suggest that while four-finger threadfin can

adapt to some extent by day 4, chronic hypoxia triggers additional

gene expression changes, potentially signaling a shift to alternative

survival pathways. This study enhances understanding of hypoxia

effects on juvenile four-finger threadfin, offering insights to improve

fish welfare, productivity, and resilience in aquaculture. Key findings,

like hypoxia-responsive genes, support selective breeding and real-

time monitoring, advancing sustainable practices, reducing stress,

and promoting adaptive systems for food security and

environmental conservation.The study underscores the significance

of regulatory pathways, such as the immune system and cell

membrane processes, in the heart’s response to hypoxia. This

dynamic and time-dependent adaptation offers key insights into

how aquatic species might survive under prolonged hypoxic

conditions and suggests potential research targets for conservation

efforts in hypoxia-sensitive species.

This study highlights key insights from transcriptomic analysis

but is limited by the absence of proteomics and metabolomics, which

could uncover additional molecular and post-transcriptional

mechanisms. The laboratory conditions may not fully replicate

natural aquaculture environments, and the findings are species-

specific. Future research should integrate proteomics,

metabolomics, and epigenomics for a broader understanding of

hypoxia responses, conduct studies in real aquaculture settings, and

explore hypoxia adaptation in other commercially important species.

These efforts will enhance the understanding of hypoxia adaptation

and support the development of resilient aquaculture systems.
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