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Phaeodactylum tricornutum is considered a potential lipid production platform

due to its high growth rates and elevated natural neutral lipid and

polyunsaturated fatty acid (PUFA) contents. Furthermore, microalgae are

emerging as promising sources of docosahexaenoic acid (DHA) and

eicosapentaenoic acid (EPA). In this study, phosphomolybdic acid (PMo12), as a

photocatalyst, can enhance the synthesis of neutral lipids and PUFAs by

influencing the expression of lipid metabolism-related genes and

photosynthesis in P. tricornutum. We also observed the contents of EPA and

PUFA in engineered microalgae nearly doubled compared to the wild type, while

neutral lipid content showed a significant increase of 69.7% in engineered

microalgae. Notably, the growth rate of engineered microalgae remained

comparable to that of the wild type. This work presents an effective approach

to enhance the production of microalgal bioproducts, suggesting that

photocatalysts such as PMo12 could serve as viable alternatives to genetic

eng ineer ing technology , fac i l i t a t ing the commerc ia l i za t ion of

microalgal biodiesel.
KEYWORDS
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1 Introduction

The need for secure, low-cost, and renewable energy sources has become increasingly

urgent due to the depletion of fossil fuels and global geopolitical tensions (Lv et al., 2019).

Biofuels have emerged as a critical renewable energy source, with each generation of

biofuels building on the limitations of the previous one. First-generation biofuels rely on
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feedstocks like corn and soybeans, while second-generation biofuels

utilize non-food sources such as switchgrass and food waste. The

third and fourth generations have shifted to microalgae as a

feedstock, with the latter focusing on genetically modified strains

(Wang et al., 2024).

Microalgae are gaining attention for their rapid growth, high

photosynthetic efficiency, minimal land use, and ability to produce a

wide range of biofuel products (Maliha and Abu-Hijleh, 2022).

Moreover, they offer significant environmental benefits, including a

carbon sequestration capacity that is 10–50 times greater than that

of terrestrial plants (Wei et al., 2020). High value-added

bioproducts produced by microalgae can provide antioxidants,

carotenoids, proteins, and essential vitamins, which are of great

benefit to human health (Del Mondo et al., 2020; Singh et al., 2020).

Additionally, microalgae have potential applications in vaccine

development against various infectious diseases (Ramos-Vega

et al., 2021). Historically, algae have been an essential nutrient-

rich food source, often surpassing traditional crops in nutritional

value. The expanding toolkit for improving algae varieties offers a

viable solution to the global food shortage challenges of the twenty-

first century (Torres-Tiji et al., 2020).

Microalgae research gained momentum with the US

Department of Energy’s Aquatic Species Program, which screened

over 3,000 microalgae species for biofuel potential between 1978

and 1996 (Sheehan et al., 1998). In recent years, species such as

Chlorella vulgaris, Nannochloropsis oceanica, and Dunaliella salina

have been identified as suitable candidates for biodiesel production

(Fu et al., 2019; Gui et al., 2021). Additionally, various abiotic

stresses, such as heat and light intensity, have been shown to

stimulate the production of bioactive compounds in algae (Liu

et al., 2020; Fu et al., 2021; Huang et al., 2021). Among these

compounds, PUFAs like EPA and DHA have attracted attention

due to their health benefits, including their role in mitigating

neurological disorders, inflammatory diseases, and even certain

cancers (Ghasemi Fard et al., 2018; Kapoor et al., 2021). As the

demand for sustainable sources of PUFAs grows, marine microalgae

are emerging as a viable alternative to overexploited deep-sea fish

(Colombo et al., 2019; Kumari et al., 2023).

Research has demonstrated that optimizing environmental

factors such as temperature, nutrients, and light can enhance lipid

and PUFA production in microalgae. For example, the DHA

content in Tisochrysis lutea increased significantly under low-

temperature conditions, and similar results were observed for

EPA in Nannochloropsis oculata (Gao et al., 2022; Sousa et al.,

2022). However, these methods often reduce biomass production

and are not practical for large-scale applications.

In the past decade, genetic engineering has emerged as a

powerful tool for enhancing lipid accumulation in microalgae,

particularly in species with sequenced genomes (Bhattacharjya

et al., 2021). Previous research has identified D4-FAD, D5-FAD,
and GPAT as critical enzymes for DHA, EPA, and TAG synthesis in

microalgae (Kumari et al., 2023). The overexpression of the native

D5-FAD gene in P. tricornutum has been shown to increase EPA

production by up to 58% (Peng et al., 2014). Genetic modifications,

such as the deletion of specific genes or the overexpression of key
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enzymes, have led to significant increases in lipid and PUFA yields

(Han et al., 2020; Wang et al., 2021; Han et al., 2022). Advanced

genome editing techniques like CRISPR/Cas9 and TALEN have

further refined these capabilities (Fayyaz et al., 2020). However, the

outdoor cultivation of genetically modified microalgae remains

limited due to high costs and environmental concerns (M. U

et al., 2019). Thus, there is a pressing need for methods that

could enhance lipid production without compromising growth or

economic viability.

Polyoxometalates (POMs), particularly phosphomolybdic acid

(PMo12), have emerged as promising photocatalysts due to their low

cost, high efficiency, and recyclability (Ilbeygi and Jaafar, 2024).

POMs are known for their redox properties and strong Brønsted/

Lewis acidity, making them useful in various applications, including

microbial fuel cells, rechargeable batteries, and the conversion of

biomass into biofuels (Bijelic et al., 2018; Huang et al., 2020; Zhong

et al., 2021). Notably, PMo12 has been shown to catalyze the

conversion of CO2 into high-value fuels with low energy

requirements (Yang et al., 2019), and it has also been used in the

production of biodiesel from waste cooking oil (Helmi et al., 2022).

In this study, we explored the potential of PMo12 to enhance

lipid and PUFA accumulation in P. tricornutum. By incorporating

PMo12 into the growth medium, we aimed to identify a strategy

that boosts lipid production without adversely affecting growth

while remaining economically feasible. The results of this research

could pave the way for microalgae to serve as an alternative

source of deep-sea fish oil, with significant implications for

industrial applications.
2 Materials and methods

2.2 P. tricornutum cultures

P. tricornutum Bohlin (CCMP2561) was prepared in this

research. Microalga strain was purchased from the Freshwater

Algae Culture Collection of the Institute of Hydrobiology, CAS,

China (No. FACHB-863). Microalgae were cultured in f/2 si−

medium, which contains Na2MoO4 · 2H2O and filtered using

0.22-mm filter membranes (Millipore, Billerica, MA, USA). PMo12
(1 mol/L), which was purchased from TCI America, with purity of

99%, was added in the medium as a photocatalyst, and the culture

was maintained at 21 ± 0.5°C under a light/dark cycle of 15 h and 9

h, respectively. The light intensity is 4,000 lx.
2.2 The growth curve of P. tricornutum

The growth of the algae was monitored daily for 10 consecutive

days using a hemocytometer and microscope. The number of algal

cells was counted under an inverted microscope with a blood cell

counting plate at the same time each day during the growth cycle.

The growth status of the algal cells was calculated using the formula:

cell density = (total number of 80 small square cells/80) × 4 × 106 ×

dilution times, and the growth curve was generated.
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2.3 Observation of the morphological
changes in the P. tricornutum

The morphology of engineered microalgae cells was observed

under laser scanning confocal microscope LSM 510 META (Zeiss,

Oberkochen, Germany). After culture to the plateau stage (7 days),

1 mL algal solution was taken into 1.5 mL EP tube, and 10 mL Nile

red solution (0.1mg/mL, soluble in acetone) was added to the algal

solution, then incubated for 30 min under 37℃ in the dark. The

fluorescence detection was 488 nm for excitation and 505–550 nm

for emission.
2.4 Neutral lipid content of P. tricornutum

Nile red as a fluorescent marker has been widely used in the

determination of neutral lipid content in cells. Consequently, Nile red

was employed as a fluorescent probe to assess the neutral lipid content

in P. tricornutum cells (Yang et al., 2013). Algal cells were initially

collected using a refrigerated centrifuge, followed by treatment with

20% DMSO for 20 min at room temperature. A total of 30 mL of Nile

red, dissolved in 0.1 mg/mL acetone, was added to a 3-mL aliquot of

pretreated cell culture in triplicates. The mixture was inverted rapidly

and shielded with tin foil for 20 min at room temperature.

Subsequently, the P. tricornutum cell cultures were transferred to a

96-well plate for fluorescence intensity determination using a Hitachi

F4600 microplate reader (Hitachi, Japan). Fluorescence intensity was

measured at 580 nm under 530 nm light excitation, with the intensity

of the unstained algal liquid at this wavelength subtracted from the

readings. Concurrently, the density of algal cells was assessed using a

hemocytometer and microscope, enabling the calculation of neutral

lipid content per algal cell.
2.5 Fatty acid composition of
P. tricornutum

Fatty acid composition of microalgae was detected by the

previous research (Yang et al., 2013). The fatty acid extraction

steps are as follows: first, diatom cells were harvested by

centrifugation at 3,000×g for 10 min at 4°C. Then, 5 mL KOH–

CH3OH(2 mol/L) was added to the cell culture. After ultrasonic

breaking in an ice bath, the cell culture was filled with nitrogen for 1

min. The crushed algal cell culture was shaken with a turbine shaker

and then reacted in a water bath at 75°C for 10 min. The layering is

left standing at room temperature, and the supernatant is

transferred to a new centrifuge tube. The above steps were

repeated twice, and all the supernatant was collected in a

centrifuge tube. Then, 4 mL of n-hexane was added to the

centrifuge tube, and the upper extract was transferred to a new

centrifuge tube after standing for stratification. Total lipids of

microalgae were detected by gas chromatography–mass

spectrometry according to Yang et al. (GC-MS) (Finnigan

TRACE DSQ; Thermo Fisher, Waltham, MA, USA) at the
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Guangdong University of Technology. To calculate the content of

EPA and DHA at dry cell weight (DCW), 150 mL of N-nonadecyl

ester (1 mg/mL) was added as an internal standard to the samples

for analysis of fatty acid composition by gas chromatography−mass

spectrometry (GC−MS). The concentration of fatty acids (CFA, mg/

g) was determined by comparing the peak area of fatty acid in the

sample with the peak area of internal standard, according to the

following equation: CFA = AS/AIS × CIS/WS, where A indicates the

peak area; C is the concentration; W is the weight; IS is the internal

standard; S is the sample (Abdulkadir and Tsuchiya, 2008).
2.6 Molecular analysis of the P.
tricornutum by quantitative PCR

To investigate the influence of PMo12 on regulatory genes

associated with lipid metabolism in Phaeodactylum tricornutum,

several molecular biological experiments were conducted. For the

detection of mRNA expression levels in P. tricornutum, quantitative

real-time PCR (qPCR) was performed. The target gene are D5 fatty
acid desaturase gene (PTD5b), D4 fatty acid desaturase gene

(PTD4), and glycerol-3-phosphate acyltransferase (PTGPAT).

Primers used for qPCR were as follows: D5 fatty acid desaturase

gene PTD5b (forward primer, CATCACGGACCCAATCAATAC;

reverse primer, CGACGGACAATCTGGAAGAC), PTD4 (forward

primer, GCGAC GATTGGGCTTGACCT; reverse primer, TCCG

TGGAT GATG CTTTGATTTCT), PTGPAT (forward primer,

ACGATTCGGACGAAGATCAG; reverse primer, CCA

TGCAACAATCGTAGTGG), and b-actin (forward primer,

AGGCAAAGCGTGGTGTT CTTA ; r e v e r s e p r ime r ,

TCTGGGGAGCCTCAGTCAATA). In P. tricornutum genome,

putative b-actin (ACT1, Phatrdraft_51157) was used as a

housekeeping marker. The relative expression level of PTD5b,

PTD4, and PTGPAT gene was calculated by normalization to b-
actin expression.
2.7 Product analysis of P. tricornutum
biochemical reaction

Cultured solution of P. tricornutum after a culture cycle was

dried at 95℃, then resolved in D2O for 31P NMR; the spectral data

were collected on a Bruker Avance/DMX 400MHz NMR

spectrometer with an 8-s pulse delay, and the internal standard is

triphenyl phosphate (TPP).
2.8 Statistical methods

SPSS software was used for statistical analysis. In the study, we

used t-test to analyze whether there were significant differences

between the experimental algae strains and wild strains. p<0.05

indicates a significant difference, p < 0.01 indicates an extremely

significant difference.
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3 Result and discussion

3.1 The growth analysis of transgenic and
PMo12-treated P. tricornutum

As shown in the growth curves, the overexpression of D5 fatty

acid desaturase gene in P. tricornutum did not adversely affect the

growth of the algae (Figure 1A). Moreover, the growth rate of the

microalgae with PMo12 (1mol/L) added to the medium was slightly

slower compared to both the wild-type and transgenic strains.

Notably, during the late exponential growth phase, the algae with

PMo12 supplementation exhibited a significantly lower growth rate

than the wild type, and the inclusion of PMo12 caused P.

tricornutum to enter the decline phase more rapidly. The slower

growth rate observed in P. tricornutum supplemented with PMo12
may be attributed to the photocatalytic properties of PMo12. As a

photocatalyst, PMo12 can oxidize and degrade photosynthetic

products under light conditions. These products, including

natural antioxidants, carotenoids, proteins, polysaccharides,

PUFAs, triacylglycerols (TAGs), sterols, and vitamins, are crucial

for the growth and survival of P. tricornutum. The degradation of

these essential compounds likely contributes to the observed

reduction in growth rate.
3.2 The lipid content of transgenic and
PMo12-treated P. tricornutum

Observations from confocal laser scanning microscopy

indicated that the morphology and size of the engineered

microalgae cells were comparable to those of the wild type.
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However, the volume of organelles (oil bodies) storing

triacylglycerol (TAG) in the engineered microalgae strains was

significantly larger, and their number was also slightly increased

(Figure 2). Furthermore, when compared to transgenic algae, the

volume and number of organelles (oil bodies) storing TAG in

engineered algae strains treated with PMo12 (1 mol/L) showed a

slight increase. The neutral lipid content in microalgae

supplemented with PMo12 (1mol/L) demonstrated a notable

increase of 69.7% and 25.7% compared to the wild-type and

transgenic microalgae, respectively (Figure 1B). These findings

suggest that PMo12 more effectively promotes neutral lipid

accumulation in P. tricornutum than the overexpression of the

PtD5b gene. Monoacylglycerols (MAGLs), diacylglycerols (DAGs),

and triacylglycerols (TAGs) are the most abundant neutral lipids

found in the microalgae (Muñoz et al., 2021). A substantial

accumulation of TAG has been observed in the microalgae

Nannochloropsis gaditana under nitrogen starvation conditions

(Janssen et al., 2018). The first step of TAG synthesis is catalyzed

by glycerol 3-phosphate acyltransferase (GPAT), which is

considered a key regulator in this process (Yu et al., 2018). The

overexpression of endogenous GPAT in the P. tricornutum resulted

in a significant increase in neutral lipid accumulation compared to

the wild type, without any growth inhibition (Niu et al., 2016;

Balamurugan et al., 2017; Wang et al., 2020). The subsequent

enzyme in TAG synthesis, lysophosphatidic acid acyltransferase

(LPAT), has also been overexpressed in C. reinhardtii, leading to an

increase in lipid content (Yamaoka et al., 2016). Diacylglycerol

acyltransferase (DGAT) is the final enzyme involved in

triacylglycerol (TAG) synthesis, and the overexpression of genes

encoding DGAT has emerged as a promising strategy for enhancing

TAG content in microalgae, including C. reinhardtii ,
FIGURE 1

Growth and lipid analysis in diatom cells. (A) Growth curves of P. tricornutum. (B) Neutral lipid content of P. tricornutum. ** indicate extremely
significant difference (p<0.01). (C) Fatty acid composition of P. tricornutum.
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Nannochloropsis, and Phaeodactylum (La Russa et al., 2012; Ahmad

et al., 2014; Zienkiewicz et al., 2017). In this context, PMo12 may be

considered a putative positive regulator of genes related to GPAT

or DGAT.
3.3 The fatty acid composition of
transgenic and PMo12-treated
P. tricornutum

The results indicate that the contents of polyunsaturated fatty

acid (PUFA), monounsaturated fatty acid (MUFA), and saturated

fatty acid (SFA) in P. tricornutum have significantly increased due

to PMo12 (Figure 1C). Specifically, the contents of EPA and overall

PUFA nearly doubled in P. tricornutum with PMo12 treatment,

while both MUFA and SFA also exhibited significant increases

compared to the wild type. Similar results were observed in

transgenic microalgae. However, it is noteworthy that the content

of DHA in P. tricornutum decreased by 27.2% with PMo12
compared to the transgenic microalgae. The fatty acid desaturases

(FADs) and elongases (ELOs) are critical enzymes in PUFA

synthesis, and regulating the expression of these genes through

genetic engineering is a common approach to enhance PUFA

accumulation in P. tricornutum. The results suggest that PMo12
may stimulate the expression of genes related to fatty acid

desaturases and elongases, thereby promoting PUFA and EPA

synthesis in P. tricornutum. In contrast, the key enzymes involved

in DHA synthesis in P. tricornutum exhibited lower activity than

the overexpression of PtD5b. Previous research has identified D4-
Frontiers in Marine Science 05
FAD as a critical enzyme for DHA synthesis in microalgae. For

instance, overexpression of D4-FAD in C. reinhardtii resulted in a

66.7% increase in total monogalactosyldiacylglycerol (MGDG)

content (Zäuner et al., 2012). Future studies should focus on the

key enzymes involved in DHA synthesis in microalgae to further

understand and optimize DHA production.
3.4 The quantitative PCR of transgenic and
PMo12-treated P. tricornutum

The transcript abundance of PTD5b in P. tricornutum was

quantified using qPCR (Figure 3A), revealing a similar increase of

3.1-fold in both transgenic and PMo12 compared to the wild type.

D5-FAD is the key enzyme responsible for EPA synthesis in P.

tricornutum. The results indicate that PMo12 exhibits effects

comparable to those of genes associated with the overexpression

of D5 fatty acid desaturase in P. tricornutum, leading to a greater

accumulation of EPA relative to the wild type. In contrast, D4 fatty

acid desaturase (D4-FAD) serves as the key regulator of DHA

synthesis in microalgae. The mRNA expression of the PTD4 gene

was assessed through qPCR (Figure 3B), showing a relative

expression level that increased by 2.3-fold in transgenic

microalgae compared to the wild type. However, the mRNA

expression of the PTD4 gene in PMo12 was similar to that of the

wild type, suggesting that PMo12 negatively affects the expression of

D4 fatty acid desaturase-related genes in P. tricornutum.

Additionally, the transcript abundance of PTGPAT was also

measured using qPCR (Figure 3C), revealing significant increases
FIGURE 2

The confocal observation of Nile red-stained P. tricornutum cells. Part (A) indicates wild-type cells, part (B) indicates transgenic microalgae, part (C)
indicates PMo12 (1 mol/L) added in the medium of microalgae. Left, red fluorescence of oil bodies; middle, differential interference contrast (DIC);
right, overlay image. Bars = 5 mm.
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of 3.1- and 4.3-fold in transgenic microalgae and PMo12,

respectively, compared to the wild type. Thus, PMo12 promotes

the expression of the GPAT gene in P. tricornutum more effectively

than in transgenic algae. Overall, these results demonstrate that

PMo12 enhances the accumulation of neutral lipids in P.

tricornutum more effectively than genetic engineering approaches

involving transgenic microalgae.
3.5 Analysis of biochemical reaction
products in P. tricornutum by 31P NMR

The 31P NMR results indicate peak species at −3.75 ppm and

−5.36 ppm (Figure 4). According to the NMR spectrum, PMo12 and

its reduced form are present independently in the microalgal culture

medium after one culture cycle (Ishikawa and Yamase, 2000).
Frontiers in Marine Science 06
Previous studies have shown that PMo12 acts as an oxidizing

agent capable of catalyzing biomass degradation and functioning

as an electron donor. The redox reaction cannot occur at room

temperature, and PMo12 is only effective when exposed to light or

elevated temperatures. In this study, carbohydrates produced

through algal photosynthesis, such as starch, are degraded by

PMo12 under illuminated conditions, leading to the generation of

CO2. Subsequently, the reduced form of phosphomolybdate is

reoxidized to its original state by oxygen produced during

photosynthesis. This principle can be illustrated by the following

reactions (Liu et al., 2016):

BiomassþH2Oþ POM(OX) →
D or hv

Degradation products þ CO2þH� POM(Red)

(1)

H� POM(Red) → POM(OX) + H+ + e−  (2)

H+ + e− + O2 → H2O  (3)

Consequently, PMo12 has been demonstrated to enhance the

accumulation of neutral lipids and PUFAs in P. tricornutum by

modulating the algal photosynthetic processes.
4 Conclusion

In conclusion, the application of PMo12 as a photocatalyst in P.

tricornutum has proven to be a highly effective strategy for enhancing

lipid and polyunsaturated fatty acid (PUFA) production without

compromising the growth of the microalgae. The significant increase

in EPA, PUFA, and neutral lipid contents observed in the engineered
FIGURE 3

Analysis of lipid synthesis-related gene expression in diatom cells. (A) Relative mRNA level of PTD5b in P. tricornutum. (B) Relative mRNA level of
PTD4 in P. tricornutum. (C) Relative mRNA level of PTGPAT in P. tricornutum. ** indicate extremely significant difference (p<0.01).
FIGURE 4
31P NMR spectrum of cultured solution of P. tricornutum.
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strains underscores the potential of PMo12 to modulate lipid

metabolism and photosynthesis-related pathways. This study not

only highlights the capability of photocatalysts like PMo12 to improve

the yields of valuable microalgal bioproducts but also suggests a

promising alternative to traditional genetic engineering approaches.

By providing a non-genetically modified route to enhance lipid

production, this method could facilitate the commercial viability of

microalgal biodiesel, thereby contributing to the development of

sustainable and renewable energy sources. In future studies, we will

explore whether PMo12 provides nutrients for the growth of P.

tricornutum and considers whether PMo12 interfere with Moco

synthesis in microalgae.
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