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Cyanobacteria Desertifilum
tharense NIOF17/006 as a novel
aquafeed additive: effect on the
growth, immunity, digestive
function, and gene expression
of whiteleg shrimp postlarvae
Mohamed Ashour1*, Ahmed Said Al-Souti2*, Ahmed Mamoon3,
Fawzia S. Ali 1, Mostafa E. Elshobary4, Mohamed M. Mabrouk3,
Ahmed I. A. Mansour1, Abdallah Tageldein Mansour5*,
Ehab El-Haroun6 and Ahmed F. Abdelhamid3

1Aquaculture Division, National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt, 2Head
AL Hail Aquaculture Unit, Department of Marine Science and Fisheries, College of Agriculture and
Marine Science, Sultan Qaboos University, Muscat, Oman, 3Fish Production Department, Faculty of
Agriculture, Al-Azhar University, Cairo, Egypt, 4Botany and Microbiology Department, Faculty of
Science, Tanta University, Tanta, Egypt, 5Animal and Fish Production Department, College of
Agricultural and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia, 6Fish Nutrition Research
Laboratory, Animal Production Department, Faculty of Agriculture, Cairo University, Cairo, Egypt
This work investigated the molecular identification and potential application of

the cyanobacterial strain Desertifilum tharense NIOF17/006 as a novel aquafeed

additive for whiteleg shrimp (Litopenaeus vannamei) postlarvae (PLs).

Morphological and molecular characterization confirmed the isolate as D.

tharense, with the 16S rRNA sequence analysis showing high similarity

(98.01%–98.53%) to the known strains of D. tharense. Biochemical analysis

revealed that the isolate contains 37.74% protein, 5.52% lipid, and 21.25%

carbohydrate, on a dry weight basis. An 8-week feeding trial for L. vannamei

PLs evaluated the effects of dietary supplementation with D. tharense NIOF17/

006 at doses of 0, 1, 2.5, and 5 g/kg diet. Compared with shrimp in the control

group, shrimp fed D. tharense-supplemented diets had significantly higher feed

utilization, growth performance, survival rate, and whole body composition. The

nonspecific immunity parameters (i.e., lysozyme, superoxide dismutase, and

catalase), as well as the digestive enzyme activity of amylase and lipase, were

significantly enhanced in shrimp fed diets supplemented with cyanobacteria,

while the malondialdehyde (MDA) levels decreased. The gene expression analysis

revealed the upregulation of growth-related genes (growth hormone, insulin-

like growth factor I, and insulin-like growth factor II) and the immune-related

genes prophenoloxidase (proPO), superoxide dismutase (SOD), and lysozyme

(Lys) in shrimp muscles with increasing cyanobacteria supplementation,

particularly at doses of 2.5–5 g/kg diet. Moreover, the polynomial regression

machine learning model predicts that the ideal supplementation level of the
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probiotic cyanobacteriaD. tharenseNIOF17/006 ranges from 3.4 to 4.2 g/kg diet.

This study demonstrates the potential of D. tharense NIOF17/006 as a promising

aquafeed additive for improvement of the growth, immunity, and overall health

of L. vannamei PLs, opening a new avenue for sustainable aquaculture practices.
KEYWORDS

aquafeed additive, cyanobacteria, Desertifilum tharense NIOF17/006, molecular
identification, digestive enzymes, gene expression, immunostimulants, Litopenaeus
vannamei
1 Introduction

Microalgae are spread over an extensive variety of aquatic

environments and have applications in the environment, industry,

and biotechnology fields (Ende et al., 2024). Due to their valuable

biochemical composition, they are recognized as a respectable

source of human food supplements (Rellán et al., 2009),

pharmaceuticals (El-Sapagh et al., 2023; Abbas et al., 2023),

cosmetics (Mourelle et al . , 2017), aquafeed additives

(Ashour et al., 2023), biofertilizers (Osman et al., 2010),

bioethanol (de Farias Silva and Bertucco, 2016), and biodiesel

(Karatay and Dönmez, 2011). In addition, cyanobacteria can

contribute to phytobioremediation processes, which aids in the

purification of contaminated environments (Ashour et al., 2022;

Mansour et al., 2022a).

Over the last decade, the shrimp farming industry has conducted

research and projects to find alternative natural components of

antibiotics to boost shrimp growth and immune system response

(Mansour et al., 2022b). Natural feed additives have shown promising

results in disease control, survival, immune enhancement, and

growth promotion (Goh et al., 2022). Immunostimulants, such as

polysaccharides, nutrients, herbs, and microorganisms, have been

identified as effective biofriendly agents for the control of pathogens

and promotion of growth (Wang et al., 2017). Cyanobacteria and

microalgae, due to their rich nutritional profile and bioactive

compound content, present a promising avenue for exploration in

this context. Various cyanobacteria species, including Arthrospira

platensis, have been found to mitigate the effects of stress in farmed

aquatic fish and shrimp (Abdel-Latif et al., 2022). Supplementation

with A. platensis in the diet of shrimp has demonstrated

immunomodulatory properties, enhancing intestinal defenses and

improving the survival rates against viral challenges (Pilotto et al.,

2019). The genus Desertifilum, which belongs to the order

Oscillatoriales, has gained attention due to its adaptability to

extreme environments and its potential biotechnological

application (Dadheech et al., 2012b), as well as ease of harvesting

as filamentous algae compared with unicellular algae (Wang et al.,

2023). However, the potential of Desertifilum tharense as an aquafeed

additive remains largely unexplored.

The whiteleg shrimp (Litopenaeus vannamei) is recognized as an

important aquaculture species worldwide, known for its adaptability
02
to various cultural conditions (Naser et al., 2022). Improving the

performance, feed utilization, and immune status of shrimp through

dietary interventions is crucial for a sustainable and profitable shrimp

aquaculture. The use of cyanobacteria as a feed additive could

potentially address these challenges while providing a sustainable

alternative to conventional feed ingredients. For instance, natural

pigments have demonstrated significant benefits in the aquaculture

industry (Mansour et al., 2022d). However, it has been observed that

not all cyanobacteria have positive effects on shrimp production.

Cyanobacteria have also been associated with a decreased shrimp

production. These contrasting findings underscore the critical

importance of the careful selection and evaluation of specific

cyanobacterial strains for their potential as aquafeed additives, as

their effects on shrimp health and production can vary significantly

(Magouz et al., 2021). Therefore, comprehensive studies on novel

cyanobacterial strains, such as D. tharense, are essential in order to

identify beneficial additives that can contribute to improved shrimp

aquaculture practices (Maa-Iad et al., 2023).

The present study was conducted to examine the phylogenetic

identification and potential application of the cyanobacterial strain

D. tharense NIOF17/006 as a novel aquafeed additive for L.

vannamei postlarvae (PLs). This study seeks to provide

comprehensive insights into the prospective advantages of using a

cyanobacterial strain in shrimp aquaculture. The results of this

study could afford the development of innovative, sustainable feed

additives for the aquaculture industry, potentially reducing the

dependence on fishmeal and other conventional protein sources

while improving shrimp health and production efficiency.

Moreover, this research aligns with the growing interest in

biobased solutions for sustainable aquaculture practices and the

broader applications of microalgae and cyanobacteria in

biotechnology and environmental management.
2 Materials and methods

2.1 Cyanobacteria

2.1.1 Isolation conditions
Water samples were obtained from the El-Mahmoudia Canal,

the surface layer of water (upper 20 cm), Alexandria, Egypt (31°12′
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30.07″ N, 92°85′66.44″ E). The water samples were collected using

sterilized bottles and promptly taken to the laboratory. A portable

pH/temperature meter (Milwaukee MW102) was used to measure

the temperature and pH in the field. The water turbidity and depth

were also assessed using a Secchi disc with a diameter of 35 cm.

Salinity was determined using a portable conductivity meter

(Oakton, Eutech Instruments, Vernon Hills, IL, USA). Under

control temperature conditions (25 ± 1°C) and continuous

illumination (120 mmol photons m−2 s−1), selected water samples

were inoculated and purified with the agar medium method using

BG11 culture medium, as previously described by Robert (2005).

After 2 weeks of maintenance, healthy colonies were transferred and

inoculated into sterilized test tubes using the serial dilution method

(Robert, 2005), with a total culture volume of 10 ml. Thereafter, the

culture volume was scaled to 100 ml in 250-ml conical flasks for

further subculture. Subsequently, the culture was upscaled in a

volume of 20 L. Morphological examination of the isolate was first

performed using a light microscope (Olympus BX51 Light

Microscope, Tokyo, Japan) following standard identification

references (Zaki et al., 2021). Finally, the results obtained from

the morphological examination of the isolates were validated using

molecular techniques.

2.1.2 Genomic DNA extraction and
PCR amplification

The standard CTAB protocol was used to extract the entire

genomic DNA from a dried cyanobacterial pellet according to

Grube et al. (1995), with minor modifications as described by

Elshobary et al. (2015). The universal cyanobacterial primers

CYA106F (5′-CGGACGGGTGAGTAACGCGTGA-3′) and

CYA781R (5′-GACTACAGGGGTATCTAATCCCWTT-3′) were

used to amplify the 16S rRNA gene with the following PCR

conditions: initial denaturation at 94°C for 5 min, 35 cycles of

denaturation at 94°C for 30 s, annealing at 55°C for 30 s, and

extension at 72°C for 1 min, followed by a final extension at 72°C

for 7 min. The PCR product was then purified and sequenced using

Sanger sequencing. Raw sequence data were edited and assembled

using BioEdit software v7.2.5. The edited sequence was analyzed

using BLAST against the NCBI nucleotide database for species

identification. Multiple sequence alignment with retrieved reference

sequences was performed using MEGA 11 software with the

ClustalW algorithm. The sequence was then deposited in

GenBank under the accession number OQ147028. For

phylogenetic analysis, the obtained 16S rRNA sequences were

aligned with 18 reference cyanobacterial strains obtained from the

NCBI Ribosomal DNA database using Aulosira sp. as an outgroup

to root the tree and provide evolutionary context. The neighbor-

joining method was used to construct the phylogenetic tree.

2.1.3 Biochemical composition
Culture volumes of 10 ml were subjected to centrifugation for

10 min at 4,000 × g, with the resulting pellet kept at −20°C for

biochemical analysis after discarding the supernatant. Biochemical

analysis of the microalgal biomass measurement was according to

AOAC (2003).
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2.2 Shrimp feeding experiment

2.2.1 Whiteleg shrimp (Litopenaeus vannamei)
The PLs (1.68 ± 0.05 g) of L. vannamei were purchased from a

private hatchery and transferred to NIOF laboratories, where they

were adapted to laboratory conditions during a period of 15 days.

During this acclimatization period, PLs were fed a commercial

shrimp basal diet four times a day.
2.2.2 Experimental procedures
A total of 600 PLs were used, which were divided into four

treatment groups (with three replicates per group). After a 15-day

acclimation period, each treatment group received 50 PLs. The PLs

were placed in net hapas measuring 0.7 m × 0.7 m × 1 m. These

hapas were secured in concrete ponds measuring 4 m × 2 m × 1 m.

Throughout the experimental period, the PLs were maintained

under the recommended conditions for whiteleg shrimp PLs as

reported by APHA (2005). The hapas are cleaned regularly, and the

water daily exchange was 10%.
2.2.3 Diet preparation and procedures
During the 8-week feeding experiment, shrimp PLs were fed the

following four dietary groups: T0, a commercial shrimp diet as the

control diet (containing 45% protein, 7.9% lipid, 34% carbohydrate,

3.65% fiber, and 9.1% ash; Aller-Aqua, Giza Governorate, Egypt),

and three other diets (T1, T2, and T3) that were supplemented with

1, 2.5, and 5 g, respectively, of the dried powder of the microalgal

isolate. The dried microalgal isolate levels were added to a specific

diet according to the method previously described by Sharawy et al.

(2022). In brief, four equal sections of the commercial diet, which

served as the control, were crushed into a fine powder. The

appropriate amount of cyanobacterial isolate was then added to

each section, and the mixture was carefully mixed until

homogeneous. In accordance with Sharawy et al. (2022), after

dissolving the appropriate dose of cyanobacterial isolate in

distilled water, it was sprayed onto the surface of the diet of the

related section. An equivalent volume of distilled water without the

cyanobacterial isolate was administered to the control diet (T0). To

cover the mixture of diet and cyanobacterial isolate, a 5-ml/kg diet

of oil (sunflower oil) was sprayed over the basal diet after drying all

diets for 48 h at 40°C to maintain a moisture content of

approximately 10% (Zeraatpisheh et al., 2018). Lastly, 4°C was

used to maintain the diet pellets until use.
2.2.4 Growth performance and feed utilization
The initial weight (IW, in grams) and the final weight (FW, in

grams) of PLs were measured to determine the weight gain (WG),

the specific growth rate (SGR), and the feed conversion ratio (FCR).

The survival rate (SR, in percent) and the protein efficiency ratio

(PER) were calculated using the following equations:

Weight Gain (WG,  g)

=  Final body weight (g) − Initial body weight (g)
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Survival Rate (SR,% ) 

=
The total final survived number of shrimp

The initial number of shrimp
 � 100

Specific Growth Rate (SGR%=day)

=
Ln Final body weight  − Ln Initial body weight

t
 � 100

Feed Conversion Ratio (FCR) =
Total consumed feed 

WG

Protein Efficiency Ratio (PER) =
WG (g) 

Protein intake (g)
2.2.5 Biochemical constituent analysis
From each replicate, seven PLs were collected to analyze the

shrimp’s whole body chemical composition. Random shrimp

samples were mixed, dried, crushed into a powder, and stored at

a low temperature (−20°C) until analysis. The chemical body

composition was analyzed following AOAC (2003).

2.2.6 Nonspecific immunity, digestive enzyme
activity, and antioxidant activity

From each replicate, seven PL samples were randomly chosen

after a 24-h fasting period. The samples were briefly washed with

sterile seawater and then cut, weighed, and frozen until analysis at

−80°C. The shrimp samples were homogenized [at a pH of 7.4 in

phosphate-buffered saline (PBS)] and then centrifuged (20 min at

3,000 × g). Measurement of the homogenate lysozyme activity was

carried out using Lysozyme (LZM) ELISA kits following the

instructions given by the manufacturer (cat no. SL0050FI;

SunLong Biotech Co., Ltd., Hangzhou, China). The antioxidant

enzyme activities, including malondialdehyde (MDA), catalase

(CAT), and superoxide dismutase (SOD), were measured using

specific kits at wavelengths of 510, 534, and 560 nm, respectively,

based on the instructions given by the manufacturer (cat nos.

MD2529, SD2521, and CA2517, respectively; Biodiagnostic

Company, Cairo, Egypt). For digestive enzyme (amylase and

lipase) activity determination, GIT-homogenized tissues were

separated by careful centrifugation. The digestive enzyme

activities were measured using spectrophotometric assays at

wavelengths of 580 and 660 nm.
2.2.7 Gene expression
Three shrimp samples from each group were taken at the end of

the experiments. Total RNA was isolated from muscle tissue using

Easy-RED (Easy-RED, iNtRON, Seongnam, South Korea)

according to the manufacturer’s instructions. The total RNA

concentration and purity were measured using NanoDrop

(Nanophotometer, NP80 touch, Implen, München, Germany).

The RNA products were used for the synthesis of cDNA using a

commercial kit (Thermo Scientific™ RevertAid First Strand cDNA

Synthesis Kit; Thermo Fisher Scientific, Waltham, MA, USA). The

cDNAs were amplified through Rotor-Gene Q thermal cycling
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(Hassan et al., 2023; Wang et al., 2008; Jian et al., 2013) to

quantify the expression of some growth- and immunity-related

genes, including growth hormone (GH), insulin-like growth factor I

(IGF-I), insulin-like growth factor II (IGF-II), prophenoloxidase

(proPO), superoxide dismutase (SOD), and lysozyme (Lys). The

quantitative PCR (qPCR) reactions were performed in 20 ml
including 10 ml of ABT 2× qPCR Mix Kit (SYBR Green/low

ROX), 0.5 ml of each primer (10 mM), 4 ml (50 ng) of cDNA, and

5 ml of RNAse-free water. The reaction followed the thermal profile:

initial denaturation at 95°C for 10 min, followed by 40 cycles, each

of which included denaturation for 10 s at 95°C, annealing at 58–60°

C for 10 s, and extension for 30 s at 72°C. Subsequently, the

temperature was increased by 0.5°C from 60°C to 95°C to establish a

melting curve, which was then utilized to analyze the target gene

products. In these reactions, the b-actin gene was included as a

housekeeping gene (Hassan et al., 2023; Wang et al., 2008; Jian et al.,

2013). The primer sequences and amplicon sizes are provided in

Table 1. According to the 2−DDCt method, the b-actin gene was used

to normalize the Ct values of the target genes (Rao et al., 2013).

Statistical analysis was performed using GraphPad Prism software

ver. 8.0.1 (GraphPad Prism, La Jolla, CA, USA). The results are

presented as mean ± SD, with the level of significance considered at

a probability value less than 0.05 (p < 0.05).
2.3 Statistical analysis

Data were collected in three replicates (±SD). Prior to statistical

analysis, Levene’s test was performed to ensure normality and

homogeneity assumptions, and the results (in percent) were

arcsine transformed (Zar, 1984). SPSS Statistics software was

employed to perform the statistical analysis, which included one-

way analysis of variance followed by the Duncan (1955) test at p ≤

0.05. Finally, the GraphPad (Prism 8) Statistics software was

employed to create the figures (Swift, 1997), while Excel software

was used to conduct polynomial regression.
3 Results and discussion

3.1 Cyanobacterial isolate Desertifilum
tharense NIOF17/006

3.1.1 Morphological characterization
Figure 1 shows the morphological observations of the

cyanobacterial isolate D. tharense NIOF17/006 using a light

microscope (×400). The optical microscopic observations found

that D. tharense NIOF17/006 is filamentous with a trichome width

ranging from 2.2 to 3.6 mm.

Based on the recent taxonomic literature by Komárek (2005),

the phenotypic characteristics of D. tharense NIOF17 classified it

within the order Oscillatoriales. The common phenotypic features

include a thin, pale to bright blue-green thallus. The filaments are

either solitary or densely entangled, varying in length. This strain

exhibited motility through gliding and oscillation movements, with

tapered ends. The sheath surrounding the trichome is thin,
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colorless, and attached (agglutinated). The cylindrical cells have a

uniform cell content, while the apical cells are long-conical with a

rounded apex. The shape of the strains shows variability. Similar

observations have been previously reported by Dadheech et al.

(2012a), who isolated four strains of the cyanobacteria D. tharense:

PD2001/TDC7, PD2001/TDC4, PD2001/TDC17T, and

PD2001/TDC14.

3.1.2 Phylogenetic identification
A phylogenetic tree (Figure 2) of the 16S rRNA gene was

constructed using PCR-based nucleotide sequences that spanned

more than 1,363 bp to provide a substantial amount of genetic

information, allowing for a high-resolution analysis. This approach

aligns with best practices in molecular phylogenetics, where longer

sequences generally yield more reliable results (Patwardhan

et al., 2014).

The neighbor-joining method was used for the construction of

the phylogenetic tree, which is known for its efficiency and accuracy

in depicting evolutionary relationships (Trees, 1987). The obtained

16S gene sequences were aligned with the 16S sequences of 18

cyanobacterial strains from the GenBank Ribosomal DNA database

to ensure a comprehensive comparison, while the use of Aulosira sp.
Frontiers in Marine Science 05
as an outgroup helps to root the tree and provide evolutionary

context (Huelsenbeck et al., 2002). This methodological approach

strengthens the reliability of the phylogenetic reconstruction. The

resulting phylogenetic tree (Figure 2) showed that each species

formed a distinct clade, and the isolated strain was identified as D.

tharense, which strongly matches D. tharense FJ158994, MK424816,

and MW411006 with high similarity values of 98.53%, 98.46%, and

98.01%, respectively. It is worth noting that while 16S rDNA

analysis is highly informative, complementary approaches such as

whole-genome sequencing or multilocus sequence typing could

provide even more comprehensive insights into the genetic

makeup and evolutionary history of a strain (Huelsenbeck

et al., 2002).

3.1.3 Biochemical composition of D. tharense
NIOF17/006

In the current study, the biochemical composition of the isolate

D. tharense from cyanobacteria NIOF17/006 was examined,

focusing on its protein, lipid, and carbohydrate contents. Figure 3

shows the biochemical composition of the cyanobacterial isolate D.

tharense NIOF17/006 at the end of the late exponential growth

phase. The average values for total protein, total lipid, and total
FIGURE 1

Optical light microscopic observations of the cyanobacterial isolate Desertifilum tharense NIOF17/006 at different magnifications.
TABLE 1 Primers, accession numbers, sequences, and amplicon sizes (in base pairs) used for the shrimp quantitative PCR (qPCR) study.

Primer Accession no. Sequence (5′→3′) Amplicon size (bp)

b-actin
AF300705 F: GCCCATCTACGAGGGATA

R: GGTGGTCGTGAAGGTGTAA
121

GH
XM027360152 F: AATTTGCGCTTGCACTACGG

R: ATCCGGTTGAGGTGTAGCTG
100

IGF-I
KP420228 F: GTGGGCAGGGACCAAATC

R: TCAGTTACCACCAGCGATT
123

IGF-II
XM027379465.1 F: CTCTGTACAGTCAGCCCAGC

R: CACACCCAGTCAGTCCCAAG
220

SOD
DQ005531 F: AATTGGAGTGAAAGGCTCTGGCT

R: ACGGAGGTTCTTGTACTGAAGGT
153

proPO
XM_027379995.1 F: CGGTGACAAAGTTCCTCTTC

R: GCAGGTCGCCGTAGTAAG
122

Lys
XM_027352840.1 F: GGACTACGGCATCTTCCAGA

R: ATCGGACATCAGATCGGAAC
97
b-actin, beta-actin; GH, growth hormone; IGF-I, insulin-like growth factor 1; IGF-II, insulin-like growth factor II; proPO, prophenoloxidase; SOD, superoxide dismutase; Lys, lysozyme.
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carbohydrate were 37.74% ± 1.2%, 5.52% ± 0.75%, and 21.25% ±

0.87% (on a dry weight basis), respectively. Comparing these

findings to the previous work by Hernández–Martıńez et al.

(2023), it is evident that D. tharense exhibits notable variations in

its biochemical composition.
3.2 Shrimp

3.2.1 Growth, survival, and nutrient
utilization efficiency

Table 2 illustrates the growth, survival, and nutrient utilization

parameters of shrimp fed diets supplemented with the

cyanobacterial strain. In this feeding trial , significant

improvements (p < 0.05) were observed in the FW, WG, FCR,

and SR between the control group (T0) and the groups

supplemented with cyanobacteria (T1, T2, and T3). This

improvement increased with increasing levels of cyanobacterial

supplementation. However, no significant improvements (p <

0.05) were observed in other parameters of growth and nutrient

utilization, i.e., SGR and PER.

Polynomial regression is a basic model in statistical machine

learning (ML). It enables researchers to model how the predictor

parameters and the outcome variables are related. Polynomial

regression is an extension of a standard linear regression model.

The nonlinear relationship between a predictor and an outcome

variable is modeled using polynomial regression. Nonlinear

relationships can be accurately modeled using polynomial

regression (Maulud and Abdulazeez, 2020). Figure 4 shows the

polynomial regression model of the dietary supplementation levels

(in grams) of the cyanobacterial isolate D. tharense NIOF17/006

and the WG and FCR of the whiteleg shrimp L. vannamei. Figure 4

illustrates that, with the increase of D. tharense NIOF17/006
Frontiers in Marine Science 06
supplementation in the diet, the WG polynomial regression

increased (r2 = 0.814) while the FCR polynomial regression

decreased (r2 = 0.994). In conclusion, based on Figure 4, the

explanation lines of the highest and the lowest peaks of WG and

FCR, respectively, presented in the polynomial regression model of

ML predict that the ideal supplementation level of the probiotic

cyanobacteria D. tharense NIOF17/006 ranges from 3.4 to 4.2 g/kg

diet. This ideal range exists between groups T2 and T3 (2.5 and 5 g/

kg, respectively).

In the aquaculture domain, El-Khodary et al. (2021) conducted a

study on the growth, survival, and pigmentation of the larvae of Solea

aegyptiaca using different microalgal species, underscoring the

importance of microalgae in fish nutrition and development. The

same findings were observed by Sharawy et al. (2022), who utilized

Tetraselmis suecica as an aquafeed additive for L. vannamei. To the

best of our knowledge, this is the first work to report on the potential

application of the cyanobacterial isolate D. tharense NIOF17/006 as

an aquafeed additive for L. vannamei. In the current study, the

improvements in shrimp WG, FW, FCR, and SR may be due to the

nutrient composition of the probiotic cyanobacterial isolate D.

tharense NIOF17/006. However, it is commonly known that several

cyanobacterial strains, particularly A. platensis, have high

concentrations of multiple biologically active components that

support the growth performance, immunity, and antioxidant

capabilities of a variety of aquatic animals, such as the shrimp L.

vannamei (Sharawy et al., 2022), gilthead sea bream (Galafat et al.,

2022), Nile tilapia (Mabrouk et al., 2022), hybrid red tilapia (El-

Sheekh et al., 2014), and common carp (Suantika et al., 2016).

3.2.2 Body biochemical composition
Table 3 illustrates the biochemical composition analysis of

shrimp fed the diet supplemented with different levels of the

cyanobacteria-isolated strain D. tharense NIOF17/006. As

presented in the table, significant differences (p < 0.05) were

found in the total composition (protein, fat, dry matter, and ash)

of L. vannamei in the supplementation groups (T1, T2, and T3)

compared with the control group (T0). The percentages of carcasses

increased with increasing supplementation doses. These
FIGURE 3

Biochemical composition of the cyanobacterial isolate Desertifilum
tharense NIOF17/006 (percent of dry weight basis).
FIGURE 2

Neighbor-joining (NJ) dendrograms revealing the cyanobacteria-
isolated strains based on 16S rRNA nucleotide sequences. Bootstrap
values ≥70 are displayed on the trees.
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improvements may be due to the high contents of protein (37.74%),

lipid (5.52%), and carbohydrate (21.25%) of the strain of D.

tharense isolated from cyanobacteria NIOF17/006. This is the first

time this strain was used as an aquafeed additive for the whiteleg

shrimp L. vannamei. The data shown in Table 3 are consistent with

the findings by several authors who concluded that high

supplementation levels of the cyanobacterial strain A. platensis

significantly increased the shrimp carcass composition even in the

whiteleg shrimp L. vannamei (Ashour et al., 2024) and the

freshwater prawn Macrobrachium rosenbergii (Radhakrishnan

et al., 2016).

3.2.3 Nonspecific immunity and
antioxidant activity

The results showed that, compared with those in T0, shrimp in

the cyanobacteria supplementation groups (T1, T2, and T3) showed
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the highest significant (p < 0.05) Lys, SOD, and CAT values. On the

other hand, these groups exhibited the lowest significant (p < 0.05)

MDA value compared with T0. The shrimp immune system

primarily relies on nonspecific processes due to its lack of

adaptive immunity (Farzanfar, 2006). The enzymes Lys and SOD

break down the cell walls of harmful bacteria and destroy free

radicals in cells (Naiel et al., 2021). MDA is commonly used as an

indicator of oxidative stress as it also shows an increase in the

generation of free radicals (Chen et al., 2016). These shrimp

humoral substances, e.g., Lys, SOD, MDA, and CAT, play

essential roles in both specific and nonspecific immunity (Ashour

et al., 2024). The findings of the current work aligned with those of

the study by Ashour et al. (2024), who concluded that the

nonspecific immunity and antioxidant activities of L. vannamei

significantly improved when fed diets containing different levels of

the cyanobacteria-isolated strain A. platensis. Furthermore, several
FIGURE 4

Polynomial regression of shrimp weight gain (WG), feed conversion ratio (FCR), and dietary supplementation levels (in grams) of the cyanobacterial
isolate Desertifilum tharense NIOF17/006.
TABLE 2 Growth performance and feed utilization of shrimp Litopenaeus vannamei fed diets supplemented with different levels of the cyanobacteria
Desertifilum tharense NIOF17/006.

Parameter
Group

T0 T1 T2 T3

Initial weight, IW (g) 1.68 ± 0.05 1.68 ± 0.05 1.68 ± 0.05 1.68 ± 0.05

Final weight, FW (g) 10.73 ± 0.42b 11.26 ± 0.21a 11.50 ± 0.20a 11.66 ± 0.15a

Weight gain, WG (g) 9.10 ± 0.14b 9.53 ± 0.05ab 9.83 ± 0.03a 9.96 ± 0.05a

Specific growth rate (%/day) 1.18 ± 0.08 1.19 ± 0.03 1.20 ± 0.02 1.19 ± 0.03

Feed conversion ratio 1.67 ± 0.02a 1.57 ± 0.02b 1.57 ± 0.03b 1.57 ± 0.02b

Protein efficiency ratio 1.66 ± 0.02 1.75 ± 0.11 1.77 ± 0.09 1.76 ± 0.08

Survival rate, SR (%) 79.66 ± 3.02b 86.66 ± 4.16a 89.33 ± 5.03a 92.66 ± 3.06a
T0, T1, T2, and T3 denote diets supplemented with 0, 1, 2.5, and 5 g of the cyanobacteria D. tharense per kilogram diet, respectively. The presented data are the mean ± SD (n = 3). Different
lowercase letters in the same column indicate significant difference (p < 0.05). The absence of letters in the same row means that there are no significant differences.
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works have reported that the use of different algal strains

significantly improved the nonspecific immunity and antioxidant

activities of aquatic animals (Mansour et al., 2022c). According to

Jerez-Cepa and Ruiz-Jarabo (2021), immune-related factors have

been studied as predicted indications for the examination of shrimp

health. Figure 5 illustrates the immunological responses and

antioxidant activities of L. vannamei fed diets containing different

levels of the cyanobacterial strain D. tharense NIOF17/006.
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3.2.4 Digestive enzyme activity
Figure 6 shows the digestive enzyme activity of L. vannamei fed

diets supplemented with different doses of the cyanobacterial strain

D. tharense NIOF17/006. The results revealed that shrimp in the

cyanobacteria supplementation groups (T1, T2, and T3) exhibited

the highest significant (p < 0.05) amylase and lipase activities

compared with those fed T0. The highest significant (p < 0.05)

amylase and lipase values were observed in shrimp reared in groups
TABLE 3 Composition analysis (in percent) of the shrimp Litopenaeus vannamei fed diets supplemented with different levels of the cyanobacteria
Desertifilum tharense NIOF17/006.

Group
Composition analysis (% of dry weight)

Dry matter Protein Ether extract Ash

T0 79.86 ± 0.03c 56.88 ± 0.09d 6.87 ± 0.05d 15.64 ± 0.09b

T1 78.58 ± 0.04d 58.33 ± 0.05c 8.26 ± 0.02b 13.66 ± 0.03d

T2 80.69 ± 0.02b 60.80 ± 0.03b 9.01 ± 0.04a 16.07 ± 0.03a

T3 81.35 ± 0.07a 63.78 ± 0.40a 7.65 ± 0.03c 14.89 ± 0.05c
T0, T1, T2, and T3 are diets supplemented with 0, 1, 2.5, and 5 g of the cyanobacteria D. tharense NIOF17/006 per kilogram diet, respectively. The presented data are the mean ± SD (n = 3).
Different lowercase letters in the same column indicate significant difference (p < 0.05).
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FIGURE 5

(A–D) Nonspecific immunity and antioxidant activity of Litopenaeus vannamei fed diets containing different levels of the cyanobacterial isolate
Desertifilum tharense NIOF17/006. T0, T1, T2, and T3 denote diets supplemented with 0, 1, 2.5, and 5 g of D. tharense NIOF17/006 per kilogram diet,
respectively. The presented data are the mean ± SD (n = 3). Different uppercase letters in the columns indicate significant difference (p < 0.05).
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T3 and T2, respectively. These current findings may be attributed to

the fact that the bioactive materials of D. tharense NIOF17/006 may

improve the secretion of digestive enzymes and, subsequently,

improve feed absorption and digestibility (Xu et al., 2018).

Moreover, it could be explained by the fact that shrimp fed diets

containing higher levels of D. tharenseNIOF17/006 might stimulate

recycling, which is believed to be the outcome of the movement of

fluid in the midgut lumen and the compartmentalization caused by

the peritrophic membrane (Alexandre et al., 2014). Furthermore,

according to this theory, if aquafeed supplementation increases the

amount of protein in the diet, the corresponding digestive enzymes

will be displaced, which ultimately results in a greater recovery of

these types of enzymes in the feces (Ozorio et al., 2015).

3.2.4 Gene expression
The results of the gene expression analysis showed that the

expression of the growth-related genes (GH, IGF-I, and IGF-II)

increased almost significantly with increasing levels of

supplementation with the cyanobacterial strain D. tharense

NIOF17/006 in the formulated diets, except for T2, which had a

lower expression compared with T1 (Figures 7A–C). The highest

expression in shrimp was observed in group T3 (5 g/kg diet).

Similarly, the expression of the immune-related genes (proPO,

SOD, and Lys) showed the same pattern and was upregulated in

the muscles of L. vannamei with increasing concentrations of the

cyanobacterial strain D. tharense NIOF17/006 in the T1 and T3

formulated diets (Figures 7D–F). With regard to the growth-related

genes, GH is synthesized in the shrimp’s pituitary gland and exerts

its action on the target cell to stimulate shrimp growth (Chandhini

et al., 2021). IGF-I is a peptide hormone that is essential for the

control of growth and development in shrimp (Pang et al., 2021).

IGF-II is another protein that belongs to the IGF family. It plays a

role in fetal growth and development and participates in tissue

repair and replacement in adult shrimp (Li et al., 2024). With regard
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to the immunity-related genes, ProPO is a protein and an enzyme

that participates in the defense system of shrimp.

When shrimp encounter pathogens, proPO is converted into the

active form and catalyzes the melanization process. Melanization

assists in pulling into the body these foreign microbes and destroys

them, hence acting as a barrier against diseases (Amparyup et al.,

2013). SOD is one of the antioxidant enzymes, the role of which is to

protect shrimp cells against damage. SOD sustains the proper work

of cells and shields the shrimp body from free radicals by

transforming superoxide radicals into less harmful molecules

(Chirawithayaboon et al., 2020). Finally, Lys is an antimicrobial

enzyme that comprise an essential part of the shrimp immune

system defense due to its content in the hemolymph. It is a versatile

enzyme that is capable of attacking a wide variety of bacteria, hence

offering an indication of protection against bacterial infections

(Ferraboschi et al., 2021). According to the literature, there are no

previous studies on the potential application of the cyanobacterial

strain D. tharense NIOF17/006 as a feed additive for the shrimp L.

vannamei or as an aquafeed additive in general. However, the

findings of the current study have been previously confirmed by

several studies reporting that the dietary inclusion of micro/

macroalgae positively improved the growth and immune gene

expression of L. vannamei (Ashour et al., 2024), the rainbow

trout Oncorhynchus mykiss (Ratti et al., 2023), and the Nile tilapia

Oreochromis niloticus (Mabrouk et al., 2024).
5 Conclusions

The biotechnological applications of microalgae have attracted

significant global attention. This study contributes to this growing

field by identifying and evaluating the potential of the cyanobacterial

strain D. tharense NIOF17/006 as a novel aquafeed additive for L.

vannamei PLs. The findings demonstrate that D. tharense possesses a
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FIGURE 6

(A, B) Digestive enzyme (amylase and lipase) activity of the shrimp Litopenaeus vannamei fed diets supplemented with different levels of the
cyanobacterial strain Desertifilum tharense NIOF17/006. T0, T1, T2, and T3 denote diets supplemented with 0, 1, 2.5, and 5 g of D. tharense NIOF17/006
per kilogram diet, respectively. The presented data are the mean ± SD (n = 3). Different letters in the columns indicate significant difference (p < 0.05).
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favorable biochemical composition suitable for shrimp nutrition.

Dietary supplementation of this cyanobacteria at levels of 2.5 and 5

g/kg resulted in significant improvements in feed utilization, growth

performance, survival, whole body composition, nonspecific

immunity, antioxidant activity, and digestive enzyme function, as

well as in the expression of the growth- and immunity-related genes.

In particular, the most pronounced benefits were observed at
Frontiers in Marine Science 10
supplementation levels of 2.5–5 g/kg. Furthermore, the polynomial

regression ML model predicts that the ideal level of supplementation

with the probiotic cyanobacteria D. tharense NIOF17/006 ranges

from 3.4 to 4.2 g/kg diet. This study highlights the potential use of D.

tharense NIOF17/006 as a valuable feed additive in shrimp

aquaculture, offering a sustainable approach to enhancing shrimp

health and production efficiency.
FIGURE 7

Expression levels of the growth-related genes—GH (A), IGF-1 (B), and IGF-II (C) and the immunity-related genes—SOD (D), ProPO (E), and Lys (F) in
the muscles of Litopenaeus vannamei fed diets containing different levels of the cyanobacterial strain Desertifilum tharense NIOF17/006.
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