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Impact of anthropogenic
activities on the biodiversity of
macrobenthos and benthic
ecological quality in the mudflats
of Hwangdo Island, South Korea:
field surveys and remote
sensing assessments
Jian Liang and Chae-Woo Ma*

Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, Republic of Korea
Introduction: As coastal urbanization progresses, anthropogenic activities have

significantly impacted mudflats. In South Korea, land reclamation and

aquaculture have drastically altered mudflat ecosystems.

Methods: In our study, we utilized five remote sensing indices to assess the

impact of anthropogenic activities on Hwangdo Island. We supplemented this

with field surveys to evaluate macrobenthic biodiversity and benthic ecological

quality, investigating their relationship to anthropogenic activities.

Results and discussion: Spearman’s correlation analysis revealed that terrestrial

ecological quality influences macrobenthic biodiversity. The abundance of the

predominant species, Pirenella sp., was primarily influenced by normalized

differential build-up and bare soil index (NDBSI). Furthermore, biota-

environment matching (BIO-ENV) analysis, distance-based multivariate analysis

for a linear model (DisLM), and distance-based redundancy analysis (dbRDA) all

pinpointed NDBSI as the predominant factor impacting macrobenthic

communities in the mudflats of Hwangdo Island. Seasonal changes in NDBSI

were mainly attributed to variations in bare soil area resulting from agricultural

activities on Hwangdo Island. Overall, macrobenthic communities in the

mudflats of Hwangdo Island are mainly indirectly affected by agricultural

activities. Moreover, our study offers a fresh perspective on the conservation of

Hwangdo Island’s mudflats and provides critical references for the South Korean

government in crafting and implementing mudflat protection policies.
KEYWORDS

macrobenthos, mudflat, anthropogenic activities, benthic biotic indices, remote sensing
ecological index, South Korea
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1 Introduction

Mudflats are vital transitional zones between terrestrial and

marine environments, significantly enhancing marine ecosystems

and providing various social services to humans (Zhu et al., 2023).

Specifically, mudflats offer ecological services such as wildlife

habitats and nutrient cycling, alongside social services including

aquaculture and tourism (Lebreton et al., 2019; Newton et al., 2020).

Yet, deepening coastal urbanization has led to substantial impacts

from anthropogenic activities on mudflats (Zhang et al., 2015).

Activities like land reclamation and sewage discharge have

decreased mudflat areas and reduced biodiversity (Yang and

Chui, 2017; Tan et al., 2016). Although mudflat conservation has

garnered extensive attention and many studies have assessed the

impact of anthropogenic activities on their biodiversity (Rossi et al.,

2007; Du et al., 2019), research on the effects of terrestrial

anthropogenic activities on mudflats remains insufficient.

Macrobenthos are essential to mudflat ecosystems

(Mohamamad and Jalal, 2018). They serve as a crucial food

source for predators and play a vital role in the carbon and

nitrogen cycles of mudflats (Pascal et al., 2019; Cook et al., 2004).

It is well-established that macrobenthos can reflect the

environmental conditions of their habitats (Liang et al., 2024a).

This is attributed to their relatively long lifespan, typically around

two years, and their sedentary or sessile lifestyle (Baldrighi et al.,

2023). Indices based on macrobenthos have been extensively used

to assess the ecological quality of coastal environments (Liang et al.,

2024b, c). Among these, the AZTI’s Marine Biotic Index (AMBI)

and Multivariate AZTI’s Marine Biotic Index (M-AMBI) are

particularly prominent in gauging the ecological quality of coastal

areas globally (Borja et al., 2019).

In South Korea, mudflats are predominantly located along the

western and southern coasts. With rapid economic expansion since

the 1970s, the country has experienced escalated land-use conflicts.

The South Korean government has extensively undertaken land

reclamation projects (Choi, 2014), with the reclaimed area along the

western coast totaling 1,700 km² (Koh and Khim, 2014). This has

led to irreversible ecological consequences, reducing mudflat areas

and causing habitat loss for wildlife (Choi et al., 2010). Although

there has been a growing recognition of mudflats’ importance by the

South Korean government, their conservation policies currently

focus only on the mudflats.

Since the 1960s, the advent of remote sensing technology has

evolved over more than five decades. It is now routinely used to

evaluate the impacts of human activities on the environment (Liu

et al., 2024) and to assess biodiversity in intertidal zones. For

instance, the study by Rossiter et al. (2020) utilized remote

sensing to determine the distribution of intertidal macroalgae.

However, few studies have employed remote sensing to examine

the impacts of terrestrial human activities on macrobenthos.

Specifically, the research by El-Naggar et al. (2022) investigated

the influences of land use and land cover changes on macrobenthos

biodiversity. However, further evaluation of additional terrestrial

anthropogenic impacts on macrobenthos biodiversity is warranted.
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In our study, we utilized four remote sensing indices (i.e., Wetness,

NDVI, LST, and NDBSI) to investigate anthropogenic activities on the

land surrounding mudflats and a remote sensing ecological index

(RSEI) to assess the ecological quality of the terrestrial environment.

Together with field survey data, we comprehensively evaluated the

impact of human activities on the macrobenthos biodiversity of

mudflats. Moreover, our study provides crucial references for the

South Korean government in formulating mudflat conservation

policies and sheds light on avenues for future research.
2 Materials and methods

2.1 Study area

The study area, Hwangdo Island, is located at coordinates 36°

35’47” to 36°36’13” N and 126°22’27” to 126°22’50” E, just north of

Cheonsu Bay (Figure 1). Hwangdo Island has an east-west

extension of approximately 1.31 km and a north-south width of

about 1.65 km, covering a total area of approximately 0.71 km². The

buildings on Hwangdo Island are concentrated on the right side,

while the rest of the island is primarily composed of farmland and

green spaces (Figure 2). The elevation of Hwangdo Island ranges

from 0 to 41 m (Figure 2).

The average tidal range here is 4.59 m, with rainfall

predominantly occurring in the summer. The mudflats of

Hwangdo Island are significantly impacted by the influx of

eutrophic freshwater from the artificial lake to the north and by

shellfish farming (Liang et al., 2024d).
2.2 Sample collection and processing

Nine sampling stations were assessed in the mudflats of

Hwangdo Island (Figure 1), with stations 1, 4, and 7 in the upper

tidal region, stations 2, 5, and 8 in the middle tidal region, and

stations 3, 6, and 9 in the lower tidal region. Sampling occurred

during the spring tides of February, May, August, and October

2021. At each station, macrobenthic samples were collected twice

using a 0.5-meter quadrat sampler, yielding a total sampling area of

0.5m2. In the field, these samples were sieved using a 0.5 mm mesh,

and preserved in 5% neutral formalin solution.

During the collection, 500 g of surface sediment samples were

also gathered and preserved at -30°C prior to analysis. Salinity and

dissolved oxygen (DO) levels of tidal water were measured using a

handheld multiparameter instrument (YSI-556, YSI Inc, USA),

while the laser rangefinder (LASER 600, Nikon Ltd, Japan) and

the personal navigation assistant (GPSMAP 64S, Garmin Ltd, USA)

aided in distinguishing tidal regions.

In the laboratory, macrobenthic samples were identified to species

level with a stereomicroscope (SZX-10, Olympus Ltd, Japan) and

weighed using analytical balances (CP-64, Sartorius AG,

Deutschland). chemical oxygen demand (COD) and acid-volatile

sulfide (AVS) concentrations in the sediment samples were
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quantified using titration and detection tube methods, respectively.

Sediment samples were heated at 600°C for 2 hours to measure ignition

loss, and the mean grain size was determined through dry sieving and

pipetting methods. Analyses adhered to the Marine Environmental

Process Test Method (National Institute of Fisheries Science, 2010).
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2.3 Biotic indices

To determine the dominant species within the macrobenthic

community, the relative importance index (IRI) was utilized (Zhao

et al., 2024). The formula is as follows:
FIGURE 1

Study area and sampling stations on the mudflats of Hwangdo Island, South Korea. Blue zone, ocean; Grey zone, Land; Light-grey zone, Mudflat.
FIGURE 2

Landuse map and elevation map of Hwangdo Island.
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IRI = (A + B)� F :

In this formula, ‘A’ signifies the proportion of a specific taxon’s

abundance relative to the total abundance.

‘B’ represents the proportion of a specific taxon’s biomass

relative to the total biomass, while ‘F’ indicates the frequency of

occurrence. A species is deemed dominant when its IRI value

exceeds 1000.

To evaluate the diversity of the macrobenthic community, four

traditional diversity indices (i.e., species richness index, Pielou’s

evenness index, Simpson index, and Shannon-Wiener diversity

index) and two taxonomic distinctness (TD) indices (i.e., average

taxonomic distinctness and variation in taxonomic distinctness)

were employed (Hill, 1973; Warwick and Clarke, 1995). The

formulas for these six diversity indices are displayed in

Supplementary Table S1.

Understanding benthic ecological quality is vital for

environmental protection. AMBI, Benthic Pollution Index (BPI),

and M-AMBI, which are extensively used in South Korea (Liang

et al., 2024e), were utilized to assess the benthic ecological quality in

Hwangdo Island’s mudflat. AMBI categorizes macrobenthos into

five ecological groups according to their sensitivity to organic

matter (Borja et al., 2000). Conversely, BPI classifies them into

four functional groups based on their feeding types and life history

(Liang et al., 2024f). M-AMBI employs factor analysis to integrate

AMBI, diversity indices, and species richness for calculation

(Muxika et al., 2007). The formulas for these three benthic

indices are presented in Supplementary Table S2.
2.4 Remote-sensing indices

With advancements in remote sensing technology, remote

sensing-based indices have become widely used to evaluate the

impact of human activities on the environment (Li et al., 2020a). To

assess human activities on Hwangdo Island, four remote sensing

indices were selected: Wetness (Land surface moisture index),

NDVI (Normalized Difference Vegetation Index), LST (Land

surface temperature index), and NDBSI (Normalized Differential

Build-up and Bare Soil Index), along with the remote sensing

ecological index (RSEI), which assesses the island’s environmental

ecological quality. Due to varying spectral reflectance characteristics

of different surface features across wavelength bands, Wetness,

NDVI, LST, and NDBSI calculations depend on specific bands

(Shan et al., 2019). Wetness indicates surface moisture, NDVI

measures greenness, LST indicates surface temperature, and

NDBSI indicates dryness (Zhang et al., 2022a). RSEI is calculated

using principal component analysis (PCA) and normalization of

these four indices (Zhang et al., 2021). The formulas for the five

remote-sensing indices are listed in Supplementary Table S3.

The remote sensing images were synchronized with field

sampling times. The range of the remote sensing images

encompassed the entire terrestrial area of the island. Images for

February and May were obtained from Landsat 8, while those for

August and October were from Landsat 7. The images were

downloaded from the United States Geological Survey website
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(www.usgs.gov). Since the RSEI is not applicable to water bodies,

a masking process was applied to exclude water bodies in this study

to avoid influencing the RSEI’s evaluation results (Chen et al.,

2023). These remote-sensing images underwent radiometric,

atmospheric, and geometric accuracy corrections and had a

resolution of 30 meters (Geng et al., 2022). The calculation of the

five remote sensing indices was performed using the software

Envi 5.3.0.
2.5 Data analyses

To assess environmental characteristics in the mudflats of

Hwangdo Island, environmental factors underwent log(x+1)

transformation and normalization before principal component

analysis (PCA). Spearman’s rank correlation analysis explored the

relationships among macrobenthic biodiversity, benthic indices,

environmental factors, and remote sensing indices. The

redundancy analysis (RDA) examined the associations between

dominant species, environmental factors, and remote sensing

indices. Prior to the RDA, environmental factors and remote

sensing indices were transformed using log(x+1). The Biota-

Environment Matching (BIO-ENV) analysis, distance-based

multivariate analysis for a linear model (DisLM), and distance-

based redundancy analysis (dbRDA) investigated the impact of

environmental factors and remote sensing indices on macrobenthic

community structure (Clarke et al., 2014). Before conducting these

three analyses, environmental factors and remote sensing indices

were transformed by log(x+20) and normalized.

Spearman correlation analysis was conducted using OriginPro

2021 (OriginLab Ltd, USA). PCA, BIO-ENV, DisLM, and dbRDA

were performed using PRIMER version 7 (PRIMER-E Ltd, NZL),

and RDA was implemented using Canoco 5 (www.canoco5.com).
3 Results

3.1 Environment characteristics and
remote sensing indices

Table 1 displays the ranges and means of environmental factors.

Among the six environmental factors, the coefficient of variation for
TABLE 1 Environmental characteristics of the mudflats on
Hwangdo Island.

Environment
Factors

Range
(min-max)

Mean ± CV

AVS, mg/g 0-0.05 0.01 ± 0.88

COD, mg/g 2.03-9.04 6.28 ± 0.26

DO, g/L 0.96-12.99 5.60 ± 0.54

IL, % 1.88-7.60 3.14 ± 0.34

Mean Grain Size, ∅ 5.9-6.3 6.12 ± 0.02

Salinity, PSU 1.88-7.60 3.14 ± 0.34
AVS, acid-volatile sulfide; COD, chemical oxygen demand; DO, dissolved oxygen; IL, ignition
loss; CV, Coefficient of variation.
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AVS was the highest. In principal component analysis, the PC1 and

PC2 axes accounted for 48.7% of the variance in environmental

factors. Stations in February, compared to other months, were

primarily located on the left side of the PCA figure (Figure 3),

demonstrating that IL, AVS, and DO levels were higher in February

than in other months (Supplementary Table S4).

The average values for four remote sensing indices (i.e., RSEI,

NDVI, Wetness, and LST) were lowest in February, while the

average value of NDBSI was lowest in August. Three remote

sensing indices (NDVI, Wetness, and LST) reached their peak

average values in August; the highest average value of RSEI

occurred in May, and LST also had its highest average in August.

The averages of remote sensing indices for Hwang Island across

four months are summarized in Supplementary Table S5. The

environmental ecological quality on Hwangdo Island was lowest

in February and highest in May (Figure 4).
3.2 Macrobenthos characteristics and
dominant species

In our study, we identified a total of 129 taxa of macrobenthos.

Annelids were the most numerous, comprising 50 taxa, followed by

mollusks with 36 taxa, arthropods with 32 taxa, echinoderms with 3

taxa, and other animals with 8 taxa. In February, the number of

species reached its minimum with 59 taxa, whereas in October, it

peaked at 76 taxa (Figure 5). The average abundance of species was

263.6 individuals per m2, and the average biomass was 104.6 g per

m2 in the mudflat of Hwangdo Island. Supplementary Figures S1

and S2 depict the abundance and biomass of species at each station.

Three dominant taxa were identified, among which Pirenella sp.

displayed the highest IRI value of 2587 (Table 2).
Frontiers in Marine Science 05
3.3 Diversity indices

The species richness index (d) averaged the lowest at 3.01 in

February, while the highest average was 4.10 in May. The Pielou’s

evenness index (J’) averaged the lowest at 0.70 in October, while the

highest averages of 0.79 occurred in May and August. The

Shannon-Wiener diversity index (H’) had its lowest average

values of 2.72 in February and October, peaking at 3.40 in May.

The Simpson index (1-Lambda’) saw its lowest average at 0.73 in

October, with the highest at 0.86 in May. The average taxonomic

distinctness (Delta+) was lowest at 88.82 in May, and highest at

90.17 in August. In contrast, the variation in taxonomic distinctness

(Lambda+) varied from a low of 265.82 in February to a high of

362.02 in August (Figure 6). Diversity indices for each station are

shown in Supplementary Figures S3-S8.

Delta+ values at 11 stations fell below the theoretical

average, while Lambda+ values at 24 stations were also beneath

the theoretical average. Notably, the Delta+ value at station 9

in October deviated from the 95% confidence interval.

Similarly, the Lambda+ values at station 4 in October and

August, and station 9 in August, deviated from the 95%

confidence interval (Figure 7).
3.4 Benthic ecological quality

The lowest average value of AMBI in October was 1.25, whereas

the highest occurred in February at 1.70. The lowest average value of

BPI in February was 69.45, and the highest was 77.43 in October.

The lowest and highest average values of M-AMBI in February and

May were 0.58 and 0.68, respectively (Figure 8). AMBI and BPI

rated the benthic ecological quality at all stations as either high or

good (Supplementary Figures S9, S10). Although M-AMBI rated

most stations as high or good, it classified stations 4-7 in February,

station 9 in August, and station 4 in October as moderate

(Supplementray Figure S11).
3.5 Statistical analysis

In Spearman’s correlation analysis, the mean grain size

showed a positive correlation with the number of species,

species abundance, d, H’, AMBI, and M-AMBI. IL correlated

positively with species abundance yet negatively with J’ and 1-

Lambda’. DO negatively correlated with species biomass and

Lambda+. Furthermore, AVS exhibited a negative correlation

with Lambda+ (Figure 9).

RSEI was positively correlated with J’, H,’ 1-Lambda’, and M-

AMBI. NDVI correlated positively with J’, H,’ and 1-Lambda’.

Wetness showed a positive correlation with Lambda+, while

NDBSI was negatively correlated with Lambda+. LST correlated

positively with J’, 1-Lambda’, and Lambda+ (Figure 9B).

The results of the RDA analysis indicated that Axis 1 and Axis 2

collectively explained 44.4% of the variation in dominant species.

Pirenella sp was positively correlated with salinity (Sal), NDBSI,
FIGURE 3

Principal component analysis (PCA) of environmental factors in the
mudflat of Hwangdo Island.
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DO, mean grain size, and AVS. Macrophthalmus japonicus also

showed a positive correlation with Sal, NDBSI, DO, and mean grain

size. Conversely, Nassarius festivus was negatively correlated with

COD, NDVI, and RSEI, while Ruditapes philippinarum showed

negative correlations with Sal, NDBSI, and DO (Figure 10).

The dbRDA analysis indicated that environmental factors and

remote sensing indices impact the community structure of benthic

organisms. In the fitted model, dbRDA axes 1 and 2 explained

46.4% of the variability. Specifically, 17.6% of the total variation was

accounted for by dbRDA axes 1 and 2 (Figure 11). In Figure 10,

stations sampled in February and May were primarily located in the

upper left quadrant, demonstrating that NDBSI and NDVI

predominantly influenced the benthic community structure.
Frontiers in Marine Science 06
Conversely, stations sampled in August and October were mainly

located in the lower right quadrant, indicating that NDBSI and AVS

primarily affected the community structure. Eigenvectors of

environmental factors and remote sensing indices for the dbRDA

axes 1 and 2 are detailed in Supplementary Table S6.

Results from the best linear models based on distance (DistLM)

indicated that IL (F=1.53, p<0.05), COD (F=1.84, p<0.05), Sal

(F=2.02, p<0.01), DO (F=2.31, p<0.01), mean grain size (F=2.01,

p<0.01), wetness (F=2.14, p<0.01), NDBSI (F=2.86, p<0.01), and

LST (F=2.31, p<0.01) significantly influenced the community

structure of macrobenthic organisms. In BIO-ENV analysis,

NDBSI had the highest impact on the macrobenthic community

structure (Supplementary Table S7).
FIGURE 4

Spatial distribution of RSEI values in Hwangdo Island. Blue zone: Body of water.
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4 Discussion

4.1 Environmental characteristics and
remote sensing indices in Hwangdo, Island

In our study, the mean grain size of the mudflat on Hwangdo

Island was found to be similar to the results reported by Lee et al.

(2023). The concentrations of AVS, COD, and IL in the mudflat of

Hwangdo Island were lower than those found in the subtidal

sediments of the northern part of Cheonsu Bay (Yoon et al., 2021).

The average RSEI value on Hwangdo Island was lower than that

of Haitan Island in China, which is undergoing rapid urbanization

(Lin et al., 2022), and it was comparable to the average RSEI value of

the highly urbanized Taihu Lake Basin in China (Zhou and Liu,

2022). The RSEI of Hwangdo Island was primarily influenced by

NDBSI and NDVI, as detailed in Supplementary Table S8. Gao et al.

(2021) also reported that NDVI is a primary remote sensing index
Frontiers in Marine Science 07
influencing RSEI in the Yellow River Basin. In February, the average

RSEI value was the lowest, due to the higher NDVI and LST during

this month negatively influencing it compared to other months

(Supplementary Tables S5, S7). This trend aligns with findings from

other studies (Ji et al., 2022). In Figure 3, lower RSEI values were

concentrated on the right side of the island, which coincides with

the location of most buildings on Hwangdo Island. Zhang et al.

(2022) reported that buildings typically have a negative impact on

RSEI. However, in August, the RSEI value was notably highest on

the right side of the island. Principal component analysis revealed

that NDBSI was the primary factor influencing the RSEI during this

period. On the left side of the island, agricultural activities

significantly increased the extent of bare soil, raising NDBSI

values and subsequently lowering the RSEI. In contrast, the right

side, predominantly consisting of built-up areas without farmland,

was unaffected by these changes, resulting in comparatively higher

RSEI values.
4.2 Macrobenthic biodiversity and benthic
ecological quality on Hwangdo Island

Annelida was the phylum with the highest number of species in

the mudflats of Hwangdo Island. In the mudflats of Garolim Bay

and Cheonsu Bay, Annelida also represented the phylum with the

highest number of species (Liang et al., 2024b, d). The dominant

species, Pirenella sp., had the highest IRI value and was

predominantly found in the middle tidal region. Pirenella sp. is a
FIGURE 5

Species count in the mudflats of Hwangdo Island.
TABLE 2 Key dominant species (IRI> 1000) in Hwang Island mudflat.

Taxa Species IRI Value

Mollusca Pirenella sp. 2587

Mollusca Ruditapes philippinarum 1672

Arthropoda Macrophthalmus
japonicus

1666

Mollusca Nassarius festivus 1164
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FIGURE 6

Box plots illustrating diversity indices in the mudflats of Hwangdo Island.
FIGURE 7

The 95% confidence interval funnel charts demonstrate the distribution of classification indices (Delta+ and Lambda+) at the sampling stations.
Frontiers in Marine Science frontiersin.org08

https://doi.org/10.3389/fmars.2025.1533891
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Liang and Ma 10.3389/fmars.2025.1533891
sediment-feeding gastropod with a wide distribution not only in the

mudflat of the western coast of South Korea but also in the Red Sea,

the Mediterranean, and the Indian Ocean (Zuschin and Ebner,

2015). In the RDA, Pirenella sp. was positively correlated with AVS.

Orabi et al. (2018) indicated that the genus Pirenella has a higher

environmental pollution tolerance than other gastropods.

TD indices are typically more sensitive to anthropogenic

activities than traditional diversity indices because they consider

the taxonomic differences among macrobenthos (Hu and Zhang,

2016). Two TD indices suggested that Station 9 could have been

impacted by anthropogenic activities (Figure 6). Station 9 is situated

near a shellfish aquaculture facility. Intertidal shellfish farming can

lead to macrobenthic community simplification and organic matter

deposition (Bendell-Young, 2006). Furthermore, the disturbance of

sediment during shellfish collection can adversely impact the

macrobenthic community. However, it is important to note that

TD indices are not flawless. Some studies have shown that TD

indices are more responsive to natural stressors than anthropogenic

pressures. Additionally, habitat selection and the choice of taxa for

calculation can affect their effectiveness (Li et al., 2020b).

Although AMBI and BPI assessed the benthic ecological quality

of all stations as high or good, M-AMBI rated some stations as

moderate. In contrast to AMBI and BPI, M-AMBI incorporates the

diversity and abundance of macrobenthos (Muxika et al., 2007).

Some studies suggest that M-AMBI outperforms univariate benthic

indices. For instance, M-AMBI proved more suitable for evaluating

the benthic ecological quality of the Yangtze River Estuary than

both AMBI and BOPA (Yan et al., 2020).
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In the correlation analysis, the three benthic indices displayed

poor performance in relation to environmental factors and remote

sensing indices. The ecological groups of AMBI and M-AMBI are

designed around European coastal ecosystems. The same species

may exhibit varied behaviors across different regions (Wu et al.,

2022). In the study by Liang et al. (2024f), adapting the ecological

groups to South Korean coastal ecosystems enhanced the

effectiveness of both AMBI and M-AMBI. We recommend

calibrating the ecological groups before employing AMBI and M-

AMBI to ensure an accurate evaluation of benthic ecological quality

in the study area. Concerning the BPI index, while developed based

on South Korean bay ecosystems (Seo et al., 2014), its application in

intertidal zones should be exercised with caution. In Liang et al.

(2024d, g), BPI showed poor performance in sandy beaches and

mudflats, aligning with the findings of this study.
4.3 Anthropogenic activities’ impact on
macrobenthic community

In the correlation analysis, RSEI was positively correlated with

J’, H’, 1-Lambda’, and M-AMBI, suggesting that terrestrial

environmental ecological quality can influence the biodiversity of

macrobenthos in mudflats. Anthropogenic activities significantly

affected RSEI (Jiang et al., 2023). On Hwangdo Island, these

activities impact not only terrestrial ecological quality but also the

ecological environment of the mudflats. Only NDBSI showed a

negative correlation with Lambda+, which focuses on species
FIGURE 8

Box plots for benthic indices in the mudflats of Hwangdo Island.
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abundance and taxonomic distinctness (Stamou et al., 2017). In the

RDA, three dominant species (excluding Ruditapes philippinarum)

were positively associated with NDBSI, indicating that an increase

in NDBSI leads to a rise in the abundance of these species, reducing

Lambda+.

In dbRDA, the monthly variations in macrobenthic

communities were primarily influenced by NDBSI. Both DistLM

and BIO-ENV analyses indicated a significant impact of NDBSI on

macrobenthic communities. These variations in NDBSI were

mainly driven by urbanization and land reclamation (Liu et al.,

2021). The farmland area on Hwangdo Island is approximately 0.3

km², accounting for about 42.2% of the total island area. The NDBSI

value peaked in February and reached its lowest in August,

subsequently increasing from October. This pattern aligns with

the crop planting and harvesting schedule, suggesting that NDBSI is

predominantly affected by changes in the bare soil area due to

agriculture on Hwangdo Island.
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Agricultural activities typically release large amounts of

wastewater containing pesticides and fertilizers into the

surrounding environment (Nagendran, 2011). When this

untreated agricultural wastewater is discharged into mudflats, it

detrimentally affects macrobenthic communities (Llanos et al.,

2019). On Hwangdo Island, NDBSI appears to be a key factor

influencing macrobenthic communities, with its seasonal variations

closely aligned with periods of agricultural activity. Similarly, our

previous research on the intertidal zones of Anmyeon Island

highlighted those agricultural activities contributed to significant

shifts in macrobenthic community structure (Liang et al., 2025).

Although direct evidence linking agricultural activities to these

impacts was still limited, the observed correlation between NDBSI

and macrobenthic communities, together with consistent findings

from these two neighboring studies sites, suggested that agricultural

activities play an important role in shaping macrobenthic

communities in intertidal zone ecosystems.
FIGURE 9

Results of Spearman’s correlation analysis among environmental factors, remote sensing indices, diversity indices, and benthic indices. *, p<0.05.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1533891
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Liang and Ma 10.3389/fmars.2025.1533891
4.4 Recommendations for
mudflat protection

While the South Korean government increasingly focuses on the

protection of mudflats and has enacted policies such as banning

shellfish farming and establishing mudflat protection zones (Kim,

2010), these measures predominantly address only the mudflats and
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do not commonly extend to adjacent environments. We recommend

that the South Korean government thoroughly considers the indirect

impacts of terrestrial human activities on mudflats in their policy

formulation. Only by fully assessing the impacts of human activities

can effective protection policies be developed.

The South Korean government has enacted four laws aimed at

protecting the coastal environment: the Coastal Management Act,

the Marine Environment Management Act, the Conservation and

Management of Marine Ecosystems Act, and the Wetlands

Conservation Act (Koh and Khim, 2014). However, in light of the

growing urgency in mudflat protection, we advise that the South

Korean government rapidly progresses in establishing a dedicated

mudflat protection law.
5 Conclusions

In this study, we utilized five remote sensing indices (i.e.,Wetness,

NDVI, LST, NDBSI, and RSEI) to evaluate terrestrial anthropogenic

impacts on Hwangdo Island and conducted field surveys to examine

the macrobenthos in the mudflats. Our findings suggest that

macrobenthic biodiversity correlates with terrestrial ecological

quality, with NDBSI being the primary factor influencing

macrobenthic communities in Hwangdo Island’s mudflats. Seasonal

variations in NDBSI on Hwangdo Island were influenced by changes

in bare soil areas due to agricultural activities. We posit that these

agricultural activities, primarily agricultural wastewater, may indirectly

impact the macrobenthic communities in the island’s mudflats.

Although the South Korean government has proposed various

policies to protect the mudflat environment, the conservation policies

have not fully considered the impact of terrestrial human activities, and

no specific laws have been enacted to protect the mudflat environment.

We recommend that the South Korean government comprehensively

assess the impact of anthropogenic activities on mudflats when

formulating conservation policies and expedite the enactment of

specific laws to protect this environment. Only in this way can South

Korea’s mudflats be effectively protected and their biodiversity enhanced.
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