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1Haikou Marine Geological Survey Center, China Geological Survey, Haikou, China, 2School of
Environmental Science and Engineering, Tianjin University, Tianjin, China, 3School of Ecology, Hainan
University, Haikou, China
Introduction: Land resources play a vital role in national economic and social

development. Hainan Province faces the challenge of balancing land use with

conservation while striving to develop a high-quality free trade port. This study

aims to analyze land use changes and their driving factors to support sustainable

land use policies.

Methods: This study utilised the GlobeLand30 dataset, along with data on

temperature, precipitation, the digital elevation model (DEM), slope, soil, gross

domestic product (GDP), and population, to apply the Patch-generating Land

Use Simulation (PLUS) model. This model was used to analyse land use changes

on Hainan Island from 2000 to 2020, to investigate the relationship between land

use change and its driving factors.

Results: (1) During 2000~2020, forests and cultivated land were the predominant

land use type, while wetlands and artificial surfaces increased by two times, and

bare land remained stable; (2) Temperature significantly influenced cultivated

land, forests, and grasslands, while GDP and population growth impacted water

bodies and artificial surfaces; (3) The predicted land use map for 2020 achieved

high accuracy (Kappa = 0.85); (4) By 2040, forests and cultivated land are

expected to remain dominant, with grasslands and artificial surfaces

decreasing, while wetlands and bare land are projected to increase.

Discussion: The study highlights the complex interactions between land use and

its driving factors in Hainan. The findings provide valuable insights for sustainable

land use policy development, balancing economic growth with ecological

conservation in the region.
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1 Introduction

Land resources are essential means of production and material

carriers upon which humanity depends for survival. With the rapid

advancement of science and technology, along with the substantial

development of the economy and society, the considerable

expansion of the global population has significantly altered the

methods and intensity of human exploitation of land resources.

These changes have triggered a series of issues, including land

degradation and vegetation destruction, thereby constraining the

sustainable use of land resources (Fan et al., 2017). As early as the

early 19th century, Turner was among the first scholars to articulate

the concept of land use and analyse the mechanisms of land use

change through hypothetical abstract theories (Kalkuhl and

Edenhofer, 2017). In 1995, the International Geosphere Biosphere

Programme (IGBP) and the International Human Dimensions

Programme on Global Environmental (IHDP) identified the study

of Land use and cover change (LUCC) principles, patterns, and

models as one of the three major research priorities in the LUCC

Science Plan (Turner et al., 1995). By 2002, the International

Geographical Union (IGU) emphasised the driving mechanisms

of LUCC and its interactions with the environment as key

research areas.

Land use change in tropical regions, particularly tropical

islands, has long been a focal point of research due to their

unique ecological environments and geographical features. The

rapid economic development in these areas often leads to severe

deforestation (Kiat et al., 2020), resulting in significant changes in

land use and land cover types (da Silva Cruz et al., 2022). For

instance, the Land Use and Carbon Scenario Simulator (LUCAS)

was used to model land changes on the Hawaiian Islands under

various scenarios, including interactions between land use and

climate change (Selmants et al., 2021). Similarly, studies in Kuala

Lumpur, Malaysia; the island state of Singapore (Tso, 1996), and

San Juan, Puerto Rico (Velazquez-Lozada et al., 2006) highlight the

extreme impacts of urban heat islands in tropical regions driven by

land use changes (Comarazamy et al., 2013). The Google Earth

Engine (GEE) platform facilitated the analysis of spatiotemporal

land cover changes on three tropical islands: Sri Lanka, Timor

Island, and Palawan Island, as reported by (Fu et al., 2022).

However, research on land use changes on Hainan Island, one of

China’s tropical islands, remains limited.

As land use change simulation has become a research hotspot in

contemporary academia, various models have been developed to

address this issue. These models include the Cellular Automata (CA)

model l (Tobler, 1979), the Conversion of Land Use and its Effects at

Small Region Extent (CLUE-S) model (Verburg et al., 2002), and the

Future Land Use Simulation (FLUS) model (Liu et al., 2017).

However, most studies on these models focus on technical

improvements to modelling procedures, model calibration, and

rules, with limited attention to a more conceptual understanding

of the underlying causes of LUCCs (Cao et al., 2015; Engelen et al.,

2002). They also exhibit weaknesses in identifying the potential

driving factors behind land use changes (Sohl and Claggett, 2013)

and fail to capture the evolution of multiple land use patches across
Frontiers in Marine Science 02
temporal and spatial scales (Meentemeyer et al., 2013; Yang et al.,

2020). The latest Patch-generating Land Use Simulation (PLUS)

model has effectively addressed these limitations. It is a patch-

generating land use change simulation model developed by (Liang

et al., 2021), which integrates the random forest algorithm with

Cellular Automata. This model improves upon traditional

transformation rule-mining strategies, addressing issues such as

the complexity of defining transformation rules and parameters. It

incorporates both land use driving and planning factors, resolving

the lack of temporal concepts in pattern analysis strategies and

enhancing the ability to explore the driving mechanisms behind land

use changes. Zhai et al. explored the spatiotemporal patterns of

LUCC under the urbanisation context in Wuhan, China, from 2000

to 2019, and predicted land allocation in Wuhan for 2029 based on

this model (Zhai et al., 2021). Similarly, Li et al. utilised random

forest sampling, the Markov chain model, and the PLUS model to

simulate land use/cover changes in Rwanda over the next 30 years

(Li et al., 2021). Compared to other coupled models, the PLUSmodel

not only identifies the driving factors of land expansion and project

landscape dynamics, but also better uncovers the causes of land use

changes. Furthermore, it incorporates a multi-category random seed

growth mechanism, enabling a more accurate simulation of changes

at the land-use patch level in spatial terms.

The changes in land use patches are mostly driven by the

combined influence of natural factors and socio-economic factors,

making them the result of the integrated effects of multiple factors

(Zhou et al., 2020). Among them, the natural factors mainly include

the slope, digital elevation model (DEM), temperature, precipitation

(Dang and Kawasaki, 2017) and climate (Tasser et al., 2017), and the

socio-economic factors mainly include population growth and

economic development (Li and Liu, 2017; Wang et al., 2012; Wu

et al., 2018). Gong et al. analysed the spatial evolution characteristics

of cultivated land in the Beijing–Tianjin-Hebei region from 1990 to

2015 and examined the driving factors of cultivated land. The results

showed that changes in the quantity of such land are affected by both

economic and demographic factors, changes in the pattern are

affected by natural conditions, and the combination of these factors

plays an important role in the system of driving mechanisms (Gong

et al., 2020). Peng et al. quantitatively analysed the dynamic changes

in ecological land use and its driving forces in Shenzhen, and they

found that the slope is one of the most important factors determining

these changes in the city (Peng et al., 2017).
2 Research area and methods

2.1 Overview of the study area

Hainan Island is the second-largest island in China. It has a

typical tropical island monsoon climate, in which November to April

represent the dry season, the average temperature throughout the

year is between 22.5 and 25.6 °C, and the average annual rainfall

amounts to between 900 and 2500 mm (Luo et al., 2018). The latitude

and longitude range of the study area was 108°37′–111°03′ E and 18°

10′–20°10′ N, respectively, and the total area was 33,200 km2.
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2.2 Datasets

Based on the boundary map of Hainan Island, land use data for

Hainan Island across different periods were extracted. Additionally,

data on temperature, precipitation, DEM, slope, soil, GDP, and

population were collected and used as driving factors, with detailed

information provided in Table 1. All driving factor data were

uniformly converted to the same coordinate system and

resampled to 30m resolution to match the land use data.

2.2.1 Land use data
The land use dataset used in this research was derived from

GlobalLand30, a global land cover dataset with a 30-metre spatial

resolution, developed by China, which contains land use data for

the years 2000, 2010 and 2020. This dataset uses 30 m multispectral

classified images, including Landsat images from the United States,

HJ-1 images from China’s Environmental Disaster Reduction

Satellite and Gaofen-1 images, and it includes ten class types,

such as cultivated land, forested land and grassland, with an

overall accuracy of more than 80% in its V2010 and V2020 versions.

2.2.2 Natural environment data
The natural environmental data used in this study include

temperature, precipitation, DEM, slope, and soil. Temperature

and precipitation datasets were obtained from the National Earth

System Science Data Center. These datasets were spatially

downscaled in China using the Delta downscaling approach,

based on the global 0.5°climate dataset published by CRU and the

high-resolution global climate dataset released byWorld Clim. Data

validation was conducted using observations from 496 independent

meteorological stations (Liang et al., 2021). DEM data, sourced

from the Geospatial Data Cloud, effectively reflect the surface

characteristics of the study area. Slope data were derived from the

DEM to better evaluate the spatial distribution of land use changes.

Soil data were obtained from the Resources and Environment

Science Data Center of the Chinese Academy of Sciences.

Specifically, these data were digitised from the 1:1,000,000 Soil

Map of the People’s Republic of China, compiled and published by
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the National Soil Survey Office in 1995. The dataset adopts the

tradi t ional “Soi l Genes is Class ificat ion” sys tem and

comprehensively covers various soil types and their key attributes

across the country.

2.2.3 Socio-economic data
The socio-economic data used in this study include GDP and

population density data, sourced from the Resources and

Environment Science Data Center. The selected data cover two

periods, 2010 and 2019, capturing key socio-economic changes over

the past decade. These datasets are used to directly reflect the

intensity of human activity. Specifically, GDP data indicate the level

of regional economic development and its potential impact on land

use patterns, while population density data provide a critical basis

for assessing the pressure of human activities on land resources.

Integrating these datasets enables this study to comprehensively

examine the socio-economic drivers of land use changes and to

provide robust references for future scenario simulations.
2.3 Methodology

The PLUS model is a patch-generating land use change

simulation model. It improves the traditional transformation rule

mining strategy, solves problems such as the complexity of the

transformation rules and parameter determination, introduces a

land expansion analysis strategy (LEAS), combines the CA model

based on multi-type random patch seeds (CARS) with the random

forest algorithm, considers land use drivers and planning factors

and integrates the probability of metacellular conversion, land class

unit interaction and overall development status in the calculation of

the metacellular conversion probability (Liang et al., 2021). The

principle of the LEAS module, as shown in Figure 1, is to overlay the

land use data from two periods and extract the image elements

where the state of the land use data has changed in the later period,

i.e., the areas of change for each land use type. The result is divided

into subsets according to the land use types and combined with the

driving factors; then, each type of land expansion is mined and
TABLE 1 Data sources.

Data Criterion Year Spatial resolution Source

Land use data GlobalLand30
2000
2010
2020

30m
National Catalogue Service For Geographic

Information
(http://www.webmap.cn)

Natural environment data

Temperature 2010
2020

1km

National Earth System Science Data Center
(http://loess.geodata.cn)Precipitation

DEM

2020

Geospatial Data Cloud
(https://www.gscloud.cn/)Slope

Soil
Resource and Environmental Science Data Platform

(https://www.resdc.cn/)

Socio-economic data
GDP 2010

2019
1km

Resource and Environmental Science Data Platform
(https://www.resdc.cn/)Population
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analysed separately to obtain the conversion rules for each land use

type. Then, the random forest algorithm is used to explore the

relationships between the growth of each land use type and multiple

drivers, and an integrated classifier based on the decision tree of

each training sample extracts random samples from the original

training set, ultimately outputting the growth probability of unit i’s

land use type k as in the following equation:

Pd
i,k(x) =

oM
n=1I(hn(x) = d)

M

where x denotes a vector of multiple drivers; d takes a value of 1

or 0, where 1 indicates a shift from other land use types to land use

type k and 0 indicates the presence of other shifts; ℎ(x) denotes the
nth prediction type of the x vector decision tree; I(·) denotes the

indicator function of the set of decision numbers; andM is the total

number of decision trees.

Next, the CARS model, based on multi-class random patch

seeds, sets the neighbourhood range, neighbourhood weight factor,

random patch seed probability and conversion cost. The principle

of the CARS module, shown in Figure 2, is based on a metacellular

automata model with multiple types of stochastic patch seeds. It

combines stochastic seed generation and a threshold decrementing

mechanism for the dynamic simulation of land class patches. In the

simulation, the land use demand affects the local land use

competition adaptive coefficients through a self-regulating

mechanism that drives the area of land use to meet the future

demand. The formula for the overall probability of land use type k is

given below:
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OPd=1,t
i,k = Pd=1

i,k �Wt
i,k � Dt

k

where OPd=1,t
i,k is the growth probability of land type k in the cell;

Wt
i,k   is the domain effect of the cell, which denotes the proportion of

the land use type k that is covered in the neighbourhood; and Dt
k is

the adaptive driving coefficient, which affects the future of the land

type k demand and is affected by the number of iterations t. This

also indicates the gap between the current amount of land type k

and its target demand. Finally, a roulette wheel is constructed based

on the overall probability of all land use types and is used to select

the land use state for the next iteration.

In order to predict the evolution of land use patches under

different land use development scenarios, a multi-type random

seeding mechanism based on threshold descent is used to

determine the probability surface for each land use type using a

Monte Carlo methodology when the neighbourhood influence on

the land use type k is zero.

The expressions are as follows:

OPd=1,t
i,k =

Pd=1
i,k � (r � uk)� Dt

k,      if  W
t
i,k = 0 and r < Pd=1

i,k

Pd=1
i,k �W t

i,kD
t
k,      all others

(

Where r is a random value in the range from 0 to 1, and uk   is

the threshold for the generation of new patches of land type k. In

order to control the generation of multiple land use type patches, a

threshold descent rule for the competitive process is proposed to

constrain the organic and spontaneous growth of all land use types.

In a competitive round, if the winner is a new land use type c, it is
FIGURE 1

Random forest algorithm-based land expansion analysis strategy module.
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evaluated as a candidate using a decreasing threshold t with the

following results:

IfoN
k=1 Gt−1

c

�� �� −oN
k=1 Gt

c

�� �� < Step  Then, l = l + 1

Change   Pd=1
i,c > t   and  TMk,c = 1

No  Change   Pd=1
i,c ≤ t   or  TMk,c = 0

                t = d 1 � rl

(

where Step is the step size of the PLUS model to fit the land use

demand; TMk,c is the transformation matrix that specifies whether

the land class k can be transformed into the land use type c; d is the
decline threshold t of the decay coefficient, d∈[0,1]; l denotes the
number of decay steps; and rl denotes a normally distributed

random value with mean 1, rl∈[0,1]. CA models based on multi-

class stochastic patch seeding are spatiotemporally consistent and

allow new land use patches to develop freely, subject to the

development probabilities.
3 Results

3.1 Analysis of spatial and temporal
dynamics of land types

Based on the land use maps of Hainan Island for 2000, 2010,

and 2020 (Figure 3), the island’s land use is categorised into seven

types: cultivated land, forest, grassland, wetland, water bodies,

artificial surfaces, and bare land. Statistical analysis of the area

changes for each land use type (Figure 4) reveals significant
Frontiers in Marine Science 05
transformations in the land use patterns of Hainan Island

between 2000 and 2020. Forest and cultivated land consistently

dominated, accounting for over 60 and 20% of the total area,

respectively. However, their trends were markedly different:

cultivated land showed a declining trend followed by a

subsequent increase, while forest initially expanded and later

declined. Grassland, the third-largest land use type in 2000,

experienced a consistent decrease throughout the study period.

Wetland, despite accounting for a relatively small proportion of the

total area and showing limited variation, demonstrated a steady

upward trend. Water bodies, characterised by a spatially fragmented

distribution, followed a “decline-then-recovery” trajectory. Notably,

artificial surfaces expanded significantly, with their area in 2020

approximately tripling compared to 2000, surpassing grassland to

become the third-largest land use type. Bare land, while consistently

the smallest category, also exhibited a slight but steady increase.

Overall (Figure 5), from 2000 to 2020, forest, wetland, water bodies,

artificial surfaces, and bare land all increased in area. This

expansion was primarily driven by reductions in cropland and

grassland, reflecting substantial shifts in land use patterns

influenced by both natural and anthropogenic factors.
3.2 Analysis of land change drivers

By extracting the probability of land use development and the

contributions of drivers on Hainan Island in the last 20 years, it was

found that cultivated land, forests and grassland were mainly

affected by temperature, the main driver for wetland was
FIGURE 2

Cellular Automata model based on multi-class random patch seeding.
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precipitation, the main driver for water bodies was GDP, the main

driver affecting artificial surfaces was population and the largest

contributor to bare land was the DEM. Land use data from 2000 and

2020 were selected, and the factors of expansion and the driving

force of each land use type were mined one by one through LEAS

using the random forest algorithm. Moreover, the development

probability of each type of land use and the contributions of the
Frontiers in Marine Science 06
driving factors to the expansion of each land use type in this time

period were obtained (Figure 6). From Figure 6, it can be seen that

the main drivers behind the change in the area of cultivated land

were temperature and precipitation, with shares of 21.46 and

19.56%, respectively. Similarly, the main drivers affecting the

forest area change were the temperature, precipitation and DEM,

with 18.79, 17.30 and 16.94%, respectively. For grassland, as well as
FIGURE 3

Land use types on Hainan Island, 2000–2020 (A: 2000; B: 2010; C: 2020).
FIGURE 4

Land use area of Hainan Island, 2000–2020.
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plants, the main drivers causing changes in their areas were

temperature and DEM, with 21.04 and 19.52%, respectively.

Wetlands on Hainan Island are dominated by natural wetlands,

including rivers, marshes and coastal wetlands, and the main driver

of their area change is precipitation, which accounts for 30.43% of the

total. Unlike the other land classes, the drivers of changes in the water

body area are closer in contribution, with the largest contributions

found for GDP, population density, and the DEM, at 17.89, 17.69 and

16.95%, respectively. As the land use category most closely related to

human mobility, the largest driver of changes in the area of artificial

surfaces is population, which accounts for 22.55% of the total. By

contrast, bare land, the most flexible and adaptable land category, is

the most affected by changes in area due to the DEM and GDP, with

shares of 31.49 and 28.53%, respectively.
3.3 Feasibility analysis of PLUS model

The results of the simulations using the PLUS model and the

land cover data from GlobeLand30 to predict future land cover

changes on Hainan Island are promising. Using land use data from

2000 to 2010, the PLUS model simulation generates spatiotemporal

dynamic land simulation patches for 2020 based on the CARS

model, combining stochastic seed generation and threshold

decreasing mechanisms, with water bodies set as restricted areas

under the constraint of the development probability. Figure 7

illustrates the comparison between the simulated map of 2020

and the actual map of 2020 generated by the PLUS model.

Table 2 gives the simulation accuracy for the land classes, and it

is found that the simulation accuracy for four land classes is higher

than 85%. Among these, wetlands have the highest simulation

accuracy, which reaches 93.04%, and the forests, which account

for the largest area of the whole island, also have a simulation

accuracy as high as 90.77%. The simulation accuracy for cultivated

land and artificial surfaces is 87.85 and 86.54%, respectively.

Although the simulation accuracy for water bodies and bare land

is only 80.27 and 82.16%, respectively, the Kappa coefficient of the

simulation is 0.85, which indicates that the model’s accuracy is high.

The land cover data predicted for 2020 using the Globeland30 land
Frontiers in Marine Science 07
cover data of Hainan Island from 2000 to 2010 and simulated using

the PLUS model are convincing.
3.4 Future land use modelling on
Hainan Island

In 2040, land use on Hainan Island will continue to be

dominated by cultivated land and forests, followed by man-made

surfaces. The area of water bodies, as a restricted land category, will

remain unchanged, but all other land categories will undergo

different changes, with an increase in the areas of cultivated land,

forests, wetlands and bare land and a decrease in the areas of

grassland and artificial surfaces. Based on the land use data in 2020,

using the probability map of the development of various types of

land use on Hainan Island from 2000 to 2020, the CA model

simulation was used to obtain a simulation map of the spatial

distribution of land use on Hainan Island in 2040 (Figure 8), and

the area of each category was calculated (Table 3). The cropland

area increased by 177.29 km², which accounts for 25.15% of the

total island area. This expansion primarily occurred in the

northeastern part of Hainan Island, representing an extension of

pre-existing cultivated land areas. Meanwhile, the forest area

experienced the largest increase, expanding by 335.36 km², with

most of the growth concentrated in the eastern part of Hainan

Island. After the expansion, the total forest area reached 22,747.94

km², maintaining its status as the largest land use type on the island,

accounting for 67.25% of the total area. Artificial surfaces, as the

land category with the largest area of change, decreased by 466.53

km2, accounting for only 0.11% of the total area; however, with an

area of 1144.60km2, it is still the third-largest land category, apart

from forests and cultivated land. Similarly, there was a decrease in

grassland, which decreased by 47.19km2, with a reduction of 1.30%

in the area. The smallest changes in area were found for wetlands

and bare land, which increased by 0.79 and 0.29km2, respectively,

and they were also the land categories with the smallest percentages

of the area, accounting for only 0.11 and 0.06%, respectively. Water

bodies, as a geographic area of restricted development, remained

unchanged in terms of their area in this simulation.
FIGURE 5

Land use types of transfer matrix.
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4 Discussion

4.1 Exploring changes in major land
use types

This study found that forests and cultivated land consistently

accounted for the largest share of the area on Hainan Island, but the

trends in these two land categories were reversed. Meanwhile,
Frontiers in Marine Science 08
artificial surfaces, which accounted for the second-largest share of

the area, grew by 100% compared to the previous period. Hainan

Island has a total area of approximately 4,400 square kilometres of

national tropical rainforest; it is the largest, most concentrated, and

well-preserved area of contiguous tropical rainforests, accounting

for approximately one-seventh of the land area. In 2000-2020, the

area of forests always accounted for the highest ratio, which may be

because, in the 1990s, the local people began to realise the serious
FIGURE 6

Contributions of drivers of area change by land type on Hainan Island (the X-axis shows the size of the contribution, the y-axis is the impact factor).
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consequences of deforestation. Thus, many cities and counties have

carried out scientific afforestation and forest resource management

through the establishment of nature reserves (Lin et al., 2017; Zhai

et al., 2015). In the projected data for 2040, forest is still the land

category with the largest share of area on Hainan Island, and it is

believed that the habitat quality of Hainan Island’s forest

ecosystems will continue to rise under the protection of the

ecological policies of the Hainan Tropical Rainforest National

Park (Chen et al., 2021). Similar to forests, which have always

accounted for a larger area, there is also cultivated land, but its area

has declined in the last 20 years. At the beginning of the 21st

century, the national policy of returning farmland to forest and

planting trees on slopes with serious soil erosion restored the forest

cover and promoted ecological balance. The implementation of this

policy greatly reduced the area of cultivated land and promoted the

conversion of sloping cultivated land into forest land (Han et al.,

2024; Huang et al., 2022; Zhang et al., 2020). Thus, in 2022, the

General Office of the Hainan Provincial People’s Government

published a circular on several measures to further strengthen the

protection of cultivated land, strengthen the supervision of

cultivated land protection and strictly abide by the red line of

cultivated land protection. It is believed that, with these strong

initiatives, it will be possible to achieve the expansion of the

cultivated land area by 2024, as projected in this study.

In addition, with the rapid growth of the Chinese economy and

the acceleration of urbanisation, the urbanisation rate in Hainan

Province has been increasing, leading to an increase in the urban

population and urban expansion, with an increasing demand for

urban construction and infrastructure development (Gu and Wall,

2007). In order to meet the demands of urban development, Hainan

Province has continued to expand the scale of construction land

and enacted a series of policies and measures aimed at promoting

investment and economic development, including support and

guidance for the real estate industry. However, the expansion of

building land has caused the serious erosion of cultivated land

resources, leading to a significant reduction in the area of cultivated

land, especially in economically developed cities such as Haikou and
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Sanya (Lu et al., 2023; Pan et al., 2024; Shu et al., 2024), where the

area of artificial surfaces has shown exponential growth over this

20-year period. Of course, many factors contribute to changes in the

land type.
4.2 Land change impacts of natural factors

This study used the LEASmodel to investigate in depth the drivers

of land use change on Hainan Island, finding that natural factors are

the dominant drivers. Of all climatic factors, temperature and

precipitation are the two principal determinants of the geographical

distribution of vegetation (Wang et al., 2019). Changes in temperature

and precipitation have a direct impact on forest productivity and the

suitability of cultivated land (Gao et al., 2024). This is consistent with

Ahmad et al.’s observation that climate change has long-term effects

on agricultural production (Ahmad et al., 2023). Additionally, some

researchers have posited that rising temperatures have a deleterious

impact on crop growth (Chen et al., 2018; Roshan et al., 2014). In

tropical regions such as Hainan Island, alterations in temperature and

humidity are anticipated to exert a bidirectional influence on crop

growth cycles and yields. In examining the interactive effects of

temperature and precipitation on vegetation on Hainan Island (Dou

et al., 2023), Guo et al. also concluded that vegetation on the island is

affected by both temperature and precipitation (Guo et al., 2021).

Additionally, studies conducted in other regions of China have

demonstrated that the response of vegetation activity to temperature

is more pronounced as the temperature increases (Piao et al., 2011;

Urban, 2015). Over the past two decades, global warming has persisted

unabated (Masson-Delmotte et al., 2019), with elevated temperatures

precipitating drought stress in grassland ecosystems. This has resulted

in a continued reduction in plant productivity across diverse grassland

ecosystems, leading to a decline in the extent of grassland areas, a

phenomenon that has also been observed in other regions (Wu et al.,

2021). The impact of climate change on wetlands represents a

significant focus in the study of wetland area changes (Acreman

et al., 2009; Jolly et al., 2008). Wetlands are known to be highly
TABLE 3 Area of modelled land use types in 2020 and 2040 (km2).

Year Cultivated land Forests Grassland Wetland Water bodies Artificial surfaces Bare land

2020 8331.38 22412.58 486.09 36.33 929.56 1611.13 18.76

2040
8508.67 22747.94 438.90 37.12 929.56 1144.60 19.05

25.15% 67.25% 1.30% 0.11% 2.75% 3.38% 0.06%
TABLE 2 Verification of simulation accuracy of land modelling and actual use simulation on Hainan Island in 2020.

Kappa
Coefficient

User’s Accuracy (%)

Cultivated land Forest Grassland Wetland Water bodies Artificial surfaces Bare land

0.85 87.85 90.77 84.33 93.04 80.27 86.54 82.16
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responsive to the hydrological cycle (Bullock and Acreman, 2003).

Consequently, changes in the external recharge of wetlands under

changing climatic conditions may be as important as changes in direct

precipitation and evaporation from the wetland itself (Woo et al.,

1993). Furthermore, the vegetation within wetlands responds

dramatically to subtle changes in hydrology. The study conducted

by Karen et al. revealed that even a slight reduction in precipitation

levels can result in wetland seedlings establishing roots more rapidly

on exposed mudflats. This heightened sensitivity to hydrological shifts

may have significant implications for the long-term dynamics of

wetland vegetation and could potentially accelerate the loss of open

wetland habitats (Poiani et al., 1995). In addition to climatic factors,

the topography of Hainan Island is also a contributing factor. The

island has a low-lying area around the perimeter and high elevation in

the centre. This unique topographic feature is probably responsible for

the observed changes in the area of bare land.
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4.3 Land change impacts of socio-
economic factors

It is evident that socio-economic factors exert a significant

influence on the transformation of land use types. The population

dynamics of any region and the urbanisation process are

inextricably linked, with the two mutually reinforcing one

another. Since the construction of the International Tourism

Island in 2010, Hainan Island has undergone significant

urbanisation. The rapid influx of the population has driven the

urban system to pursue further infrastructure development and

urban expansion (Avtar et al., 2019), which in turn has prompted

the relocation of the population in search of new employment

opportunities and access to superior medical and educational

resources. This, in turn, leads to the establishment of housing

systems and the development of industry to support this
FIGURE 7

Land simulation and actual utilisation of Hainan Island in 2020 ((A) land simulation; (B) actual utilisation).
FIGURE 8

Simulation of spatial distribution of land use on Hainan Island in 2040.
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population growth, resulting in the expansion of artificial surface

areas. Concurrently, an augmented population can enhance the

labour supply and market demand, thereby stimulating GDP

growth, with then GDP allows for the allocation of greater

manpower, time and economic resources to the management of

water environments. Since 2010, when the Chinese Ministry of

Environmental Protection published its guidelines on water

environment quality, the water quality of several key lakes and

reservoirs has continuously improved (Meng et al., 2015). It is also

possible that GDP growth may result in the industrialisation of

certain regional watersheds, accompanied by the proliferation of

industrial enterprises that fail to implement effective wastewater

treatment measures. In their study, Ren et al. examined the impact

of regional GDP growth on water quality from a statistical

perspective. Their findings indicate that rapid urbanisation is

accompanied by a rapid decline in water quality, which poses a

significant threat to water bodies (Xie et al., 2011).
4.4 Strategies for optimising land use
practises to promote
economic development

Since the establishment of the Special Economic Zone, Hainan

Province has consistently ranked among the fastest-growing regions

in China. Moreover, with the steady implementation of the Free

Trade Pilot Zone policies (Meng et al., 2018), the province’s

economy is projected to sustain stable growth in the future.

However, while fostering economic progress, it is imperative to

prioritise the sustainable utilisation and conservation of land

resources. Land use management policies and planning should

incorporate scientifically informed and balanced strategies to

achieve a synergistic relationship between economic development

and ecological preservation (Boardman, 2015). Future land

planning should focus on the following aspects: (1) Integrating

cropland protection with ecological conservation by scientifically

designing agroforestry systems, fostering coordination between

cropland preservation and vegetation restoration, optimising the

structure of crop planting, and enhancing fertiliser management

(Batjes, 2006). These strategies are essential to achieving sustainable

agricultural development (Liu et al., 2020; Yu et al., 2021). (2)

Prioritising the conservation of forested areas in ecologically

sensitive regions, especially in low-altitude zones, as well as

grasslands with high vegetation coverage, to increase carbon

sequestration in terrestrial ecosystems and bolster their overall

stability (Batjes, 2016; Li et al., 2017). (3) Encouraging the

efficient and intens utilisation of land designated for construction

to prevent the excessive exploitation and fragmentation of land

resources, while optimising urban spatial layouts. To ensure that

construction activities are consistent with ecological conservation

objectives, large-scale infrastructure development should be strictly

prohibited in ecologically sensitive areas (Romero-Blanco et al.,

2023; Zarrinabadi et al., 2023). Moreover, as Hainan Island is

surrounded by the sea, its land use is intrinsically linked to the

development of marine resources. It is recommended to strengthen
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integrated terrestrial and marine ecosystem management,

implement comprehensive coastal zone policies, and establish

coastal wetland reserves to limit the unregulated expansion of

artificial surfaces in coastal regions. Furthermore, proactive efforts

should be directed towards promoting the blue economy, with

priority given to eco-friendly industries such as marine tourism,

fisheries, and renewable energy, thereby alleviating the pressure on

terrestrial land resources. These strategies aim to facilitate the

coordinated management of land and marine resources, offering

scientific foundations for advancing the National Ecological

Civilization Pilot Zone and the China Free Trade Port initiatives.

This study successfully employed the PLUS model to simulate

the spatiotemporal dynamics of multiple land use types with a high

degree of precision, providing valuable insights into the driving

mechanisms behind land use changes. By integrating a multi-

objective optimisation algorithm, this approach improved the

robustness of the simulation results, offering robust scientific

evidence to support planning and policy-making. However, this

study does not adequately consider the interactions among driving

factors in the analysis, which may limit a comprehensive

understanding of the mechanisms underlying land use changes.

As a result, this limitation may partially compromise the accuracy of

the simulation results. Future research should further investigate

the relative contributions and complex interdependencies of

different driving factors during land use transformations, thereby

advancing insights into the driving mechanisms. In addition, the

parameter settings of the model are reliant to some extent on the

researcher’s subjective judgement, which may introduce potential

subjectivity or bias, thereby compromising the robustness and

generalizability of the predictions. To address this limitation,

future studies should incorporate multi-scenario simulation

analyses and multi-model comparison approaches to further

improve the accuracy and practical applicability of predictive

outcomes. This will provide more robust theoretical support for

land resource management.
5 Conclusion

From 2000 to 2020, the primary land use types in Hainan Island

were forests and cultivated land, despite a decline in their total

areas. Grassland areas continued to decrease, whereas wetlands,

water bodies, and artificial surfaces showed significant growth. This

study revealed that changes in cultivated land, forests, and

grasslands were largely determined by temperature, wetlands were

influenced by precipitation, water bodies were associated with GDP,

the expansion of artificial surfaces was primarily attributed to

population growth, and bare land was affected by the DEM.

Based on PLUS model projections, by 2040, croplands and forests

are projected to remain the dominant land use types on Hainan

Island, with increases in artificial surfaces and wetlands, while

grasslands are expected to continue declining. Considering the

significant influence of policy on land use changes, it is

recommended to strengthen the protection of croplands and

forests, facilitate the restoration of grasslands and wetlands,
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optimise the management of construction land, and foster the

sustainable development of the blue economy. These efforts are

intended to achieve a balance between economic development and

ecological conservation, supporting the establishment of the

National Ecological Civilization Pilot Zone and the Free Trade Port.
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P., and Pysěk, P. (2023). Searching for predictors of the variability of impacts caused by
non-native trees on regulating ecosystem services worldwide. Sci. Total Environment.
877, 162961. doi: 10.1016/j.scitotenv.2023.162961

Roshan, G., Oji, R., and Al-Yahyai, S. (2014). Impact of climate change on the wheat-growing
season over Iran. Arabian J. Geosciences. 7, 3217–3226. doi: 10.1007/s12517-013-0917-2

Selmants, P. C., Sleeter, B. M., Liu, J., Wilson, T. S., Trauernicht, C., Frazier, A. G.,
et al. (2021). Ecosystem carbon balance in the hawaiian islands under different
scenarios of future climate and land use change. Environ. Res. Letters. 16, 104020.
doi: 10.1088/1748-9326/ac2347

Shu, R., Wang, Z., Guo, N., Wei, M., Zou, Y., and Hou, K. (2024). Multi-scenario land
use optimization simulation and ecosystem service value estimation based on fine-scale
land survey data. Land 13, 557. doi: 10.3390/land13040557

Sohl, T. L., and Claggett, P. R. (2013). Clarity versus complexity: Land-use modeling
as a practical tool for decision-makers. J. Environ. management. 129, 235–243.
doi: 10.1016/j.jenvman.2013.07.027

Tasser, E., Leitinger, G., and Tappeiner, U. (2017). Climate change versus land-use
change—what affects the mountain landscapes more? Land Use policy. 60, 60–72.
doi: 10.1016/j.landusepol.2016.10.019

Tobler, W. (1979). “Cellular geography,” in Philosophy in Ggeography (Holland: Reidel).

Tso, C. (1996). A survey of urban heat island studies in two tropical cities.
Atmospheric environment. 30, 507–519. doi: 10.1016/1352-2310(95)00083-6

Turner, B. L., Skole, D., Sanderson, S., Fischer, G., Fresco, L., and Leemans, R. (1995).
Land-use and land-cover change: Science/research plan. Sweden: Global Change
Report. 43 (1995), 669–679. doi: 10.1177/001872679104401105

Urban, M. C. (2015). Accelerating extinction risk from climate change. Science 348,
571–573. doi: 10.1126/science.aaa4984

Velazquez-Lozada, A., Gonzalez, J. E., andWinter, A. (2006). Urban heat island effect
analysis for san juan, Puerto Rico. Atmospheric environment. 40, 1731–1741.
doi: 10.1016/j.atmosenv.2005.09.074

Verburg, P. H., Soepboer, W., Veldkamp, A., Limpiada, R., Espaldon, V., and
Mastura, S. S. (2002). Modeling the spatial dynamics of regional land use: The clue-s
model. Environ. management. 30, 391–405. doi: 10.1007/s00267-002-2630-x

Wang, J., Chen, Y., Shao, X., Zhang, Y., and Cao, Y. (2012). Land-use changes and
policy dimension driving forces in China: Present, trend and future. Land Use policy.
29, 737–749. doi: 10.1016/j.landusepol.2011.11.010

Wang, Z.-M., Ye, W., and Xing, F.-W. (2019). Bryophyte diversity on a tropical
continental island (hainan, China): Potential vulnerable species and environmental
indicators. J. Bryology. 41, 350–360. doi: 10.1080/03736687.2019.1653557

Woo, M.-K., Rowsell, R. D., and Clark, R. G. (1993). “Hydrological classification of
canadian prairie wetlands and prediction of wetland inundation in response to climatic
variability,” in Hydrological classification of canadian prairie wetlands and prediction of
wetland inundation in response to climatic variability (CanadianWildlife Service, Ottawa).

Wu, G. L., Cheng, Z., Alatalo, J. M., Zhao, J., and Liu, Y. (2021). Climate warming
consistently reduces grassland ecosystem productivity. Earth’s Future. 9,
e2020EF001837. doi: 10.1029/2020EF001837

Wu, X., Wang, S., Fu, B., Liu, Y., and Zhu, Y. (2018). Land use optimization based on
ecosystem service assessment: A case study in the yanhe watershed. Land Use policy. 72,
303–312. doi: 10.1016/j.landusepol.2018.01.003

Xie, G., Zhang, J., Tang, X., Cai, Y., and Gao, G. (2011). Spatio-temporal
heterogeneity of water quality(2010-2011) and succession patterns in lake bosten
during the past 50 years. J. lake Sci. 23, 837–846. doi: 10.18307/2011.0603

Yang, J., Gong, J., Tang, W., and Liu, C. (2020). Patch-based cellular automata model
of urban growth simulation: Integrating feedback between quantitative composition
and spatial configuration. Computers Environ. Urban Systems. 79, 101402. doi: 10.1016/
j.compenvurbsys.2019.101402

Yu, S., Wang, L., Zhao, J., and Shi, Z. (2021). Using structural equation modelling to
identify regional socio-economic driving forces of soil erosion: A case study of jiangxi
province, southern China. J. Environ. Management. 279, 111616. doi: 10.1016/
j.jenvman.2020.111616

Zarrinabadi, E., Lobb, D. A., Enanga, E., Badiou, P., and Creed, I. F. (2023).
Agricultural activities lead to sediment infilling of wetlandscapes in the canadian
prairies: Assessment of soil erosion and sedimentation fluxes. Geoderma 436, 116525.
doi: 10.1016/j.geoderma.2023.116525

Zhai, D.-L., Cannon, C. H., Dai, Z.-C., Zhang, C.-P., and Xu, J.-C. (2015).
Deforestation and fragmentation of natural forests in the upper changhua watershed,
hainan, China: Implications for biodiversity conservation. Environ. Monit. assessment.
187, 1–12. doi: 10.1007/s10661-014-4137-3

Zhai, H., Lv, C., Liu, W., Yang, C., Fan, D., Wang, Z., et al. (2021). Understanding
spatio-temporal patterns of land use/land cover change under urbanization in wuhan,
China 2000–2019. Remote Sensing. 13, 3331. doi: 10.3390/rs13163331

Zhang, Y., Yuan, J., You, C., Cao, R., Tan, B., Li, H., et al. (2020). Contributions of
national key forestry ecology projects to the forest vegetation carbon storage in China.
For. Ecol. Management. 462, 117981. doi: 10.1016/j.foreco.2020.117981

Zhou, Y., Li, X., and Liu, Y. (2020). Land use change and driving factors in rural
China during the period 1995-2015. Land Use policy. 99, 105048. doi: 10.1016/
j.landusepol.2020.105048
frontiersin.org

https://doi.org/10.1016/j.seps.2019.06.005
https://doi.org/10.1111/j.1467-9493.2007.00288.x
https://doi.org/10.1007/s00704-020-03430-x
https://doi.org/10.1007/s11769-024-1423-z
https://doi.org/10.1016/j.ecolind.2022.109543
https://doi.org/10.1002/eco.v1:1
https://doi.org/10.1007/s10797-016-9403-6
https://doi.org/10.1016/j.jksus.2019.09.012
https://doi.org/10.3390/su9060894
https://doi.org/10.3390/su9071083
https://doi.org/10.1016/j.compenvurbsys.2020.101569
https://doi.org/10.7717/peerj.3320
https://doi.org/10.1016/j.resconrec.2020.104745
https://doi.org/10.1016/j.landurbplan.2017.09.019
https://doi.org/10.1016/j.apgeog.2023.103124
https://doi.org/CNKI:SUN:STBY.0.2018-05-055
https://doi.org/10.1080/00045608.2012.707591
https://doi.org/10.11821/dlyj201812001
https://doi.org/10.3390/su7022000
https://doi.org/10.1007/s11629-023-8184-5
https://doi.org/10.1016/j.habitatint.2016.12.005
https://doi.org/10.1111/j.1365-2486.2011.02419.x
https://doi.org/10.1111/j.1752-1688.1995.tb03380.x
https://doi.org/10.1016/j.scitotenv.2023.162961
https://doi.org/10.1007/s12517-013-0917-2
https://doi.org/10.1088/1748-9326/ac2347
https://doi.org/10.3390/land13040557
https://doi.org/10.1016/j.jenvman.2013.07.027
https://doi.org/10.1016/j.landusepol.2016.10.019
https://doi.org/10.1016/1352-2310(95)00083-6
https://doi.org/10.1177/001872679104401105
https://doi.org/10.1126/science.aaa4984
https://doi.org/10.1016/j.atmosenv.2005.09.074
https://doi.org/10.1007/s00267-002-2630-x
https://doi.org/10.1016/j.landusepol.2011.11.010
https://doi.org/10.1080/03736687.2019.1653557
https://doi.org/10.1029/2020EF001837
https://doi.org/10.1016/j.landusepol.2018.01.003
https://doi.org/10.18307/2011.0603
https://doi.org/10.1016/j.compenvurbsys.2019.101402
https://doi.org/10.1016/j.compenvurbsys.2019.101402
https://doi.org/10.1016/j.jenvman.2020.111616
https://doi.org/10.1016/j.jenvman.2020.111616
https://doi.org/10.1016/j.geoderma.2023.116525
https://doi.org/10.1007/s10661-014-4137-3
https://doi.org/10.3390/rs13163331
https://doi.org/10.1016/j.foreco.2020.117981
https://doi.org/10.1016/j.landusepol.2020.105048
https://doi.org/10.1016/j.landusepol.2020.105048
https://doi.org/10.3389/fmars.2025.1534508
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

	Land use change projection and driving factors exploration in Hainan Island based on the PLUS model
	1 Introduction
	2 Research area and methods
	2.1 Overview of the study area
	2.2 Datasets
	2.2.1 Land use data
	2.2.2 Natural environment data
	2.2.3 Socio-economic data

	2.3 Methodology

	3 Results
	3.1 Analysis of spatial and temporal dynamics of land types
	3.2 Analysis of land change drivers
	3.3 Feasibility analysis of PLUS model
	3.4 Future land use modelling on Hainan Island

	4 Discussion
	4.1 Exploring changes in major land use types
	4.2 Land change impacts of natural factors
	4.3 Land change impacts of socio-economic factors
	4.4 Strategies for optimising land use practises to promote economic development

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


