
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Yongzeng Yang,
Ministry of Natural Resources, China

REVIEWED BY

Jichao Wang,
China University of Petroleum, China
Feng Hua,
Shantou University, China

*CORRESPONDENCE

Haofeng Xia

hjs_xhf@163.com

RECEIVED 26 November 2024
ACCEPTED 07 February 2025

PUBLISHED 25 February 2025

CITATION

Huang W, Wu X, Xia H, Zhu X, Gong Y and
Sun X (2025) Reinforcement learning-based
multi-model ensemble for ocean
waves forecasting.
Front. Mar. Sci. 12:1534622.
doi: 10.3389/fmars.2025.1534622

COPYRIGHT

© 2025 Huang, Wu, Xia, Zhu, Gong and Sun.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 25 February 2025

DOI 10.3389/fmars.2025.1534622
Reinforcement learning-based
multi-model ensemble for
ocean waves forecasting
Weinan Huang1, Xiangrong Wu2,3, Haofeng Xia4,5,6*,
Xiaowen Zhu7, Yijie Gong1 and Xuehai Sun4

1College of Engineering, Ocean University of China, Qingdao, China, 2Third Institute of
Oceanography, Ministry of Natural Resources, Xiamen, China, 3Xiamen Marine Forecast Station of
State Oceanic Administration, Xiamen, China, 4Naval Submarine Academy, Qingdao, China, 5Laoshan
Laboratory, Qingdao, China, 6Qingdao Institute of Collaborative Innovation, Qingdao, China, 7College
of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, China
This study addresses the challenges of uncertainty in wave simulations within

complex and dynamic ocean environments by proposing a reinforcement

learning-based model ensemble algorithm. The algorithm combines the

predictions of multiple base models to achieve more accurate simulations of

ocean variables. Utilizing the soft actor-critic reinforcement learning framework,

the method dynamically adjusts the weights of each base model, enabling the

model ensemble algorithm to effectively adapt to varying ocean conditions. The

algorithm was validated using two SWAN models results for China’s coastal

regions, with ERA5 reanalysis data serving as a reference. Results show that the

ensemble model significantly outperforms the base models in terms of root

mean square error, mean absolute error, and bias. Notable improvements were

observed across different significant wave height ranges and in scenarios with

large discrepancies between base model errors. The model ensemble algorithm

effectively reduces systematic biases, improving both the stability and accuracy

of wave predictions. These findings confirm the robustness and applicability of

the proposed method for integrating multi-source data and handling complex

ocean conditions, highlighting its potential for broader applications in

ocean forecasting.
KEYWORDS

multi-model ensemble, reinforcement learning, soft actor-critic algorithm, dynamic
weight allocation, ocean wave simulation
1 Introduction

Numerous numerical models have been developed for ocean wave simulations,

including Simulating WAves Nearshore (SWAN) (Booij et al., 1999), Wave Model

(WAM) (Group, 1988), and WAVEWATCH III (Tolman, 1991). Each of these models,

with its unique strengths and applications, collectively enhances the understanding and

predictive capabilities of oceanic wave behavior, serving critical roles in coastal engineering,
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fmars.2025.1534622/full
https://www.frontiersin.org/articles/10.3389/fmars.2025.1534622/full
https://www.frontiersin.org/articles/10.3389/fmars.2025.1534622/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2025.1534622&domain=pdf&date_stamp=2025-02-25
mailto:hjs_xhf@163.com
https://doi.org/10.3389/fmars.2025.1534622
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2025.1534622
https://www.frontiersin.org/journals/marine-science


Huang et al. 10.3389/fmars.2025.1534622
marine operations, and climate research (Cavaleri et al., 2012;

Reguero et al., 2019; Casas-Prat et al., 2024).

However, these numerical wave models encounter significant

challenges due to notable uncertainties in initial conditions and

their high sensitivity to boundary conditions, driven by the

nonlinear nature of ocean dynamics. This sensitivity is

particularly pronounced in coastal and inner seas simulations,

where nested modelling approaches are frequently employed.

High-resolution nested models can inherit temporal and spatial

errors from global models (Cavaleri et al., 2018). Furthermore,

errors in the driving wind fields directly translate to inaccuracies in

wave conditions, thereby significantly reducing the forecast range.

These errors are further amplified in small-scale events, leading to

increased statistical uncertainty in model results (Rascle and

Ardhuin, 2013; Gentile et al., 2021; Yevnin and Toledo, 2022).

Additionally, different wave models, and even different versions of

the same model, can yield varying results, introducing distinct

errors in wave predictions. This variability arises from differences

in numerical schemes, source term parameterizations, and the

implementation of model physics (Rogers and Van Vledder, 2013;

Siadatmousavi et al., 2016; Allahdadi et al., 2019; Liu et al., 2019;

Christakos et al., 2021). Such variations in model design and

execution, alongside discrepancies in initial conditions and wind

fields, contribute to divergent predictions.

A feasible solution to model uncertainty is the integration of

multiple source predictions (Hagedorn et al., 2005). Different wave

models may hold unique predictive capabilities, and by combing

their outputs, the ensemble method can optimize their strengths

while mitigating individual model errors, resulting in more precise

and reliable forecasts. Additionally, multi-model ensembles provide

an enhanced representation of the potential climate scenarios, as

each model incorporates its unique physical and numerical

characteristics, thereby more accurately capturing the complexity

of the climate system.

A straightforward method for integrating models involves

assigning weights to each, resulting in a unified forecast. The

concept of multi-model superensemble method was initially

introduced by Krishnamurti et al. (1999). This approach utilizes

multiple regression analysis to assign weights to forecasts from

various models. The primary methodology involves using least-

squares minimization to determine the most effective combination

of models by analyzing historical data during a learning phase. The

calculated optimal weights are then applied to generate new

predictions in the subsequent forecast phase. Unlike traditional

ensemble means that assign equal weight to all models, the

superensemble uses weights derived from historical performance,

making it more adaptive and capable of handling diverse model

outputs. By employing weights that vary spatially and temporally,

the superensemble can adjust to regional and temporal variations in

model performance. Additionally, analyzing the performance of

different physical parameterization schemes within the

superensemble framework allows for the identification of

systematic errors and the enhancement of these schemes’ design

(Krishnamurti et al., 2016).

The development and application of methods for determining

model weights based on the performance of various models have
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advanced considerably. Duan et al. (2007) used Bayesian model

averaging to generate consensus predictions. This technique assigns

weights to individual forecasts according to their probabilistic

likelihood, giving higher weights to more accurate predictions and

lower weights to less accurate ones, thereby increasing the reliability

of integrated model predictions. Wang et al. (2020) introduced the

stepwise pattern projection model, which corrects systematic errors

in each model before applying the multi-model ensemble method.

This bias correction further enhances forecast accuracy, ensuring

more reliable predictions. Similarly, Liang et al. (2022) calculated

weights for a multi-model superensemble after removing systematic

errors from individual models, evaluated over optimal time periods

with a focus on spatial and temporal patterns of discrepancies in

model predictions. Addressing these errors significantly improved

the accuracy of the ensemble forecasts. Additionally, Krishnamurti

et al. (2006) and Kumar and Krishnamurti (2012) considered

geographical variation in weights by extending the analysis of

forecast across both temporal and spatial dimensions using

empirical orthogonal functions. This comprehensive analysis

allows for a more accurate representation of the spatial and

temporal variability in climate forecasts, thereby improving the

precision of ensemble predictions.

Note that, when performing multi-model superensemble, it is

possible to combine identical variables from different models as well

as incorporate variables related to the target predicted variable to

improve forecast accuracy. This approach maximizes the strengths

of each individual model, enhancing prediction accuracy and

reliability by effectively capturing the relationships and

dependencies between the related variables and the target output

(Rixen and Ferreira-Coelho, 2007).

A limitation of the multi-model superensemble method is the

reliance on fixed model weights over time, which can reduce its

effectiveness. A key challenge with this approach is determining

whether the selected combination of weights will remain optimal

throughout the forecasting phase. An improved strategy would

involve the automatic adjustment of weights in response to

variations in model performance. To this end, Shin and

Krishnamurti (2003); Vandenbulcke et al. (2009), and Lenartz

et al. (2010) utilized the Kalman Filter to dynamically update

model weights based on the most recent observations. This

technique facilitates the continuous adaptation of model weights

to reflect new data, thereby improving the accuracy of future

forecasts. When new data reveal a change in the performance of a

particular model, its weights for subsequent predictions are adjusted

accordingly, ensuring that the forecasting model remains

responsive to the latest information and ultimately enhancing the

reliability of future predictions.

Moreover, the effectiveness of the superensemble model weights,

which are optimized for a specific central observational region, may

decrease when applied to other areas. This reduction in predictive

accuracy is particularly pronounced in coastal zones influenced by

small-scale shelf processes, as well as in regions where local ocean

dynamics are significantly affected by currents (Mourre and

Chiggiato, 2014). Consequently, to achieve more accurate

predictions, it is essential that model weights be dynamically

adjusted to account for these distinct oceanic conditions.
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More recently, a novel multi-model ensemble technique known

as supermodelling has gained attention (Counillon et al., 2023;

Duane and Shen, 2023). This method involves the concurrent

operation of multiple models, where each model uses the state

information of the others to guide its own simulation, aiming to

achieve synchronization across the ensemble. The interaction terms

between the models are trained using historical data, allowing the

ensemble to evolve into a superior model that outperforms any of its

individual components (Schevenhoven et al., 2019). However, this

approach presents significant challenges. A primary difficulty lies in

integrating models with differing architectures, particularly when

inconsistencies exist in their state representations. Additionally, the

requirement for continuous information exchange during

simulations confines supermodelling to execution on a single

computational platform, thereby limiting the scalability of this

method (Schevenhoven et al., 2023).

Deep learning has emerged as a powerful alternative to

conventional multi-model ensemble methods, which often rely on

fixed weights and lack adaptability. By introducing a dynamic and

flexible framework, deep learning is better equipped to handle

complex datasets and capture patterns that may be missed by

linear regression-based superensemble techniques. Neural

networks have demonstrated superior performance in generating

consensus forecasts by effectively integrating outputs from diverse

model, consistently outperforming traditional methods (Zhi et al.,

2012; Ahmed et al., 2019; Dey et al., 2022; Li et al., 2022; Littardi

et al., 2022), especially when individual model outputs are highly

similar (Fooladi et al., 2021). However, it should be noted that deep

learning models are generally trained on static datasets, and once

the strategy for multi-model ensemble is learned, it remains fixed

throughout the prediction process. As a result, these models often

lack the ability to adapt in real time to changing data properties,

limiting their effectiveness in handling the uncertainties and

variability in more complex tasks. This limitation is particularly

pronounced when dealing with time-series data or tasks that require

continuous adaption to evolving environments.

To address these challenges, reinforcement learning offers a

more adaptive and flexible approach to multi-model ensemble. In

contrast to deep learning, reinforcement learning dynamically

adjusts the weights of individual models based on feedback from

the environment, enabling the system to optimize itself as data

patterns change over time. In dynamic settings, such as those

involving time-series data, reinforcement learning allows for

continuous modification of the contributions from different base

models, resulting in more accurate and responsive predictions

(Saadallah and Morik, 2021; Fu et al., 2022; Zhao G. et al., 2024).

The exploration-exploitation mechanism of reinforcement learning

not only facilitates the learning of an optimal strategy for the

current task but also enables ongoing refinements of model

performance for future tasks. This capability is particularly

important for multi-model ensemble when dealing uncertain or

shifting data distributions (Kaelbling et al., 1996; Arulkumaran

et al., 2017; Gronauer and Diepold, 2022). Moreover, the use of in

reinforcement learning allows models to repeatedly learn from

historical data, improving their generalization capabilities even

when training data is limited (Sutton and Andrew, 2018).
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Therefore, a reinforcement learning-driven multi-model

ensemble approach offers the advantage of dynamic weight

adjustment, enhancing both adaptability and generalization. This

ensures that the model can maintain robust performance, even in

the face of changing data distributions or uncertain environments.

The structure of this paper is as follows: Section 2 outlines the

reinforcement learning-based multi-model ensemble algorithm.

Section 3 details two sets of wave numerical simulation data used

to validate the algorithm’s effectiveness. In Section 4, the results of

applying the intelligent integration algorithm to these datasets are

analyzed. Finally, Section 5 summarizes the main conclusions of

the study.
2 Methodology

2.1 Reinforcement learning algorithm

Reinforcement learning is a decision-making algorithm that

enables an agent to perform tasks through continuous interaction

with a complex, evolving environment, without prior knowledge of

its dynamics. The algorithm’s primary objective is to maximize the

cumulative reward over time by making sequential decisions

throughout the learning process. This capability allows

reinforcement learning to autonomously discover optimal

solutions in dynamic environments, eliminating the need for

predefined rules (Kaelbling et al., 1996).

The fundamental structure of reinforcement learning typically

consists of the agent, the environment, and the reward signal. The

agent is responsible for decision-making as it observes the

environment and selects actions based on these observations. The

environment includes external factors with which the agent

interacts. Upon each action taken by the agent, the environment

responds by providing a new state and a reward that indicates the

action’s effectiveness in advancing the overall objective. A higher

reward signals that the action is advantageous in achieving the

desired task.

Figure 1 presents the workflow of reinforcement learning

(Sutton and Andrew, 2018). Initially, the agent acquires

observational inputs from the environment, representing the

current state. Based on these observations and its current policy,

the agent selects and executes an action within the environment.

The environment responds by providing a reward signal and

updating the state accordingly. This feedback is then utilized by

the reinforcement learning algorithm to refine the agent’s policy,

enabling it to make progressively better decisions that are more

likely to yield higher rewards.

The agent is composed of two primary components, namely the

policy and the learning algorithm (Li, 2023). The policy defines the

set of rules that guide the agent’s action selection across various

states, and its effectiveness is assessed by a value function. This value

function estimates the expected long-term reward associated with a

given pair of state and action, enabling the agent to evaluate the

potential benefits of specific actions under the current policy. The

learning algorithm in turn analyzes the agent’s interactions,

including actions, states, and rewards, to iteratively adjust the
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policy and improve future decisions. The primary objective of the

learning process is to identify the best possible policy, allowing the

agent to perform tasks with high effectiveness.

A common framework in reinforcement learning is the actor-

critic architecture (Peters and Schaal, 2008; Grondman et al., 2012).

In this framework, the actor pq(a|s), responsible for selecting actions
a based on the current state s, represents the policy. The critic Qj(s,

a), on the other hand, evaluates the actor’s policy by estimating the

expected rewards for a given state-action pair, learning and

representing the value function. The actor and critic work together

during training, with the actor refining its policy based on feedback

from the critic, which evaluates the value of specific actions in

particular states. This process helps the actor improve its decision-

making by increasing the probability of high-value actions and

reducing the probability of low-value ones. Meanwhile, the critic

interacts with the environment to observe actual rewards and updates

its value estimates, ensuring closer alignment with observed results.

Effectively, the critic serves as a learning guide for the actor, helping it

make more informed decisions.

Reinforcement learning optimization strategies are generally

categorized into three types. The first type is value-based agents,

which rely solely on the critic. These agents use the value function to

select actions, making them suitable for discrete action spaces where

they can efficiently identify the optimal action for each state.

However, when the action space is continuous, value-based agents

may require additional computational resources to search for the

best action. A typical example of this method is the deep Q-

network, which approximates the value function using neural

networks (Wang et al., 2019; Fan et al., 2020). The second type is

policy-based agents, which rely only on the actor to directly choose

actions. These agents can operate deterministically, choosing a

single action for each state, or stochastically, selecting actions

based on assigned probabilities. Policy-based agents are well-

suited for continuous action spaces, such as those used in policy

gradient methods (Nachum et al., 2017). However, these agents are

more susceptible to noise during training and may risk converging

on local optima since they directly optimize the policy (Sutton and

Andrew, 2018). The third type, actor-critic agents, combines the

strengths of value-based and policy-based approaches. In this

framework, the actor and critic collaborate to optimize both the

policy and value function simultaneously. This cooperative strategy
Frontiers in Marine Science 04
allows this type of agents to perform well in both discrete and

continuous action spaces, offering improved efficiency and stability

in complex tasks (Lillicrap et al., 2015; Dankwa and Zheng, 2019).
2.2 Multi-model ensemble algorithm

Multi-model ensemble methods aim to combine the outputs of

multiple models to produce predictions that are more accurate and

stable than those generated by any individual model. Consider a set

of m independent models, F1, F2, …, Fm, each based on different

physical equations or parameterization schemes. The goal of a

multi-model ensemble is to derive a consensus prediction, F′,
by weighting the outputs of these base models, as defined in

Equation 1:

F0(t) = o
m

k=1

wk(t)Fk(t) (1)

where wk (t) represents the weight assigned to model Fk (t).

These weights are typically adjusted based on the historical

performance of each model, thereby improving the accuracy of

the ensemble result.

The performance of each base model Fk (t) may fluctuate due to

the spatiotemporal complexity of ocean variables and the

limitations of numerical models. As such, it is essential to

dynamically adjust the weights over time to reflect these

variations accurately. To address this, the present study proposes

a reinforcement learning-based model ensemble algorithm, which

enables the system to autonomously learn and adapt the model

weights over time. This dynamic allocation of weights not only

better captures the complexity of the ocean environment but also

enhances the reliability and precision of the ensemble results.

In the reinforcement learning framework, the state must

capture the key environmental information relevant to the task.

In this context, to enable the agent make informed decisions, the

state s(t) at time t is defined as a combination of the base models’

predictions over the past w = 5 time steps and the model weights

from time t−w+1 to t−1, as described in Equation 2:

s(t) = F1(t − w + 1), F2(t − w + 1),…, Fm(t − w + 1),…, F1(t), F2(t)…, Fm(t),f
   w1(t − w + 1),w2(t − w + 1),…,wm(t − w + 1),…,w1(t − 1),w2(t − 1)…,wm(t − 1)g

(2)

By incorporating the predictions of individual models over

previous w time steps, the state s(t) captures the temporal

dynamics of ocean variables, allowing the agent to better

understand changes in the environment. Additionally, including

historical model weights provide insight into each model’s

importance under varying conditions. This historical weight

information enables the agent to evaluate how past decisions have

influenced the ensemble result, leading to more informed weight

allocations at the current time step.

In this model ensemble task, the action represents the agent’s

decision at each time step t, specifically, the determination of

weights assigned to each base model. Therefore, the action a(t)

is defined as a vector of weights for the m models, as given in

Equation 3:
FIGURE 1

Basic reinforcement learning framework.
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a(t) = w1(t),w2(t),…,wm(t)f g (3)

Within this framework, the reward function is based on the

relative error of the model ensemble, as formulated in Equation 4:

r(t) = − log 1 +
Err(t) − BErr(t)
b · BErr(t) + e

� �
(4)

where Err(t) denotes the error of the ensemble model at time t,

BErr(t) represents the error of the best-performing base model at

time t, b is a scaling factor set to 2, and e is a small constant set to

0.05 to prevent numerical instability when BErr(t) is close to zero.

The choice of b and e is guided by the need to balance reward

scaling across datasets with varying error magnitudes. The inclusion

of the scaling factor b and the small constant e ensures consistency
in the reward function across scenarios, thereby avoiding

imbalanced rewards when dealing with datasets of varying scales

and characteristics. In addition, the logarithmic transformation of

the relative error helps stabilize reward variations, reducing sharp

fluctuations, and promoting smoother, more gradual policy

adjustments, and thus enhances training stability and support

better model convergence.

By comparing the performance of the ensemble model with the

best base model, the relative error encourages the ensemble to

achieve higher accuracy than individual models. When the

ensemble model’s error exceeds that of the best-performing base

model (Err(t) > BErr(t)), the reward becomes negative, penalizing

the policy network. This penalty intensifies as the difference

between Err(t) and BErr(t) increases, prompting the network to

adjust the weights of the base models to minimize the overall error

of the ensemble. Conversely, when the ensemble model’s error is

lower than that of the best-performing base model (Err(t) < BErr

(t)), the reward becomes positive, motivating the policy to maintain

or further optimize its current strategy.

With the state, action, and reward defined for the reinforcement

learning model, an optimization algorithm can be adopted to

establish the policy of ensemble model. In this study, the soft

actor-critic (SAC) algorithm, a widely used actor-critic method,

was employed. The core innovation of SAC lies in introducing

entropy regularization to the standard actor-critic framework

(Haarnoja et al., 2018). While the traditional actor-critic

approaches focus solely on maximizing cumulative rewards, SAC

aims to maximize both expected cumulative rewards and policy

entropy, balancing exploration and exploitation. The entropy term

in SAC encourages the agent to maintain a degree of randomness

during exploration, preventing the policy from converging

prematurely to local optima. Additionally, to mitigate potential

overestimation of Q-value when using a single critic network, SAC

employs two separate critic networks for more reliable

reward estimation.

The training process of the SAC algorithm proceeds as follows

(Haarnoja et al., 2018):

Step 1. Initialize the policy network pq(a|s), two critic networks

Qj1(s, a) andQj2(s, a), and two target critic networksQTj1(s, a) and

QTj2(s, a).

Step 2. At each time step, the current policy generates a set of

experience data (s, a, r, s’), which is stored in an experience replay
Frontiers in Marine Science 05
buffer, where s is the current state, a is the chosen action, r is the

received reward, and s’ is the next state.

Step 3. A random batch of data (s, a, r, s′) is selected from the

experience buffer to update the actor and critic networks.

Step 4. Minimize the following loss function to update the two

critic networks, as defined in Equation 5:

Lj =
1
2No

N

i=1
½Qjj(s

0
i, a

0
i) − Qtargeti�2, (j = 1, 2) (5)

where N is the batch size, and Qtargeti is computed using target

critic networks, as expressed in Equation 6:

Qtargeti = ri + g min (QjT1
(s0i, a

0
i),QjT2

(s0i, a
0
i)) − a log p(a0i j s0i) (6)

Here, g is the discount factor and is set to 0.99 in the present

study, and a is the weight for the entropy term. The entropy term

alnp(a′∣s′) maintains a degree of randomness in the policy’s

actions. Note that target critic networks are employed to mitigate

the issue of overestimation, which is common in value-based

reinforcement learning methods. By softly updating the

parameters of the target critic networks, the algorithm ensures

stable value estimation and improves training stability.

Step 5. The policy network is optimized by maximizing the

expected cumulative reward, as defined in Equation 7.

J(pq) = E o
i
g (r(s0i, a

0
i) + a log pq(a

0
i j s0i))

" #
(7)

In practice, this optimization can be rewritten as minimizing

the objective function, as formulated in Equation 8.

Lp =
1
No

N

i=1
a log p(ai j si) −min (QjT1

(si, ai),QjT2
(si, ai))

� �
(8)

Step 6. Minimize the following loss function to adjust the value

of a, as expressed in Equation 9:

La =
1
No

N

i=1
½−a log p(ai j si) − aH� (9)

where ℋ denotes the target entropy.

Step 7. The parameters of the critic networks are softly

transferred to the target Q networks using the following update,

as described in Equation 10:

jTj = hjj + (1 − h)jTj (10)

where h is the smoothing parameter and is set to 0.001 in the

present application.

Step 8. Steps 3 through 7 are repeated until the policy converges.

To provide a comprehensive understanding of the parameter

update process in the SAC-based actor-critic model, we have

included a step-by-step schematic flowchart in Figure 2.

Figure 3 provides a detailed visualization of the actor and critic

networks. The critic network processes state and action inputs

separately before combining them through concatenation and an

LSTM layer for Q-value estimation. On the other hand, the actor

network utilizes an LSTM layer to capture temporal features,

followed by separate pathways for calculating the mean and
frontiersin.org
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standard deviation of the action distribution, ensuring a stochastic

yet optimized policy. In the present application, the training process

was conducted over 3000 episodes, with 1000 steps per episode.
3 Data description

To evaluate the effectiveness and applicability of the

reinforcement learning-based model ensemble algorithm in ocean

wave predictions, two distinct long-term wave field datasets along

China’s coastline were used as base model outputs for the ensemble.
Frontiers in Marine Science 06
These datasets were previously simulated using SWAN models by

Yang et al. (2022) and Gong et al. (2022). The ERA5 reanalysis

dataset was used as the reference standard. ERA5 is the fifth-

generation reanalysis product developed by the European Centre

for Medium-Range Weather Forecasts. Utilizing a four-

dimensional variational analysis system, ERA5 integrates a wide

range of measurements from multiple sources to enhance the

accuracy and reliability of its data. The temporal and spatial

resolutions for ocean waves are 1 hour and 0.5°×0.5°, respectively.

ERA5 has been widely used as a reference dataset for wave

characteristics analysis (Liu et al., 2024; Zhao J. et al., 2024). The
FIGURE 2

Parameter update process in the SAC-based actor-critic model.
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study area focuses on the coastal regions of China, outlined by the

red boundary in Figure 4. This area includes the Yellow Sea, East

China Sea, and the northern part of the South China Sea, extending

from the Beibu Gulf to the Bashi Strait.

The SWAN-I model, established by Gong et al. (2022),

incorporates typhoon effects by combining wind fields generated

from a typhoon dynamical model with CFSR/CFSv2 reanalysis

winds, weighted appropriately to capture both the intense wind

conditions near typhoon centers and broader atmospheric patterns.

This model features a two-layer nested structure, with the outer

layer covering 105°E−140°E and 10°N−41°N, and a second layer

covering 118°E−125°E and 24°N−30°N at a spatial resolution of

1′×1′. The second layer receives open boundary conditions from the

outer layer. In wave field simulations, the SWAN-I model accounts

for wave breaking, including whitecapping, bottom friction, and

nonlinear interactions across both shallow and deep waters. The

model operates at a temporal resolution of 20 minutes, producing

simulation outputs every 3 hours.

The SWAN-II model, developed by Yang et al. (2022), includes a

parameter sensitivity analysis based on observational data, with a

primary focus on factors such as wind field and energy dissipation

processes like whitecapping dissipation and bottom friction. This

analysis enabled optimized adjustments to the model. The SWAN-II

model uses an unstructured grid with a resolution ranging from

0.0241° to 0.3927°, and bathymetric data from the ETOPO1 global
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dataset at a resolution of 1′. Model settings include a two-dimensional

nonstationary mode with a maximum of five iterations per time step.

The wave spectrum is represented by the JONSWAP spectrum, with

ERA5 wind data serving as the driving wind field. The open ocean

boundary conditions are driven by IOWAGA data from the French

Research Institute for Exploitation of the Sea, covering variables such

as significant wave height, peak wave period, peak wave direction, and

directional spreading coefficient. The computational time step is set at

10 minutes, with hourly outputs of wave parameters at each node.

The SWAN-I and SWAN-IImodels differ significantly in terms of

wind field input, grid resolution, and typhoon coupling methods.

Specifically, SWAN-I couples a typhoon numerical model with

reanalysis wind data to better capture wind conditions, whereas

SWAN-II uses observational data for parameter optimization. These

diverse sources and configurations provide a valuable basis for testing

the reinforcement learning algorithm’s ability to handle inconsistent

data sources, complex environments, and long time-series data,

thereby verifying its robustness and applicability in ocean simulations.

To ensure consistency across the SWAN-I, SWAN-II, and

ERA5 reanalysis datasets, spatial and temporal resolutions were

aligned. Spatially, data from both SWAN models were interpolated

to match the ERA5 grid using two-dimensional linear interpolation.

Temporally, data points at 0:00, 3:00, 6:00, 9:00, 12:00, 15:00, 18:00,

and 21:00 were selected for analysis. Significant wave height data

from numerical simulations conducted between 2011 and 2016
FIGURE 3

Network architecture of the actor-critic model ((A): critic network; (B): actor network).
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were used, with data from 2011 to 2015 serving as the training

dataset and data from 2016 as the validation dataset.
4 Results and discussion

4.1 Performance evaluation of the
reinforcement learning-based model
ensemble algorithm

To evaluate the performance of the reinforcement learning-based

model ensemble algorithm, a systematic analysis was conducted using

the test dataset from 2016, comparing the model ensemble algorithm

and the base models. Three performance metrics, the root mean

square error (RMSE), mean absolute error (MAE), and bias (BIAS),

were calculated for this assessment. In this study, BIAS is defined as

the difference between the ERA5 reanalysis data and the model

predictions, where a positive BIAS indicates that the model

underestimates significant wave height, while a negative BIAS

indicates overestimation. These metrics provide a comprehensive

evaluation of each model’s predictive accuracy and ability to simulate

wave fields, highlighting their strengths and limitations in handling

complex ocean environment. Figures 5–7 show the spatial

distribution of RMSE, MAE, and BIAS, respectively.

The RMSE comparison in Figure 5 indicates that the model

ensemble algorithm consistently achieves lower RMSE values across
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the entire study area compared to the base models. High RMSE

values are particularly evident in SWAN-I and SWAN-II models

along the southern and eastern coastal regions of China, especially

near Taiwan Island and parts of the South China Sea, where RMSE

exceeds 0.6 meters. However, through the integration of both base

models, the model ensemble algorithm effectively reduces these

errors, resulting in more uniform RMSE values across the coastal

region and significantly improving prediction accuracy. This

suggests that the model ensemble algorithm is better suited to

handle the diverse and complex ocean conditions in these areas.

The MAE comparison in Figure 6 further highlights the superior

performanceof themodel ensemble algorithm,whichconsistently yields

significantly lower MAE values across most regions compared to the

SWAN-I and SWAN-IImodels. In areaswith complex ocean dynamics,

such as theTaiwanStrait, the basemodels exhibitMAEvalues exceeding

0.15 meters. In contrast, the ensemble model reduces these errors, with

MAE values generally below 0.1 meters. This demonstrates the model

ensemble algorithm’s enhanced adaptability and its ability to provide

more consistent and accurate wave predictions. The improved capacity

of the model ensemble algorithm to capture wave variations across

different ocean conditions underscores its robustness and precision.

The BIAS comparison in Figure 7 reveals that both SWAN-I and

SWAN-II models exhibit significant biases in certain regions,

particularly in the South China Sea, indicating systematic

overestimation or underestimation of significant wave heights. The

SWAN-I model shows positive biases exceeding 0.2 meters in areas
FIGURE 4

Study area along China’s coastline, with the red line indicating the boundary of the study region.
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such as the eastern coast of Hainan Island and the southern region of

ShandongPeninsula, while the SWAN-IImodel displays negative biases

over a broader area. In contrast, the model ensemble algorithm

substantially reduces bias, with BIAS values close to zero in most

regions and a more uniform bias distribution. This demonstrates that

the model ensemble algorithm’s ability to mitigate systematic errors,

providingmore accurate estimates of wave characteristics under varying

spatiotemporal conditions.

Figures 8 and 9 further demonstrate the error reduction achieved

by the model ensemble algorithm in terms of RMSE and MAE,

respectively. The error reduction percentage z is calculated as shown

in Equation 11:

z =
sbase − sensemble

sbase
� 100% (11)

where sbase and sensemble represent the errors of base models

and the model ensemble algorithm, respectively.
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Figures 8A and Figures 8AB present the RMSE error reduction

percentage achieved by the model ensemble algorithm relative to

the SWAN-I and SWAN-II models, respectively. The results

indicate that the model ensemble algorithm achieves significant

error reductions across most regions. Notably, in parts of the

South China Sea, the error reduction percentage exceeds 30%.

Along the southeastern coast, the RMSE reduction surpasses 40%

compared to both base models. These findings highlight the model

ensemble algorithm’s ability to integrate the strengths of

individual models, leading to a substantial decrease in

prediction errors.

Similarly, Figures 9A and B illustrate the MAE error reduction

percentage relative to the SWAN-I and SWAN-II models, respectively.

Consistent with the RMSE results, the model ensemble algorithm

demonstrates significant improvements in MAE across most regions.

In many areas, the MAE reduction exceeds 50%, with reductions

surpassing 80% in parts of the Taiwan Strait. This underscores the
FIGURE 5

Spatial distribution of RMSE for SWAN-I model (A), SWAN-II model (B), and the model ensemble algorithm (C).
FIGURE 6

Spatial distribution of MAE for SWAN-I model (A), SWAN-II model (B), and the model ensemble algorithm (C).
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model ensemble algorithm’s capability to provide more stable and

accurate predictions of wave variations, particularly in regions with

complex wave dynamics.

The comparative analysis reveals that the reinforcement

learning-based model ensemble algorithm consistently

outperforms the base models on the test dataset. By combining

the strengths of the SWAN-I and SWAN-II models, the model

ensemble algorithm improves performance across diverse regions

and ocean conditions. It not only reduces prediction errors but also

substantially mitigates systematic biases. These results demonstrate

that the model ensemble algorithm offers superior robustness and

predictive accuracy when dealing with complex and dynamic ocean
Frontiers in Marine Science 10
environments, making it a reliable tool for real-world applications

such as marine engineering and disaster prevention.
4.2 Performance evaluation across
different significant wave height ranges

To comprehensively assess the performance of the reinforcement

learning-based model ensemble algorithm under various ocean

conditions, this study analyzed its prediction accuracy within

different significant wave height (Hs) ranges. Specifically, the

significant wave heights were categorized into three ranges:
FIGURE 7

Spatial distribution of BIAS for SWAN-I model (A), SWAN-II model (B), and the model ensemble algorithm (C).
FIGURE 8

Spatial distribution of RMSE reduction percentage for model ensemble algorithm relative to SWAN-I (A) and SWAN-II (B) models.
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Fron
• Low Hs: 0−1 m

• Moderate Hs: 1−2 m

• High Hs: >2 m
This classification provides deeper insights into the algorithm’s

performance and applicability across diverse marine environments,

enabling an evaluation of its prediction accuracy at varying significant

wave height levels. Such an analysis is crucial for understanding the

algorithm’s adaptability and reliability under calm conditions,

moderate sea states, and extreme weather scenarios. This evaluation

is particularly relevant for practical applications, including ocean

condition forecasting and the assessment of offshore operational

safety. Figure 10 shows the spatial distribution of RMSE for the

SWAN-I model, SWAN-IImodel, and the model ensemble algorithm

within each significant wave height category.

Under low significant wave height conditions, notable

differences in error distribution are observed between the SWAN-

I and SWAN-II models, particularly near Taiwan Island. In this

region, the SWAN-I model exhibits significant errors, while the

SWAN-II model shows comparatively lower RMSE values. Overall,

the model ensemble algorithm demonstrates a clear advantage in

the low significant wave height range, consistently achieving lower

errors than both base models. This improvement is particularly

evident near Taiwan Island and along the southeastern coast of

China, underscoring the model ensemble algorithm’s ability to

reduce errors and provide more accurate predictions.

For moderate significant wave heights, errors increase for both

the SWAN-I and SWAN-II models, especially along China’s eastern

coastline, where RMSE values are relatively high. In certain areas,

such as the coastal regions of Guangxi and Shandong, the SWAN-II

model outperforms the SWAN-I model with lower RMSE values.
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However, the model ensemble algorithm significantly reduces errors

across all regions, particularly in the eastern and southern nearshore

areas of China. This demonstrates the model ensemble algorithm’s

stability and accuracy in handling moderate wave height conditions.

In high significant wave height scenarios, both the SWAN-I and

SWAN-II models exhibit increased errors across the study area, with

RMSE values exceeding 0.5 meters in most regions. This can be

attributed to the sensitivity of high wave conditions to boundary

settings and the influence of nonlinear processes. While the model

ensemble algorithm also experiences some errors under these

conditions, its performance is generally superior to that of the SWAN-

I and SWAN-II models. Notably, in the southern and eastern coastal

regions of China, the model ensemble algorithm achieves lower errors,

indicating its ability to maintain accuracy and enhance predictive

performance even in challenging high wave scenarios.

The analysis across these three significant wave height ranges

highlights that the model ensemble algorithm consistently

outperforms the SWAN-I and SWAN-II models under low,

moderate, and high wave conditions. This is particularly evident

in regions with substantial error, such as near Taiwan Island. These

improvements demonstrate the model ensemble algorithm’s

capability to effectively integrate multiple data sources, reduce

prediction errors, and enhance overall accuracy.
4.3 Performance evaluation under different
base model error scenarios

To assess the performance of the model ensemble algorithm

under varying base model error conditions, this study analyzed its
FIGURE 9

Spatial distribution of MAE reduction percentage for model ensemble algorithm relative to SWAN-I (A) and SWAN-II (B) models.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1534622
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Huang et al. 10.3389/fmars.2025.1534622
behavior across different error combinations of the base models.

Two scenarios were defined:
Fron
• Case 1: The error of the SWAN-I model is greater than that

of the SWAN-II model.

• Case 2: The error of the SWAN-I model is less than that of

the SWAN-II model.
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This classification enables a detailed analysis of how the model

ensemble algorithm’s performance varies depending on the relative

accuracy of the base models. It also serves to further validate the

model ensemble algorithm’s robustness and predictive capability

under diverse error conditions. Figures 11, 12 present the RMSE

distribution for the SWAN-I model, SWAN-II model, and model

ensemble algorithm across these two base model error scenarios.
FIGURE 10

Spatial distribution of RMSE for the SWAN-I model (A–C), the SWAN-II model (D–F), and the model ensemble algorithm (G–I) across different
significant wave height ranges.
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The RMSE distribution for the model ensemble algorithm

shows significant improvements in both scenarios. In Case 1, the

model ensemble algorithm substantially reduces RMSE in areas

where the SWAN-I model has high errors by effectively

incorporating the superior performance of SWAN-II to minimize

overall prediction errors. In Case 2, the model ensemble algorithm

similarly achieves notable RMSE reductions, particularly in regions

near Taiwan Island where the SWAN-II model exhibits high errors,

by optimally weighting the contributions of both base models.
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The comparison investigation reveals that the model ensemble

algorithm consistently demonstrates robustness when faced with

varying base model errors. Regardless of whether SWAN-I or

SWAN-II exhibits higher errors, the model ensemble algorithm

effectively optimizes predictions, achieving significantly lower RMSE

across different regions. This indicates that the reinforcement learning-

based ensemble algorithm can efficiently handle large discrepancies in

base model performance. By effectively integrating the strengths of the

individual models, the model ensemble algorithm mitigates the impact
FIGURE 11

Spatial distribution of RMSE for the SWAN-I (A) model, the SWAN-II (B) model, and the model ensemble algorithm (C) model under Case 1.
FIGURE 12

Spatial distribution of RMSE for the SWAN-I (A) model, the SWAN-II (B) model, and the model ensemble algorithm (C) model under Case 2.
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of high errors from any single base model, leading to improved

prediction accuracy and reliability.

5 Conclusions

In this study, we proposed a reinforcement learning-based

model ensemble algorithm aimed at improving the accuracy and

robustness of ocean variable predictions by combining the outputs

of multiple base models. The primary objective was to dynamically

adjust the weights of each model, allowing the ensemble to utilize

their respective strengths under varying conditions and generate

more stable and precise predictions. By integrating the soft actor-

critic reinforcement learning algorithm, the ensemble model

adaptively optimizes the weights of the base models based on

historical data and current environmental conditions.

To validate the proposed algorithm, two base models, SWAN-I

and SWAN-II, were employed, focusing on China’s coastal regions,

with ERA5 reanalysis data serving as the reference dataset. The

results demonstrated that the model ensemble algorithm

consistently outperformed the individual base models on the test

dataset, showing significant improvements across multiple metrics,

including RMSE, MAE, and BIAS.

Performance evaluation across different significant wave height

ranges revealed that the model ensemble algorithm achieved superior

predictive accuracy under low, moderate, and high wave height

scenarios. This advantage was particularly evident in dynamic regions

such the Taiwan Strait, where wave dynamics are highly complex.

Furthermore, under varying base model error conditions, the model

ensemble algorithm effectively reduced overall prediction errors through

adaptive weight assignment, further highlighting its robustness.

This study demonstrates that reinforcement learning-based

model ensemble algorithms provide significant advantages when

dealing with complex ocean data. The proposed approach not only

enhances the accuracy of wave field predictions but also

substantially reduces systematic biases, showing high adaptability

to diverse environmental conditions. Future research could extend

this method to a broader range of ocean variables and explore other

deep reinforcement learning techniques to further improve

predictive performance and model generalization.
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