
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Weimin Huang,
Memorial University of Newfoundland,
Canada

REVIEWED BY

Zheqi Shen,
Hohai University, China
Zhenhua Zhang,
Ministry of Natural Resources, China

*CORRESPONDENCE

Shuai Guo

guoshuai@qut.edu.cn

Meijuan Jia

jiameijuan@dqnu.edu.cn

RECEIVED 26 November 2024

ACCEPTED 19 May 2025
PUBLISHED 18 June 2025

CITATION

Jia M, Mao X, Guo S and Li X (2025)
Retrieval algorithm based on locally
sensitive hash for ocean observation data.
Front. Mar. Sci. 12:1534900.
doi: 10.3389/fmars.2025.1534900

COPYRIGHT

© 2025 Jia, Mao, Guo and Li. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 18 June 2025

DOI 10.3389/fmars.2025.1534900
Retrieval algorithm based
on locally sensitive hash for
ocean observation data
Meijuan Jia1*, Xiaodong Mao1, Shuai Guo2* and Xin Li1

1College of Computer Science and Information Technology, Daqing Normal University,
Daqing, China, 2College of Science, Qingdao University of Technology, Qingdao, China
As an important technology for eliminating redundant data, data deduplication

significantly impacts today’s era of explosive data growth. In recent years, due to

the rapid development of a series of related industries, such as ocean

observation, ocean observation data has also shown a speedy growth trend,

leading to the continuous increase in storage costs of ocean observation

stations. Faced with the constant increase in data scale, our first consideration

is to use data deduplication technology to reduce storage costs. While using

duplicate data deletion technology to achieve our goals, we also need to pay

attention to some of the actual situations of ocean observation stations. The

fingerprint retrieval process in duplicate data deletion technology plays a key role

in the entire process. Therefore, this paper proposes a fast retrieval strategy

based on locally sensitive hashing. The fast retrieval algorithm based on locally

sensitive hashing can enable us to quickly complete the retrieval process in

duplicate data deletion technology and achieve the goal of saving computing

resources. At the same time, we proposed a bucket optimization strategy for

retrieval algorithms based on locally sensitive hashing. We utilized visual

information to address the bottleneck problem in duplicate data deletion

technology. At the end of the article, we conducted careful experiments to

compare hash retrieval algorithms and concluded the strategy’s feasibility.
KEYWORDS

local sensitive hashing, ocean observation data, duplicate data deletion technology, fast
retrieval algorithm, storage location
1 Introduction

As is well known, today’s society is filled with a large amount of data and has entered the

era of big data. At the same time, the scale of data generated by various industries has also

exploded. According to current research reports, IDC estimates that the storage capacity of

the global market will grow exponentially from 33ZB to 173ZB from 2018 to 2025 (Reinsel

et al., 2017) As various industries enter the era of big data, the scale of data generated by

marine-related industries is unprecedentedly large. The existing marine data includes

marine surveying, island monitoring, underwater exploration marine fishery operations,

marine fishery operations, marine buoy monitoring, marine scientific research, oil and gas
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fmars.2025.1534900/full
https://www.frontiersin.org/articles/10.3389/fmars.2025.1534900/full
https://www.frontiersin.org/articles/10.3389/fmars.2025.1534900/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2025.1534900&domain=pdf&date_stamp=2025-06-18
mailto:guoshuai@qut.edu.cn
mailto:jiameijuan@dqnu.edu.cn
https://doi.org/10.3389/fmars.2025.1534900
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2025.1534900
https://www.frontiersin.org/journals/marine-science

Jia et al. 10.3389/fmars.2025.1534900
platform environmental monitoring, satellite remote sensing

monitoring, etc., forming a wide range of marine observation and

monitoring systems, accumulating a large amount of marine natural

science data, including on-site observation and monitoring data,

marine remote sensing data, numerical model data, etc. With the

rapid advancement of ocean informatization and the increasing

sophistication of sensing technologies, ocean data volumes have

grown exponentially. For instance, since the launch of the Argo

program, over 10,000 profiling floats have been deployed, with

approximately 3,800 currently operational in global oceans (Riser

et al., 2016) By 2016, Argo-generated data had already surpassed the

cumulative ocean observation dataset of the entire 20th century, and

both its sampling density and vertical coverage continue to expand.

Similarly, as of 2012, the U.S. National Oceanic and Atmospheric

Administration (NOAA) hosted annual data archives exceeding 30

petabytes, aggregating over 3.5 billion daily observations from a

diverse array of sensor systems (Huang et al., 2015) In recent years,

revolutionary changes have occurred in the observation equipment

used for observing ocean data. The scale of ocean data represented

by satellite remote sensing data is exploding, and the growth rate of

ocean observation data is also much faster than most industries. At

present, when ordinary people face data growth, they tend to think

of increasing storage capacity to solve the problem. However, when

we face huge amounts of data, it is unrealistic to solve the problem by

increasing storage capacity. Therefore, people usually choose to

improve storage efficiency so that more data can be stored in

limited storage space. When faced with such problems, people

usually think of compression technology first. However,

compression technology retrieves the same data block through

string matching, mainly using string matching algorithms and

their various variants, which achieve precise matching.

Implementing precise matching is more complex but more

accurate and effective for eliminating fine-grained redundancy.

Data deduplication (Nisha et al., 2016) technology uses the data

fingerprint of data blocks to find identical data blocks, and the

fingerprint of data blocks is calculated using a fuzzy matching hash

function. Fuzzy matching is relatively simple and more suitable for

large granularity data blocks, but its accuracy is lower. If we want to

save storage space on datasets obtained through ocean observation,

we should prioritize duplicate data deletion technology. Data

deduplication technology eliminates redundant data in a dataset

by removing duplicate data and retaining only one copy. Therefore,

data deduplication technology can bring huge practical benefits

when facing such problems, such as effectively controlling the

rapidly growing data scale, saving sufficient storage space,

improving storage efficiency, saving total storage and

management costs, and meeting ROI, TCO, etc (Nisha et al., 2016).

The entire process of data deduplication technology is to cut the

input file into data blocks and determine whether the data block is a

duplicate by querying the fingerprint table in memory. Data

deduplication technology can be divided into five stages,

including data block segmentation, fingerprint calculation of data

blocks, indexing of hash tables, compression techniques, and data
Frontiers in Marine Science 02
management in various storage systems. The compression stage is

an optional operation, as it is only applicable to some more

traditional compression methods. Data deduplication plays a

crucial role in the final stage of storage management. The above

explanation shows us that block segmentation and retrieval are the

two core stages in data deduplication technology. How to segment

data blocks reasonably will seriously affect the final data

deduplication rate. However, the focus of this article is on

another aspect - retrieval. How to quickly retrieve whether there

are data blocks in the fingerprint table will greatly affect the

efficiency of the entire data deduplication system. We will save

much time if we can achieve fast retrieval. At the same time,

reducing the number of comparisons within the fingerprint table

will directly affect the computational resource consumption of the

entire data deduplication system when facing large-scale data.

At present, there are many research studies on retrieval in

duplicate data deletion technology, including Bloom filters, which

are used to address challenges in the retrieval process (Lu et al.,

2012) HT Indexing accelerates the process by selecting champions,

or Sparse Indexing solves real-world problems (Lillibridge

et al., 2009).

In this study, we aim to save more resource consumption in the

retrieval process of data deduplication technology. Therefore, to

address the existing challenges, we propose a fast retrieval algorithm

based on locally sensitive hashing (Bucket index), which can reduce

the number of comparisons while saving computational resources.

B-index is a fast retrieval algorithm based on locally sensitive

hashing, which puts similar data blocks into the same bucket.

When a data block is passed in, it only needs to be retrieved from

the bucket to which the data block belongs without the need to

retrieve the entire fingerprint table, thus reducing resource

consumption during the retrieval process. The contributions of

this article are as follows:
• We propose a fast retrieval algorithm based on locally

sensitive hashing, which achieves fast retrieval by splitting

and storing many data blocks during the retrieval process.

• We propose a bucket optimization strategy under locally

sensitive hashing, which continuously optimizes retrieval

efficiency by adjusting the number of buckets when facing

different problems.

• Finally, we proposed a strategy for selecting fingerprint

tables when faced with ocean observation data.
The content of the remaining chapters of this article is as

follows: In Chapter 2, we will provide a detailed introduction to

the background of duplicate data deletion technology and the

motivation behind this paper. In Chapter 3, we will elaborate on

various research related to this paper. Chapter 4 will focus on the

fast retrieval algorithm based on locally sensitive hashing. In

Chapter 5, we will verify our hypothesis through detailed

experiments. In the final chapter, we will make plans for

future research.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1534900
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Jia et al. 10.3389/fmars.2025.1534900
2 Background and motivation

In the second part, we will briefly introduce the process of data

deduplication technology, focus on the importance of retrieval, and

briefly introduce other retrieval algorithms. At the end of this

section, we will introduce the motivation behind our work.
2.1 The dilemma of duplicate data deletion
technology in the retrieval process

When analyzing a problem, the first thing we need to do is to

understand where the problem lies. When a data stream is fed into a

data deduplication system, we first need to perform a chunk

operation on the data stream, cutting it into data blocks of

different sizes. How to chunk is based on the content of the data

stream, so we can understand that the same content will produce

the same data blocks. The first definition of this part was mentioned

in the sliding window-based chunk algorithm 1. After the data

blocks are cut, we assign fingerprints to each. Each different data

block has a different fingerprint. After that, the duplicate data

deletion system will compare the fingerprints of each data block

with the existing fingerprints in the memory table. In a duplicate

data removal system, querying whether a data block is duplicate is

done by storing the fingerprint of the data block in a fingerprint

table in memory. After cutting out a new data block, the fingerprint

of the new data block is searched in the fingerprint table. When the

fingerprint of the new data block exists in the fingerprint table, it

will be judged as a duplicate data block. Conversely, if the data block

does not appear in the fingerprint table, the fingerprint of the data

block will be stored in the fingerprint table, and the data block will

be saved as shown in Figure 1. While we understand the basic

process, we must also be aware of the disk bottleneck issue in data

deduplication technology.

Assuming the average size of data blocks is 8KB, the generated

fingerprints are approximately 20GB. For 8TB of data, nearly 20GB

of fingerprint storage will be required. If all these fingerprints are
Frontiers in Marine Science 03
stored in memory, it will bring a very serious memory burden. At

the same time, in a system with an average throughput of 100MB/s,

each retrieval will bring a huge burden and increase the system

overhead. Even if you use cache memory to accelerate index access,

there will not be much change. This is because fingerprint

generation is random, and traditional cache memory has a low

hit rate and work efficiency. Therefore, in response to the above

issues, some people store the fingerprint table in external storage.

However, this approach will lead to frequent access to external

storage, thereby reducing efficiency. Some people also choose to put

some fingerprint tables in memory and some in external storage,

but choosing which ones to put in memory and which to put in

external storage is not appropriate. Therefore, to improve efficiency,

it is better to accelerate the indexing speed directly. Because no

matter which method is chosen to avoid the disk bottleneck, it

cannot escape the need to retrieve the fingerprint table.
2.2 The particularity of ocean observation
data

At this point, we can foresee the problem we are facing. If the

fingerprint table becomes larger, we will face great difficulties

retrieving it. As a result, if the fingerprint table continues to grow,

it will also greatly burden the memory if we keep it in memory.

Considering the actual situation we will face, that is, the storage

method of ocean observation stations, ocean observation data

differs from ordinary data, and most ocean observation data is

time series data. Some characteristics need to be understood.

One of them is the existence of non-renewable primitiveness; as

the ocean constantly changes, the elemental data of ocean surveys has

distinct characteristics of non-renewable primitiveness. Ocean

measurement data is a first-hand source of original information

obtained from on-site measurements, organization, and calibration

by ocean survey ships. The data of ocean remote sensing, whether it is

infrared or visible light observations of scanning imaging or

microwave measurements, the measured data (including element

data inverted according to a certain pattern) is specific in time and
FIGURE 1

Process diagram of duplicate data deletion system.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1534900
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Jia et al. 10.3389/fmars.2025.1534900
space, reflecting the characteristics of ocean elements under specific

spatiotemporal conditions; Other data such as ship reports also have

similar characteristics; Although numerical simulation product data

can be obtained repeatedly under certain conditions, a certain type of

product data can still be considered as special original obtained data,

and therefore also considered as having originality. Moreover,

certainty, this characteristic is easy to understand. Certainty refers

to the very accurate observation of ocean element data, such as the

measurement accuracy of water temperature and depth and the

measurement time and space, which are all very precise. There are

also many categories included in ocean observation data, such as the

inferential, fuzzy, and multi-level nature of ocean element data. We

mentioned the characteristics of ocean observation data, and

ultimately, the most important point is that ocean observation data

may contain non-renewable data after observation. Therefore, storing

each observation is crucial, and the disk space challenge caused by

storing a large amount of data must be addressed. So, when facing

practical problems, we need to consider the various bottlenecks of

duplicate data deletion technology and improve duplicate data

deletion technology according to the characteristics of ocean

observation data.
2.3 Motivation

On this occasion, we have learned about the principle of data

deduplication technology and the particularity of ocean observation

data. Therefore, we consider applying data deduplication

technology to ocean observation stations. Of course, we have also

done this. Before this research, we optimized the segmentation

module of data deduplication technology and finally applied it to

the data deduplication system of ocean observation stations.

However, the research at that time mainly aimed to improve the

data deduplication rate and neglected some retrieval efficiency.

Therefore, we will make up for this overlooked efficiency in this

article. The data deduplication system is coherent, so we hope to

recover the efficiency lost when we segment it in the subsequent

retrieval process. At the same time, we learned about the conflicting

issues in the retrieval process, such as how to choose between

fingerprint tables in memory and whether to store them in memory

or external storage. Of course, no matter how we choose, improving

the efficiency of retrieval is crucial because, no matter where it is

placed, improving the efficiency of retrieval will accelerate the

operation efficiency of the entire system. Therefore, this article

chooses algorithms that can accelerate indexing efficiency, and

regardless of which method is chosen, the ultimate goal is to

improve efficiency. At the same time, we consider that a portion

of the fingerprint tables can be stored in memory and another

portion in external storage, and how to make a decision is also the

main research direction of this article. This article will divide the

ocean observation data based on certain characteristics to ensure

that the fingerprint tables in memory can receive more access times

to improve the efficiency of the entire system. In summary, to

address the various problems in the retrieval process of existing

duplicate data removal systems, this paper proposes a fast indexing
Frontiers in Marine Science 04
method based on locally sensitive hashing to solve the problem,

which can accelerate the efficiency of the entire duplicate data

removal system through fast indexing. At the same time, in-depth

research has been conducted on the storage of fingerprint tables to

ensure the improvement of the speed of duplicate data deletion

technology in the retrieval process.
3 Related work

When we learn about data deduplication technology, we first

need to understand that the original purpose of CDC was to reduce

network traffic consumption when transferring files. Spring and

Wetherall (2000) designed the first block-based algorithm using the

Border method (Broder, 1997) with the aim of better identifying

redundant network traffic and reducing consumption.

Muthitacharoen et al. (Spring and Wetherall, 2000) proposed a

CDC-based file system called LBFS, which enriches the CDC chunk

algorithm to reduce and eliminate duplicate data in lowbandwidth

network file systems. You et al. (2005) used the CDC algorithm to

reduce data redundancy in archive storage systems. However, due

to the time-consuming calculation of Rabin fingerprints in the CDC

algorithm, which results in a waste of computing resources, many

methods have been proposed to replace Rabin to accelerate the

speed of CDC (Xia et al., 2014; Agarwal et al., 2010; Zhang et al.,

2015) The encryption function required in the fingerprint

recognition process (such as Rabin) can be accelerated through

parallel strategies (Xia et al., 2019) Moreover, using the modified

version of AE (Zhang et al., 2016) to accelerate the time required for

calculating fingerprints.

The retrieval problem in the face of duplicate data deletion

technology can be roughly divided into global and partial indexing.

The global index maintains the metadata of all stored data blocks.

Searching for the fingerprint of each new data block in the index can

identify all duplicates and achieve the best data de-duplication rate.

Due to the requirement for high search throughput, many studies

have focused on improving the read performance of full indexes.

With the help of Bloom filters and index segment caching, DDFS

(Zhu et al., 2008) reduces the large amount of storage reads required

for data block fingerprint lookup. SkimpyStash (Debnath et al.,

2011) stores the metadata of data blocks in a flash and indexes them

in a memory hash table. Bloom filters are used to improve reading

performance. Considering the location of data deletion in the

duplicate data removal system, ChunkStash (Debnath et al., 2010)

buffers index metadata in memory until it reaches the size of a flash

page. Index lookup can benefit from page-based IO, which

preserves the location of de-duplicated data blocks. BloomStore

(Lu et al., 2012) focuses on improving memory efficiency by using

bloom filters to eliminate unnecessary flash reads. Due to the read-

intensive search workload in the index of data de-duplication,

BloomStore can avoid the flash reading of non-existent data block

fingerprints by caching Bloom filters and parallel checking

Bloom filters.

Although this technology uses different optimizations to reduce

storage reads of global indexes, the efficiency of storage reads
frontiersin.org

https://doi.org/10.3389/fmars.2025.1534900
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Jia et al. 10.3389/fmars.2025.1534900
increases with the size of stored data. To address this issue, partial

indexing is proposed, effectively reducing storage reads by searching

only a small portion of the storage block. Another direction for

global indexing is partial indexing, whose basic idea is to search for

new data block fingerprints on a selected subset of stored data

blocks, thereby reducing the number of storage reads and increasing

throughput. According to observations, backup data from the same

source are usually highly similar (Wallace et al., 2012; Park and

Lilja, 2010) The new data block is deduplicated using a batch

processing method called Data Deduplication Window (DW). If

we store the metadata of stored data blocks in groups (called tuples)

in a “log”manner to maintain locality, we can find tuples that share

a certain number of blocks with tuples in DW. These shared blocks

are duplicated; the remaining data blocks are considered’ unique’.

The main goal of partial indexing is to index tuples in memory and

quickly select tuples that may overlap highly with tuples in DW.

Studies indicate that backup data from the same source generally

have highly similar characteristics (Wallace et al., 2012; Park and

Lilja, 2010) Therefore, partial indexing techniques are proposed. In

order to index all tuples using pure memory structures, partial

indexing selects a small portion of data block fingerprints from each

tuple as a representative (hook).

The memory’s fingerprint table (hook index) maintains the

mapping from hooks to their corresponding tuple addresses. After

accumulating a new batch of data blocks in DW, check the

fingerprint of the new data blocks in the hook index. If it matches

one or more hooks (hook hits), there is a high possibility that some

data blocks from the same tuple may also appear in the DW due to

the excellent positional location of the backup data. Sparse indexing

(Lillibridge et al., 2009) extreme binary (Bhagwat et al., 2009) SiLo

(Xia et al., 2011) and LIPA (Xu et al., 2019) all use data segments as

tuples. The duplicate data removal system generates a recipe based

on the order in which data blocks are generated in the input data

stream, strictly preserving the order of data blocks during duplicate

data removal, regardless of whether the data blocks are duplicates.

Sparse indexing calculates the hook hit rate for each tuple and

selects the tuple with the highest hook hit rate based on the

calculation. Extreme Binning (Bhagwat et al., 2009) is designed

for backup based on a single file. It uses the overall recipe of each file

as a tuple. When performing duplicate data deletion on a new file,

Extreme Binning selects recipe segments from the most similar files

and performs duplicate data deletion on the data blocks of the new

file based on the data blocks in the selected similar files. SiLo (Xia

et al., 2011) further extends extreme boxing by simultaneously

considering the similarity of files and the locality of blocks.

SiLo concatenates similar small files together as one data block

and divides large files into several data blocks. To perform duplicate

data deletion on a new data block, SiLo identifies the most similar

data block among existing data blocks. It performs duplicate data

deletion based on the data blocks in the block. LIPA (Xu et al., 2019)

uses reinforcement learning-based algorithms to determine the

similarity between recipe segments and data blocks in DW, thereby

achieving higher data deduplication rates. Meanwhile, in recent years,

countless technologies have combined distributed systems with data

deduplication. Among them, cluster-based sharding methods have
Frontiers in Marine Science 05
achieved considerable data deduplication efficiency on a single system

while supporting high throughput (Zhou et al., 2022) Moreover, a

system proposed to simultaneously perform client and server

duplicate data deletion when faced with forced duplicate data

deletion of many concurrent backup streams during peak backup

loads (Ammons et al., 2022) In recent years, there has also been a

problem of pushing duplicate data removal to the network edge. A

new distributed edge-assisted duplicate data removal (EF dedup)

framework has been proposed. Maintain a duplicate data removal

index structure between them using distributed key-value storage and

perform duplicate data removal within these clusters (Li et al., 2022)

These frameworks can effectively solve the contradictions of current

data deduplication technology. However, this project aims to shift the

focus back to the retrieval problem in data deduplication technology,

using machine learning-assisted fingerprint table retrieval in

combination with distributed operating systems and data

deduplication technology. To lay the foundation for subsequent

ocean observations in data storage.

Meanwhile, with the vigorous development of various industries

in recent years, the application of duplicate data deletion technology

is becoming increasingly widespread. The most notable among them

is the data deduplication technology in cloud storage (Mahesh et al.,

2020) However, there are also more security issues in cloud

computing, as PraJapanese et al. (Prajapati and Shah, 2022) made a

stunning statement about the security issues in data deduplication

technology. Even Yuan et al. (2020) proposed blockchain-based

duplicate data removal technology in the popular field of

blockchain. In addition to the challenges proposed by Azad et al.

At the same time, PG et al. (Shynu et al., 2020) proposed a solution to

the network edge problem (Al Azad and Mastorakis, 2022).
4 Fast retrieval algorithm based on
locally sensitive hash

This chapter will explore the retrieval part of the duplicate data

removal system. The retrieval part is the second most important

focus of the entire duplicate data removal system, and the retrieval

speed will directly determine the entire system’s efficiency.

Therefore, this article introduces a fast retrieval method aimed at

improving the entire system’s efficiency in terms of retrieval. In this

chapter, we will provide a detailed introduction to implementing a

retrieval algorithm based on locally sensitive hashing and the

optimization strategy for buckets. Finally, we will discuss how to

choose the storage of fingerprint tables based on the characteristics

of ocean observation data.
4.1 Fast retrieval algorithm based on locally
sensitive hash

In order to address the existing problems in the retrieval process

of the duplicate data removal system, this section proposes a fast

retrieval technique based on locally sensitive hashing. By extracting
frontiersin.org

https://doi.org/10.3389/fmars.2025.1534900
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Jia et al. 10.3389/fmars.2025.1534900
the similarity of data blocks and constructing multiple data buckets,

when similar data blocks appear, the data bucket can be quickly

selected and retrieved within the bucket, achieving a fast retrieval

function. In this section, we will first introduce the application of

locally sensitive hashing, then propose solutions based on existing

situations, and finally explain the entire idea of retrieval based on

locally sensitive hashing.

4.1.1 Local sensitive hashing strategy
Firstly, local sensitive hashing is an approximate nearest

neighbour fast search technique applied in the face of massive

high-dimensional data. In many different application fields, we

often face an astonishing amount of data that needs processing

and generally has high dimensions. Quickly finding the data or a set

closest to certain data from a massive high-dimensional data set has

become a challenging problem. If the data we face is a small, low-

dimensional dataset, we can solve this problem using linear search.

However, for the current situation, most of them are high-

dimensional and large datasets that need to be processed. If we

still use linear search, it will waste much time. Therefore, to solve

the problem of dealing with massive high-dimensional data, we

need to adopt some indexing techniques to accelerate the search

process and speed. This technique is usually called nearest

neighbour search, and local sensitive hashing is precisely this

technique as shown in Figure 2.

Traditional hashing maps initial data to corresponding buckets,

while locally sensitive hashing, compared to traditional hashing,

maps or projects two adjacent data points in the initial data space

through the same transformation. These two adjacent points in the

original space still have a high probability of being close to the new

data space. The probability of two non-adjacent data points in the

original space being mapped or projected to the same bucket is very

low. In summary, if we perform some hash mapping on the initial

data, locally sensitive hashing can help us map two adjacent data
Frontiers in Marine Science 06
points to the same bucket with a high probability of having the same

bucket number. In ocean observation stations, the daily amount of

data generated is astonishing. In duplicate data removal systems,

the data blocks cut by data streams are also massive amounts of

data, making them very suitable for the application scenario of

locally sensitive hashing. We hope to achieve fast retrieval when

fingerprints are used in the data deduplication system. We hope

that the searched data block can be mapped through local sensitive

hashing to find the same data block in its bucket, thus achieving the

goal of fast retrieval and saving computing resources. However, to

determine whether two data blocks are similar, we have to mention

a concept, the Jaccard coefficient. It is expressed as Formula 1,

where the larger the Jaccard coefficient, the greater the similarity,

and vice versa.

J(A,B) =
A ∩ Bj j
A ∪ Bj j (1)

As shown in Figure 3. The method of local sensitive hashing is

to perform a hash mapping on all the data in the initial dataset, and

then we can obtain a hash table. These initial datasets will be

scattered and shuffled into buckets in the hash table, and each

bucket will load some initial data. However, there is a high

probability that data belonging to the same bucket will be

adjacent, although this is not absolute, and there may also be

situations where non-adjacent data is mapped to the same bucket.

Therefore, if we can find some hash functions that enable data to fall

into the same bucket after being hashed and transformed by these

hash functions in the original space, it becomes much simpler for us

to perform the nearest neighbour search in the data set. We only

need to hash map the data to be retrieved to obtain its mapped

bucket number, then extract all the data inside the bucket

corresponding to that bucket number, and perform a linear

search on these data to find the data adjacent to the query data.

As shown in the figure below, after a position-sensitive hash
FIGURE 2

Schematic diagram of locally sensitive hash.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1534900
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Jia et al. 10.3389/fmars.2025.1534900
function hashed it for q, its rNN may be hashed to the same bucket

(such as the first bucket). The probability of hashing to the first

bucket is relatively high, which will be greater than a certain

probability threshold p1. However, objects outside of its (1 + e)
rNN are unlikely to be hashed to the first bucket, meaning the

probability of hashing to the first bucket is small and will be less

than a certain threshold p2. It is expressed as Equations 2 and 3.

p1 = Pr½I(p)
= I(q)�(is  “ high” if p is  “ close ” to q :) (2)

p2 = Pr½I(p)
= I(q)�(is  “ low ” if p is  “ far ” from q :) (3)

In other words, after the mapping transformation operation of

the hash function, we divide the initial data set into many sub-

datasets. The data in each sub-data set are close to each other, and

the number of elements in the sub-data set is relatively small.

Therefore, the problem of finding neighbouring elements in a large

set is transformed into the problem of finding neighbouring

elements in a relatively small data set, which reduces the

computational cost. Alternatively, it can be understood as

converting high-dimensional data into low-dimensional data

while maintaining the similarity characteristics of the original

data within a certain range. However, locally sensitive hashing

cannot guarantee determinism. It is probabilistic, or it is possible

to map two originally similar data into two completely different

hash values or to map originally dissimilar data into the same hash

value. High-dimensional data is inevitable in dimensionality

reduction, as there will inevitably be some degree of data loss

during the operation. However, fortunately, the design of locally

sensitive hashing can adjust the corresponding parameters to

control the probability of such errors as much as possible. This is

also an important reason why locally sensitive hashing is widely

used in various fields. The logic of locally sensitive hashing in this

article is shown in the following figure. All similar data blocks in the

fingerprint table will be divided into the same bucket. When
Frontiers in Marine Science 07
retrieving a new data block, only the bucket where the data block

should be stored must be searched. There is no need to traverse the

entire fingerprint table for searching, which greatly reduces the time

and computational consumption in the data block retrieval process

and can accelerate the retrieval efficiency.

As shown in Figure 4, when a data block needs to be retrieved

during the retrieval process, we can see that the local sensitive hash

will calculate the bucket number that the data block should be

placed in and perform the retrieval within that bucket. Regardless of

whether the data block is previously stored, it can achieve the goal of

fast retrieval.
4.1.2 Local sensitive hash implementation
In this article, the first step is to abstract the actual problem to

achieve fast retrieval based on locally sensitive hashing. In practical

problems, this article aims to achieve that when a data block’s

fingerprint is passed in, it can be linearly searched within the range

of its similar fingerprints by searching for similar fingerprints rather

than retrieving the entire fingerprint table. Therefore, the

corresponding local sensitive hash directly searches for the bucket

corresponding to a data block fingerprint after inputting it. At the

same time, we need to understand several concepts: Euclidean

distance, Jaccard distance, Hamming distance, and. The Euclidean

distance in locally sensitive hashing refers to Equation 4:

H(V) =
V*R + b

a
(4)

R is a random vector, a is the bucket width, and b is a random

variable uniformly distributed between [0, a]. It can also be

understood that all vectors are mapped to a straight line through

a hash function, and the mapped line is composed of many line

segments of length a. Each vector V will be randomly mapped to a

different line segment. Jaccard distance is a formula used to

calculate the similarity between two data blocks. Hamming

distance refers to the number of times the values at the

corresponding positions in two vectors of the same length differ.

We have completed the integration of practical problems and
FIGURE 3

Diagram 1 of fast retrieval technology based on local sensitive hash.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1534900
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Jia et al. 10.3389/fmars.2025.1534900
locally sensitive hashing. Next, we will provide a detailed

introduction to the specific implementation process:
Fron
Step 1: Data Preprocessing. Before completing feature extraction,

we need to perform a preprocessing step on the data, which

may include data cleaning, supplementing missing data, and

standardizing the data. However, we only need to supplement

the missing data in this article. In addition, the dataset used in

this article is the chunking technique explained in the previous

chapter, which uses the chunking technique to chunk the data

and obtain the hash value of the data block. Finally, the data

block size is applied as the second feature.

Step 2: Feature Extraction. In this section, we need to convert

various data items in the dataset into feature vectors. This

step is based on buckets, where each bucket contains

multiple data blocks. The feature l of each data block is

composed of multiple parameters, including the data block

identifier DID, data block size Chunksize, and feature l as

shown in Formula 5:
l = (DID,Chunksize) (5)
• Data Block Identification: The numerical value obtained by

hashing the content of a data block (such as SHA-1) is used

as the unique identifier for that data block.

• Data block size: Different sizes of data blocks are obtained

based on different data block segmentation methods.

Step 3: Create a locally sensitive hash model. First, in offline

mode, map all the vectors completed in the previous step to

their respective index positions using the determined hash

function. Then, input a vector to be searched and calculate

the hash value using the same function as in the previous
tiers in Marine Science 08
step. Find all the vectors in that vector’s corresponding hash

value positions, and calculate the Euclidean distance using the

corresponding Euclidean distance calculation method. Finally,

select the n vectors with the smallest Euclidean distance as the n

results that are closest or most similar to the input vector.

Step 4: Optimize the number of hash buckets. When facing different

practical problems, if the data volume is small, we can choose to

optimize the number of hash buckets. By increasing or

decreasing the number of hash tables for locally sensitive

hashes, we can reduce the number of buckets to cope with

different situations and practical problems. If the data volume is

too large and the features are obvious, we can appropriately

increase the number of hash buckets. Conversely, if the features

are not obvious and the data volume is small, we can reduce the

number of hash buckets to speed up the retrieval process.

Below we will provide pseudocode for local sensitive hashing as

shown in Algorithm 1.

We can obtain a set of data block fingerprints through the above

code, similar to the input data block fingerprint. If we can search for the

input data block fingerprint within this set of data block fingerprints,

we can save the need to search for the fingerprint of the data block to be

retrieved from the entire fingerprint table. It can be simply finding the

bucket number to which the data block to be retrieved belongs, making

the number of data blocks in the entire bucket much simpler and more

convenient than the entire hash table. It can be understood as

simplifying large problems into small ones, achieving global

optimization through local optimization. At the same time, it is

emphasized that the fast retrieval based on locally sensitive hashing

proposed in this section is aimed at saving computational resources

when dealing with large-scale data. The purpose is to save the time

wasted by linear retrieval, but it does not mean it can achieve fast

retrieval in any scenario. The rough flowchart of fast retrieval and

computation based on locally sensitive hashing is shown in Figure 5.
FIGURE 4

Diagram 2 of fast retrieval technology based on local sensitive hash.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1534900
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Jia et al. 10.3389/fmars.2025.1534900
Input: Fingerprint of the data block to be retrieved;

Output: Fingerprint of data blocks that are similar to the

fingerprint of the data block to be retrieved;

1: def_init_(self, tables_num:int, a:int, depth:int):

2: self.tables_num = tables_num

3: self.a = a

4: self.R = np.random.random([depth, tables_num])

5: self.b = np.random.uniform(0, a, [1, tables_num])

6: self.hash_tables = [dict() for i in range(tables_num) do]

7: def_hash(self, inputs: Union[List[List],

np.ndarray]):

8: hash_val = np.floor(np.abs(np.matmul(inputs, self.R)

+ self.b)/self.a)

9: return hash_val

10: def insert(self, inputs):

11: inputs = np.array(inputs)

12: IF len(inputs.shape) == 1 then inputs =

inputs.reshape([1, -1])
Frontiers in Marine Science 09
13: hash_index = self. hash(inputs)

14: for inputs_one, indexs in zip(inputs, hash_index) do

15: for i, key inenumerate(indesx) do self.hash_tables

[i].setdefault(ley, []).append(tuple(inputs_one))

16: end for

17: end for

18: def query(self, inputs, nums=20):

19: hash_val = self._hash(inputs).ravel()

20: candidates = set()

2 1 : f o r i , k e y i n e n u m e r a t e (h a s h _ v a l) d o

candidates.update(self.hash_tables[i][key])

22: end for

23: candidates = sorted(candidates, key=lambda x:

self.euclidean_dis(x, inputs))

24: return candidates[:nums]

25: def euclidean dis(x, y):

26: x = np.array(x)
FIGURE 5

Local sensitive hash flowchart.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1534900
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Jia et al. 10.3389/fmars.2025.1534900
27: y = np.array(y)

28: return np.sqrt(np.sum(np.power(x - y, 2)))

29: IF_name _== ‘_main_’ then

30: data = np.random.random([10000, 100])

31: query = np.random.random([100])

32: lsh = EuclideanLSH(10, 1, 100)

33: lsh.insert(data)

34: res = lsh.query(query, 20)

35: res = np.array(res)

36: print(np.sum(np.power(res - query, 2), axis=-1))

37: sort = np.argsort(np.sum(np.power(data - query, 2),

axis=-1))

38: print(np.sum(np.power(data[sort[:20]] - query, 2),

axis=-1))

39: print(np.sum(np.power(data[sort[-20]]: - query, 2),

axis=-1)) =0

Algorithm 1. Locality-sensitive hashing.
4.2 Bucket optimization strategy

Before discussing this issue, we need to think about why we

need to optimize the number of buckets. In practical applications, if

we initially designed 5 buckets, as the amount of data that needs to

be stored continues to increase, if we still scatter the data in five

buckets, our retrieval efficiency will become lower and lower.

Suppose we can continuously optimize the number of buckets

according to the changes in the amount of data that needs to be

stored. In that case, the entire duplicate data removal system will

have a reasonable usage method. At the same time, we also need to

consider another situation. Our initial design still had 5 buckets, but

the storage device has just been replaced, and the amount of data we

store is small. Therefore, we need to consider whether it is still

necessary to use 5 buckets. In these two real-life situations, we need

to make changes according to our different needs to achieve a

satisfactory state of our duplicate data deletion system.

Implementing this is not difficult. We only need to visualize the

number of buckets in various states to intuitively understand whether

the number of buckets we are currently using is reasonable. The specific

implementation algorithm is as follows as shown in Algorithm 2:
Fron
Input: The number of hash functions in LSH and the number

of buckets for each hash function;
tiers in Marine Science 10
Output: Visualization results;

1: spark=SparkSession.builder.getOrCreate()

2 : d a t a = s p a r k . r e a d . c s v (“ “ , h e a d e r = T r u e ,

inferSchema=True)

3: data=data.dropna()

4 : a s s e m b l e r = V e t o r A s s e m b l e r (i n p u t C o l s =

[“featuer1”,”featuer2”],outputCol=“featuer”)

5: data=assembler.transform(data)

6 : l s h = M i n H a s h L S H (i n p u t C o l = “ f e a t u e r ” ,

outputCol=“hashes”,numHashTables=5)

7: model=lsh.fit(data)

8: hashedData=model.transform(data)

9: model=lsh.setNumHashTables(10).fit(data)

10: hashedData=model.transform(data)

11: hashedData.groupBy(“hashes”).count().show() =0
Algorithm 2. Bucket optimization algorithm.
We can solve existing problems intuitively through visual

results. At the same time, we can make other optimizations based

on the situation inside the bucket, such as the fingerprint table

selection strategy under the ocean observation dataset mentioned in

our next section. Through intuitive data, we can change the number

of buckets for locally sensitive hashes based on storage requirements

and analyze the dataset’s characteristics through result graphs.

However, in this article, we focus more on applying it to

optimizing the number of buckets. At the same time, with

continuous optimization, we can even analyze within which range

the amount of data and how many buckets are more reasonable,

laying a solid foundation for future work.
4.3 Fingerprint table selection strategy in
ocean observation datasets

Before facing this problem, we need to understand why we need

to make a decision strategy for fingerprint tables. Let us imagine

that in the storage system of an ocean observation station, we use a

duplicate data deletion system to achieve the goal of storing more

data. As the amount of data increases, the fingerprint table in our

memory will continue to grow. Just like the simple example we gave

in our article, assuming the average size of a data block is 8KB, the

generated fingerprints will be about 20GB. If we store 8TB of data,
frontiersin.org

https://doi.org/10.3389/fmars.2025.1534900
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Jia et al. 10.3389/fmars.2025.1534900
we will generate nearly 20GB of fingerprints, which means we need

to store nearly 20GB of fingerprint tables in our memory. The

continuous increase of data will undoubtedly bring a huge

memory burden.

The strategy of this article is to store a portion of the fingerprint

tables in memory and another in external storage. The obvious

purpose of this is to reduce the burden on memory. There are many

advantages to doing this: 1. Save memory: Storing a portion of the

hash table in external storage can effectively save memory resources,

allowing the system to process larger datasets without being limited

by memory size. 2. Improve performance: By storing hotspot data in

memory, the search process for common data blocks can be

accelerated without loading from disk every time. 3. Higher

scalability: When processing very large amounts of data, the

storage capacity of memory is limited, while external storage can

provide almost unlimited expansion space, ensuring that the system

can handle larger-scale deduplication tasks.

The benefits of doing so are self-evident, but the more

important issue is deciding which part of the data to store in

memory and which part to store in external storage. Since we only

focus on ocean observation data in this article to solve the problem

of storage devices for ocean observation stations, can we understand

it this way? When facing time series datasets such as ocean

observation, as long as there are more similar data blocks, we can

understand that the probability of them appearing in the future

observation process is also greater, which is what we understand as

hot data. In other words, if there are many similar data blocks in

some buckets generated by locally sensitive hashing, these data

blocks can be defined as hotspot data. So we can store the

fingerprint table of this bucket in memory and the rest in external

storage if we divide the data into 5 buckets through local sensitive

hashing, namely bucket 1, bucket 2, bucket 3, bucket 4, and bucket

5. Briefly introduce the meanings of a few characters: assuming that

the access frequency of each data block is the same, the access

frequency of each bucket is ai, the number of data blocks in each

bucket is ni, and the average size of each data block is kl,S represents

the saved memory space size,m is the number of buckets stored in

external storage, Ah represents the total required space size, and At

represents the external storage space size. As shown in Equation 6:

S = Ah − At = kl · n −o
m

i=1
ni · kl (6)

So, the consumption of external storage access mainly depends

on each bucket’s data volume and the pain’s access frequency. At this

point, we assume that the delay of external storage is the constant

time Text, and each external storage access consumes a fixed time. The

consumption of accessing external storage is proportional to the

bucket’s data volume and access frequency. For bucket i, the external

storage access consumption Qi is Equation 7:

Qi = ai · ni · kl · Text (7)

Therefore, the total access consumption Q is Equation 8:

Q =o
m

i=1
ai · ni · kl · Text (8)
Frontiers in Marine Science 11
Usually, we can choose buckets that are painful to put into

memory and have high access frequency based on the following

criteria: buckets with higher access frequency ai are usually chosen

to put into memory because they will bring higher performance

improvement. The bucket in memory should be the largest bucket

of ai. Memory capacity limitation: Due to limited memory, storing

some high-frequency access buckets in memory may only be

possible. Usually, the storage capacity of memory Mmemis

limited, so only buckets with high occupancy and access

frequency can be selected until the memory capacity is filled.
5 Experimental results and discussion

Next, we will introduce the experimental results based on locally

sensitive hashing. In this section, we will present the experiments

based on local sensitive hashing in three directions: the impact of

hash tables on the number of buckets, whether the goal of retrieving

data blocks can be achieved, and retrieval efficiency. The specific

details are as follows.
5.1 Experimental environment and data set
source

The computers used in this experiment are shown in Table 1,

and the data set used in this experiment is shown in Table 2. The

datasets 1–4 used in this article are all from ocean observation

datasets, which are a set of time series data sets generated by time

changes, while the data set 5–8 is a data set generated by public daily

network life. The more important reason for listing different data

sets is to observe whether DSW is more suitable for deleting data

generated by time series.While the proposed data partitioning

framework effectively leverages temporal correlations in ocean

observation datasets, its current implementation is tailored to the

spatially constrained nature of the target private datasets, which

originate from fixed-location sensors. These proprietary datasets

exhibit dense temporal sampling but limited spatial coverage,

spanning no more than 500 km2 in targeted zones—contrasting with

global-scale datasets like Argo or satellite remote sensing products. As a

result, the framework prioritizes temporal partitioning to exploit intra-

site time-series dependencies, which are critical for applications such as

localized anomaly detection or short-term environmental forecasting in

these confined environments as shown in Table 3.
TABLE 1 Specific operating environment of the experiment.

Device name DELL XPS 8950

Processor 12th Gen Intel(R)Core(TM)i7-12700 2.10 GHz

RAM 64.0GB(63.7GB Available)

System type Windows11/Ubnutu 22.04

Display adapter NVIDIA GeForce RTX 3060 12GB
frontiersin.org

https://doi.org/10.3389/fmars.2025.1534900
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Jia et al. 10.3389/fmars.2025.1534900
5.2 The relationship between hash table
and bucket

Firstly, we examined the impact of mapping the hash table on

the number of buckets. As shown in the Figure 6, we can indirectly

optimize the number of buckets by changing the hash table. This

operation can be applied to different environments, as shown in

Figure 6. We can see that when we change the number of hash

tables, the number of buckets will decrease as the number of hash

tables decreases. Through experiments, we can see the relationship

between the hash table and the number of buckets, so we can

control the number by changing the number of hash tables. When

faced with large-scale data, such as the storage environment of
Frontiers in Marine Science 12
ocean observation stations, we can reduce the number of

comparisons and thus reduce the computational cost of retrieval

by increasing the number of buckets and dispersing the data into

more buckets.
5.3 Retrieve test results

On the other hand, we check whether the local sensitive hash

model can provide us with a set of fingerprints similar to the

fingerprint being queried by inputting the fingerprint to be queried.

This section of the experiment mainly tests whether we can obtain

the hash value we want through locally sensitive hashing. Therefore,
frontiersin.org
TABLE 2 Details of all data sets used in this experiment.

Name Source Size Specific content of
the dataset

1 Ocean observation dataset 1(OD1) Ocean observation station collection 1.94GB Voyage data

2 Ocean observation dataset 2(OD2) Ocean observation station collection 1.83GB Buoy data

3 Ocean observation dataset 3(OD3) Ocean observation station collection 1.01GB Hidden target data

4 Ocean observation dataset 4(OD4) Ocean observation station collection 1.92GB Remote sensing data

5 General Dataset 1(GD1) networkrepository.com 57.3MB Web document data

6 General Dataset 2(GD2) networkrepository.com 661MB Web document data

7 General Dataset 3(GD3) networkrepository.com 852MB Web document data

8 General Dataset 4(GD4) networkrepository.com 878MB Web document data
TABLE 3 Data features algorithm adaptation comparison table.

Data Attribute Marine Observation Context Algorithm Adjustments

1
Time-

series dependency
Continuous high-frequency sampling requires retention of time

dependency relationships
Sliding Time Window

2
Non-

renewable nature

In situ sensor failure leads to data loss that
cannot be recovered, and data integrity

verification is required

Real time CRC verification mechanism during
data acquisition

3 Large volume
Single site generates over 10GB of time-series data

per day, requiring compatibility with distributed storage
Indexing with Space-Time Grid
FIGURE 6

Visualization of the impact of bucket count.

https://doi.org/10.3389/fmars.2025.1534900
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Jia et al. 10.3389/fmars.2025.1534900
in this experiment section, we added a test data block from the

training set to test whether this algorithm can accurately find the

data block when it reappears. We continuously input 1000

randomly selected sets of data blocks for testing. These 1000 data

blocks are all from the data block groups in the

As shown in Table 4, when we input the fingerprint to be

queried, the local sensitive hash model can provide us with a set of

fingerprints similar to the queried fingerprint. The table shows that

after each input, there is an accurate data block in memory with an

Euclidean distance of 0 from the input data block fingerprint, which

is the backup of the data block in memory. This also indicates that

the model can accurately identify whether the data block exists in

memory and that the retrieval function is intact and can be applied.

After this round of experiments, we can proceed to the next section

of the experiment to further verify how much computational

consumption can be reduced by the retrieval technology based on

locally sensitive hashing in practical applications and to improve the

subsequent work.
5.4 Mixed test results

Next, we will mix the data blocks in the training set with those

that do not exist in the training set. In this experiment, we will
Frontiers in Marine Science 13
prepare four sets of data, with a total of 1000 data blocks present in

the training set, accounting for 20%, 40%, 60%, and 80%,

respectively, as inputs to test the optimization ratio of the local

sensitive hash based retrieval technique compared to traditional

linear search in reducing the number of comparisons. As shown in

Figure 7, as the proportion of the training set continues to increase,

the retrieval technique based on local sensitive hashing also

becomes increasingly effective in reducing the number of

comparisons. This proves that in the practical application

scenario of ocean observation stations, the retrieval technique

based on local sensitive hashing will improve more over time

compared to traditional linear search. This also greatly saves

computational costs.
5.5 Comparison of differences between
internal and external storage fingerprint
tables

In the Figure 8, for the convenience of comparison and viewing,

we have subtracted the memory consumption from LSH’s memory

consumption of LSH, aiming to make the comparison clearer. From

the figure, we can see that under the same dataset type, the memory

consumption of LSH is significantly lower than that of ordinary
FIGURE 7

Optimization ratio result chart.
TABLE 4 Algorithm provides a schematic table of results.

Similar results provided by LSH Input data block fingerprint

ea13550d354f178211a33 772f1c46619ffa81114 ea13550d354f178211a33772f1c46619ffa81114, 960053af900262d8647867224b7099dd7b9e61ea, …

d77a30f6e3349b06fc10ae 541698ea1c43927fe0 d77a30f6e3349b06fc10ae541698ea1c43927fe0, 3f6223a1e77363fb10ede586fdfe2f7810d18a23, …

30bcb804a9aaa4e6e4dc7 e990bc7d15115ac856b 30bcb804a9aaa4e6e4dc7e990bc7d15115ac856b, 00d48d219fcd64b392175c4882c6017c9b758e5e, …

30a9318a3cc9fb13700da 0e350ef0a9dbc47ca2f 30a9318a3cc9fb13700da0e350ef0a9dbc47ca2f, 06e7cbd6cb45751cbeefbc2633a9e8989e1ae0db, …

c84d21e904cca69bc4532 c4ec06c1ec981d3fa9e c84d21e904cca69bc4532c4ec06c1ec981d3fa9e, 7da99e56853c55368528cb793dff6cc54a7a1ccb, …

… …
frontiersin.org

https://doi.org/10.3389/fmars.2025.1534900
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Jia et al. 10.3389/fmars.2025.1534900
retrieval algorithms. This is because we store a part of the

fingerprint table externally. Under the same LSH algorithm,

memory consumption is lower due to the particularity of ocean

observation data. Compared to the normal retrieval algorithm LSH,

storing a portion of the fingerprint table externally reduces

memory consumption.
5.6 Data duplication removal ratio

As shown in Figure 9, the comparison between the double

sliding window segmentation algorithm and the content-based

segmentation algorithm in the figure shows the disadvantages of

LSH. Due to its occasional errors, the proportion of duplicate data

deletion may be slightly reduced. However, reducing the duplicate

data deletion ratio is within our acceptable range as it can accelerate
Frontiers in Marine Science 14
retrieval speed. This is an abandonment problem, and we can

tolerate abandoning a small portion of the duplicate data deletion

ratio to improve the overall system efficiency.
6 Conclusions and future prospects

This article proposes a fast retrieval strategy for ocean

observation data based on locally sensitive hashing, aiming to

reduce the computational consumption of the duplicate data

deletion system during the retrieval process. In order to achieve

fast retrieval, similar data blocks are placed in similar buckets. In

this way, when searching for the data block, only the corresponding

bucket needs to be searched for the data block, without the need to

search for all the data blocks. This can achieve the goal of saving

computing resources and accelerate the retrieval speed. Finally, this
FIGURE 8

Memory usage comparison chart.
FIGURE 9

Duplicate data deletion ratio result chart.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1534900
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Jia et al. 10.3389/fmars.2025.1534900
article demonstrates through reasonable and rigorous experiments

that as the amount of data in the storage device increases, the

efficiency of fast retrieval algorithms based on local sensitive

hashing also increases compared to other retrieval algorithms.

In future work, we will strive to apply fast retrieval algorithms

based on locally sensitive hashing to other data, making them more

widely applicable.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Author contributions

MJ: Writing – original draft, Writing – review & editing. XM:

Conceptualization, Writing – original draft. SG: Conceptualization,

Writing – review & editing. XL: Software, Supervision, Writing –

review & editing.
Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. This study was funded by the
Frontiers in Marine Science 15
Basic Research Business Fund for Undergraduate Universities in

Heilongjiang Province. Authorization number is 2024-KYYWF-1248.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
Agarwal, B., Akella, A., Anand, A., Balachandran, A., Chitnis, P.V., Muthukrishnan,
C., et al. (2010). Endre: An end-system redundancy elimination service for enterprises.
NSDI 10, 419–432.

Al Azad, Md W., and Mastorakis, S. (2022). The promise and challenges of
computation deduplication and reuse at the network edge. IEEE Wireless Commun.
29.6, 112–118. doi: 10.1109/MWC.010.2100575

Ammons, J., Fenner, T., and Weston, D. (2022). “SCAIL: encrypted deduplication
with segment chunks and index locality,” in 2022 IEEE International Conference on
Networking, Architecture and Storage (NAS), (2022 IEEE International Conference on
Networking, Architecture and Storage (NAS)) Vol. pp. 1–9 (IEEE).

Bhagwat, D., Eshghi, K., Long, D. D., and Lillibridge, M. (2009). “Extreme binning:
Scalable, parallel deduplication for chunk-based file backup,” in 2009 IEEE
International Symposium on Modeling, Analysis & Simulation of Computer and
Telecommunication Systems. 1–9 (IEEE).

Broder, A. Z. (1997). “On the resemblance and containment of documents,” in
Proceedings Compression and Complexity of SEQUENCES 1997 (Cat. No. 97TB100171).
21–29 (Proceedings. Compression and Complexity of SEQUENCES 1997).

Debnath, B., Sengupta, S., and Li, J. (2010). “ChunkStash: speeding up inline storage
deduplication using flash memory,” in 2010 USENIX Annual Technical Conference
(USENIX ATC 10). (Proceedings of the 2011 ACM SIGMOD International Conference
on Management of data).

Debnath, B., Sengupta, S., and Li, J. (2011). “SkimpyStash: RAM space skimpy key-
value store on flash-based storage,” in Proceedings of the 2011 ACM SIGMOD
International Conference on Management of data. (2010 USENIX Annual Technical
Conference (USENIX ATC 10)). 25–36.

Huang, D., Zhao, D., Wei, L., Wang, Z., and Du, Y. (2015). Modeling and analysis in
marine big data: Advances and challenges.Math. Prob. Eng. 2015, 384742. doi: 10.1155/
2015/384742

Li, S., Lan, T., Balasubramanian, B., Lee, H. W., Ra, M.-R., Panta, R. K., et al. (2022).
Pushing collaborative data deduplication to the network edge: An optimization framework
and system design. IEEE Trans. Netw. Sci. Eng. 9, 2110–2122. doi: 10.1109/
TNSE.2022.3155357
Lillibridge, M., Eshghi, K., Bhagwat, D., Deolalikar, V., Trezis, G., Camble, P., et al.
(2009). Sparse indexing: Large scale, inline deduplication using sampling and locality.
Fast 9, 111–123. doi: 10.14722/fast.2009.20100

Lu, G., Nam, Y. J., and Du, D. H. C. (2012). “BloomStore: Bloom-filter based
memory-efficient key-value store for indexing of data deduplication on flash,” in 2012
IEEE 28th Symposium on Mass Storage Systems and Technologies (MSST). 1–11 (2012
IEEE 28th Symposium on Mass Storage Systems and Technologies (MSST)).

Mahesh, B., Pavan Kumar, K., Ramasubbareddy, S., and Swetha, E. (2020). “A review
on data deduplication techniques in cloud,” in Embedded Systems and Artificial
Intelligence: Proceedings of ESAI 2019, Fez, Morocco. (Springer) 825–833.

Nisha, T. R., Abirami, S., and Manohar, E. (2016). “Experimental study on chunking
algorithms of data deduplication system on large scale data,” in Proceedings of the
International Conference on Soft Computing Systems: ICSCS 2015. (Proceedings of the
International Conference on Soft Computing Systems: ICSCS 2015) 91–98 (Springer).

Park, N., and Lilja, D. J. (2010). “Characterizing datasets for data deduplication in backup
applications,” in IEEE International Symposium on Workload Characterization (IISWC’10).
1–10 (IEEE International Symposium on Workload Characterization (IISWC'10)).

Prajapati, P., and Shah, P. (2022). A review on secure data deduplication: Cloud
storage security issue. J. King Saud University-Computer Inf. Sci. 34, 3996–4007.
doi: 10.1016/j.jksuci.2020.10.021

Reinsel, D., Gantz, J., and Rydning, J. (2017). Data age 2025: The evolution of data to life-
critical. Don’t focus on big data; focus on the data that’s big. Int. Data Corp. (IDC) White
Paper.

Riser, S. C., Freeland, H. J., Roemmich, D., Wijffels, S., Troisi, A., Belbeoch, M., et al.
(2016). Fifteen years of ocean observations with the global Argo array. Nat. Climate
Change 6, 145–153. doi: 10.1038/nclimate2872

Shynu, P.G., Nadesh, R.K., Menon, V. G., Venu, P., Abbasi, M., Khosravi, M. R., et al.
(2020). A secure data deduplication system for integrated cloud-edge networks. J. Cloud
Comput. 9, 61. doi: 10.1186/S13677-020-00214-6

Spring, N. T., and Wetherall, D. (2000). “A protocol-independent technique for
eliminating redundant network traffic,” in Proceedings of the conference on Applications,
Technologies, Architectures, and Protocols for Computer Communication. (Proceedings of
frontiersin.org

https://doi.org/10.1109/MWC.010.2100575
https://doi.org/10.1155/2015/384742
https://doi.org/10.1155/2015/384742
https://doi.org/10.1109/TNSE.2022.3155357
https://doi.org/10.1109/TNSE.2022.3155357
https://doi.org/10.14722/fast.2009.20100
https://doi.org/10.1016/j.jksuci.2020.10.021
https://doi.org/10.1038/nclimate2872
https://doi.org/10.1186/S13677-020-00214-6
https://doi.org/10.3389/fmars.2025.1534900
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Jia et al. 10.3389/fmars.2025.1534900
the conference on Applications, Technologies, Architectures, and Protocols for Computer
Communication) 87–95.

Wallace, G., Douglis, F., Qian, H., Shilane, P., Smaldone, S., Chamness, M., Hsu, W.,
et al. (2012). Characteristics of backup workloads in production systems. FAST 12, 4–4.
doi: 10.5555/2208461.2208465

Wen, X., Hong, J., Dan, F., and Yu, H. (2011). “SiLo: A Similarity-Locality based
Near-Exact Deduplication Scheme with Low RAM Overhead and High Throughput,”
in 2011 USENIX Annual Technical Conference (USENIX ATC 11), Portland, OR
(USENIX Association). Available at: https://www.usenix.org/conference/usenixatc11/
silo-similarity-locality-based-near-exact-deduplication-scheme-low-ram.

Xia, W., Feng, D., Jiang, H., Zhang, Y., Chang, V., Zou, X., et al. (2019). Accelerating
content-defined-chunking based data deduplication by exploiting parallelism. Future
Gen. Comput. Syst. 98, 406–418. doi: 10.1016/j.future.2019.02.008

Xia, W., Jiang, H., Feng, D., Tian, L., Fu, M., Zhou, Y., et al. (2014). Ddelta: A
deduplication-inspired fast delta compression approach. Perform. Eval. 79, 258–272.
doi: 10.1016/j.peva.2014.07.016

Xu, G., Tang, B., Lu, H., Yu, Q., and Sung, C. W. (2019). “Lipa: A learning-based
indexing and prefetching approach for data deduplication,” in 2019 35th Symposium on
mass storage systems and technologies (MSST). 299–310 (2019 35th Symposium on
mass storage systems and technologies (MSST)).
Frontiers in Marine Science 16
You, L. L., Pollack, K. T., and Long, D. D. E. (2005). “Deep Store: An archival storage
system architecture,” in 21st International Conference on Data Engineering (ICDE’05).
804–815 (21st International Conference on Data Engineering (ICDE'05)).

Yuan, H., Chen, X., Wang, J., Yuan, J., Yan, H., Susilo, W., et al. (2020). Blockchain-
based public auditing and secure deduplication with fair arbitration. Inf. Sci. 541, 409–
425. doi: 10.1016/j.ins.2020.07.005

Zhang, Y., Jiang, H., Feng, D., Xia, W., Fu, M., Huang, F., Zhou, Y., et al. (2015). “AE: An
asymmetric extremum content defined chunking algorithm for fast and bandwidth-efficient
data deduplication,” in 2015 IEEE Conference on Computer Communications (INFOCOM).
1337–1345 (2015 IEEE Conference on Computer Communications (INFOCOM)).

Zhang, Y., et al. (2016). A fast asymmetric extremum content defined chunking
algorithm for data deduplication in backup storage systems. IEEE Trans. Comput. 66,
199–211. doi: 10.1109/TC.2016.2595565

Zhou, P., Zou, X., and Xia, W. (2022). “Dynamic clustering-based sharding in
distributed deduplication systems,” in 2022 IEEE/ACM 8th International Workshop on
Data Analysis and Reduc. (2022 IEEE/ACM 8th International Workshop on Data
Analysis and Reduction for Big Scientific Data (DRBSD)) 54–55. doi: 10.1109/
DRBSD56682.2022.00012

Zhu, B., Li, K., and Patterson, R.H. (2008). Avoiding the disk bottleneck in the data
domain 644 deduplication file system. Fast 8, 1–14. doi: 10.5555/2208461.2208465
frontiersin.org

https://doi.org/10.5555/2208461.2208465
https://www.usenix.org/conference/usenixatc11/silo-similarity-locality-based-near-exact-deduplication-scheme-low-ram
https://www.usenix.org/conference/usenixatc11/silo-similarity-locality-based-near-exact-deduplication-scheme-low-ram
https://doi.org/10.1016/j.future.2019.02.008
https://doi.org/10.1016/j.peva.2014.07.016
https://doi.org/10.1016/j.ins.2020.07.005
https://doi.org/10.1109/TC.2016.2595565
https://doi.org/10.1109/DRBSD56682.2022.00012
https://doi.org/10.1109/DRBSD56682.2022.00012
https://doi.org/10.5555/2208461.2208465
https://doi.org/10.3389/fmars.2025.1534900
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

	Retrieval algorithm based on locally sensitive hash for ocean observation data
	1 Introduction
	2 Background and motivation
	2.1 The dilemma of duplicate data deletion technology in the retrieval process
	2.2 The particularity of ocean observation data
	2.3 Motivation

	3 Related work
	4 Fast retrieval algorithm based on locally sensitive hash
	4.1 Fast retrieval algorithm based on locally sensitive hash
	4.1.1 Local sensitive hashing strategy
	4.1.2 Local sensitive hash implementation

	4.2 Bucket optimization strategy
	4.3 Fingerprint table selection strategy in ocean observation datasets

	5 Experimental results and discussion
	5.1 Experimental environment and data set source
	5.2 The relationship between hash table and bucket
	5.3 Retrieve test results
	5.4 Mixed test results
	5.5 Comparison of differences between internal and external storage fingerprint tables
	5.6 Data duplication removal ratio

	6 Conclusions and future prospects
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

