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Spatial variability of sediment
oxygen consumption and
benthic nutrient fluxes in the
continental shelf of the Southern
Yellow Sea during spring
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Marine Science and Convergence Technology, Hanyang University, Ansan, Republic of Korea,
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To understand the factors controlling organic carbon (OC) and nutrient cycling in

continental shelf sediments, we estimated total sediment oxygen uptake (TOU)

and benthic nutrient flux (BNF) in the Southern Yellow Sea (SYS) during spring.

The OC (0.28 to 1.58%), TN (0.03 to 0.22%), C/N ratio (7 to 11), and d13C (–23.81 to

–22.23‰) in the surface sediments showed spatial variation. The TOU ranged

from 11.9 ± 0.02 to 20.5 ± 0.03 mmol O2 m−2 d−1, depending on the spatial

distribution of OC content, with higher values in finer sediments. Sediment OC

oxidation rates varied between 9.1 and 15.8 mmol C m−2 d−1, accounting for 5

−87% of primary production in surface waters. The BNFs were comparable with

other continental shelves, with dissolved inorganic nitrogen and dissolved

inorganic phosphate fluxes contributing 1 to 33% and 2 to 14%, respectively, of

the nutrients required for primary production. The findings suggest that sediment

OC quantity and quality, influenced by sediment type, are major factors

controlling the spatial variation of benthic OC cycles in the SYS. However, the

benthic-pelagic coupling in the SYS during spring was weak, primarily because of

low sediment OC oxidation and BNF rates. This study highlights the need for

further research on temporal variability to fully understand the biogeochemical

cycles in the Yellow Sea.
KEYWORDS

total sediment oxygen uptake, benthic nutrient fluxes, organic carbon, continental

shelf, Yellow Sea
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Introduction

The Yellow Sea (YS), a semi-enclosed continental shelf sea in

the northwestern Pacific Ocean, lies between the Korean

Peninsula and China (Song, 2011). It receives significant inputs

of terrestrial materials, including nutrients and organic matter,

from multiple river systems such as the Yellow, Changjiang, Xinyi,

Sheyan, Han, and Keum rivers (Song et al., 2016; Cao et al., 2022;

Tian et al., 2022). These riverine inputs sustainably support

primary production (PP) in the YS by supplying essential bio-

limiting elements. organic matter (OM), from both external

sources and internal production, are deposited in the sediment

(Liu et al., 2003; Wang et al., 2003; Shi et al., 2004; Yao

et al., 2014).

Once deposited, particulate organic carbon (POC, referred to as

OC) on the sediment surface undergoes rapid degradation, or is

progressively buried into deeper sediment layers (Thamdrup and

Canfield, 1996). Within the sediment, this OC is remineralized

through microbial respiration pathways, resulting in the release of

dissolved inorganic nutrients and carbon across the sediment-water

interface (SWI) (Canfield et al., 2005; Jørgensen et al., 2022). Therefore,

the estimation of OC remineralization in sediment is crucial for

understanding benthic OC cycling and nutrient regeneration.

Oxygen (O2) is the most effective electron acceptor, as it has a

higher energy yield than other acceptors such as NO3
–, MnO2,

FeOOH, and SO4
2– (Canfield et al., 2005). Moreover, O2 is involved

in the reoxidation of reduced substances via anaerobic respiration

pathways (Canfield et al., 1993; Hulth et al., 1994). As a result, in

sediments, the rate of total O2 uptake is commonly used as a proxy

for OC oxidation rate (Rasmussen and Jørgensen, 1992; Giles et al.,

2007; Jørgensen et al., 2022).

During the oxidation of OM in sediment, inorganic nutrients

are either released or accumulated in the pore water. The nutrient

concentration gradient, between the overlying water and the

sediment pore water, drives nutrient transport across the SWI.

This benthic nutrient flux (BNF) supplies nutrients for PP,

contributing between 3% and 22% of the total nutrient supply in

continental shelf areas through benthic-pelagic coupling

(Hopkinson et al., 2001; Lourey et al., 2001). Thus, sediment OC

remineralization is a vital component of nutrient cycling in

aquatic environments.

Previous studies have suggested that OM degradation in

Southern Yellow Sea (SYS) sediments is influenced by the Yellow

Sea Cold Water Mass (YSCWM) (Yao et al., 2014; Song et al., 2016;

Zhao et al., 2018). However, most research has focused on the

Chinese side of the YS, within China’s exclusive economic zone

(EEZ), with limited data available for Korean territorial waters. This

study aims to estimate total sediment O2 uptake (TOU), diffusive O2

uptake (DOU), and BNFs in the SYS. Our findings will contribute to

(1) understanding spatial variations in TOU and BNF, (2)

identification of the controlling factors for sediment OC oxidation

rates and BNFs, and (3) quantification of the contribution of

sediment OC oxidation and BNF to PP in the water column

through benthic-pelagic coupling on the YS shelf during the

spring season.
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Materials and methods

Study area

The YS is geographically separated into the Northern Yellow

Sea and the SYS by a line joining the Shandong peninsula with

Baengnyeong Island in South Korea (Zhang et al., 2018) (Figure 1).

The SYS shelf covers an area of 300 × 103 km2 with an average water

depth of 44 m (Zhao et al., 2021). Water circulation in the SYS

consists of the Yellow Sea Warm Current (YSWC), the Korea

Coastal Current (KCC), and the China Coastal Current (CCC)

(Figure 1). The northward-flowing YSWC, a branch of the Kuroshio

Current (KC) characterized by warm and saline water, feeds into the

YS (Figure 1). The YSCWM forms in the bottom waters of the

central SYS from late spring to autumn as a consequence of cooling

of the YSWC during winter (Song, 2011). South-flowing currents

include the CCC along the Chinese coast and the KCC along the

Korean coast (Figure 1).

The sediment types in the SYS are influenced by a combination

of hydrodynamic features and the locations of river inputs. Muddy

sediments have developed in the central SYS and the western part of

the Northern Yellow Sea (Shi et al., 2004). Cyclonic eddies and

YSCWM have contributed to the formation of mud areas in the

central SYS (i.e., at sample sites N3513, N3517, N3609, and N3613);

the sources of these sediments have been traced back to the Yellow

River and old Yellow River (Zhao et al., 2018) (Figure 1). A mud

patch in the Eastern YS (northwest of Jeju Island; N3503) has been

attributed to deposition of fine-grained materials from the Kuem

River, facilitated by anticyclonic eddies (Shi et al., 2004; Song, 2011)

(Figure 1). In the Southern Yellow Sea Mud Area (SYSMA), silt and

clay together constitute more than 80% of the total sediment (Zhao

et al., 2021). In contrast, high-energy sedimentary environments in

the SYS, driven by coastal and tidal currents, exhibit continuous

erosion and transportation of fine sediment (Shi et al., 2004).

Consequently, the outer regions of the SYSMA (N3509, N3707,

N3711) are characterized by a higher proportion of sand-size

sediment than of fine sediment (Figure 1).
Sample collection

An SYS sampling survey was conducted aboard R/V Isabu from

April 11 to 14, 2022 (Figure 1). The vertical distribution of water

temperature, salinity, and dissolved O2 were measured with a CTD

system (Seabird, SBE911plus). Undisturbed sediment samples were

collected using intact acrylic cores (length = 25 cm, inner diameter

= 6.5 cm) for analysis geochemistry, and incubation cores (length =

14 cm, inner diameter = 10 cm) for TOU measurement. The

sediment was subsampled using a box corer (0.25 m2).
Onboard experiment

The total sediment O2 uptake rate was measured using ex situ

incubation (Lee et al., 2019). The incubation chamber core was
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carefully inserted into the sediment without disturbing the surface.

The sediment core was immediately closed with a gas-tight lid,

leaving an internal water height of ~7 cm. The chamber core was

submerged in a circulated water bath (EYELA, NTT-2100, Tokyo,

Japan), with a constant in situ bottom water temperature, using an

immersion cooler (EYELA, ECS-0, Tokyo, Japan), for a limited time

(< 2 h). The O2 concentration in the chamber was measured at 10-s

intervals with an inline O2 optode (Pyroscience GmbH, OXFTC2,

Aachen, Germany). The optode sensors were calibrated using two-

point calibration (i.e., zero concentration and air saturation of in

situ bottom water). After the TOU measurement, the vertical O2

profile across the SWI was measured using an O2 microsensor

(Glud, 2008). The O2 microsensor (Unisense, OX-25, Aarhus,

Denmark) (tip diameter ~ 25 mm and low stirring sensitivity

<1%) provided readings at 100 mm vertical intervals, with stirring

of the overlying water. The output current of the microsensor was

amplified by a picoammeter (Unisense, PA-3000, Aarhus,

Denmark) and stored on a laptop computer via an analog-to-

digital converter. Two-point calibration of the O2 microsensor

was performed between 100% air saturation and zero

concentration in situ bottom water, respectively. Water samples

for BNFs estimation were collected at the start and end times of the

TOUmeasurements. The collected BNFs samples were immediately

filtered (0.45 mm, ADVENTEC, Tokyo, Japan) and stored in a deep

freezer (< −60°C).
Frontiers in Marine Science 03
Laboratory analysis

To determine grain size, the sediment samples from 0–2 cm

depth were oxidized and disassembled with 10% H2O2 and 0.1 N

HCl. The gravel, sand, and silt in the sample were separated using the

wet sieving method, and the weights of the fractions were measured.

The fine fraction of the samples (< 62.5 mm) was determined using a

Mastersizer 2000 laser diffraction analyzer (Malvern Instruments Ltd,

Malvern, UK). The OC and TN content of the surface sediments were

determined using a CHN analyzer (CE instrument, EA 1110, Milan,

Italy) after removing CaCO3 with 10% HCl. The d13C in the surface

sediment was measured using an isotope ratio mass spectrometer

(Isoprime, GV Instruments, Manchester, UK) interfaced with an

elemental analyzer. The analytical precision for d13C was ± 0.09‰,

estimated by IAEA standards (CH-3 for carbon). The chlorophyll-a

(Chl-a) in the surface sediment (0–2 cm) was extracted using 90%

acetone for 24 hours and measured using a spectrophotometer

(Optizen POP, KLAB, Seoul, Korea) (Parsons et al., 1984). The

water samples in the incubation core for the sum of nitrate (NO2
–

+ NO3
–), NH4

+, PO4
3–, and Si(OH)4 were analyzed using a nutrient

autoanalyzer (QUAATRO, Seal Analytical, Wrexham, UK). Certified

reference material (Lot. CP; Kanso Technos Co., Ltd, Osaka, Japan)

was included in each batch of nutrient samples and was used to

ensure the accuracy of the samples. Reproducibility was generally

within ± 5%.
FIGURE 1

A map showing the sampling site locations and the circulation patterns in the south Yellow Sea, adapted from Qiao et al. (2017). The black arrows
show the direction of major currents, including the Kuroshio Current (KC), Yellow Sea Warm Current (YSWC), China Coastal Current (CCC), and
Korea Coastal Current (KCC). Surface sediment types in the Yellow Sea are shown, with modifications based on Park et al. (2000).
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Calculation

The TOU and nutrient flux, via the SWI, were estimated from a

least squares linear regression using the concentration gradients,

with incubation time and height of the benthic chamber as follows:

F =
dC
dt

� �
� V

A

� �

where F is the TOU or the BNF (mmol m–2 d–1), dC/dt is the slope

of the linear regression of time and O2 concentration, or the slope

between the initial and final nutrient concentrations, V is the

chamber volume (m3), and A is the chamber area (m2).

Based on the O2 vertical profiles, the upper diffusive boundary

layer and the surface sediment position were determined and used

to estimate the DOU (Jørgensen and Revsbech, 1985). DOU was

calculated from the linear O2 slope (decreasing) relative to the

upper diffusive boundary layer (Glud, 2008):
Frontiers in Marine Science 04
DOU   =  −D0
dC
dZ

where DOU is the diffusive O2 flux (mmol m−2 d−1), D0 is the O2

molecular diffusion coefficient in seawater at a given salinity and

temperature (Ramsing and Gundersen, from the table for seawater

and gases, Unisense A/S) (cm−2 s−1), and dC/dZ is the linear O2

slope in the diffusive boundary layer (mmol cm−4).
Results

Oceanographic features

The sampling sites had water depths ranging from 30 to 85 m,

with N3503 being the shallowest (Figure 2; Table 1). Apart from site

N3517, salinity remained consistent with depth, and surface water

temperatures were generally higher than bottom temperatures
FIGURE 2

Vertical profiles of temperature, salinity, and dissolved oxygen concentration in the water column.
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(Figure 2). The site nearest to the old Yellow River, N3517, has the

lowest surface layer salinity among the sites (Table 1). The surface

salinities and water temperatures at N3503 and N3707, which are near

the Han River and Yeongsan River, were relatively lower than at other

stations, likely as a result of terrestrial water inflow (Figure 2; Table 1).

Overall, salinities and temperatures in both the surface and bottom

waters increased from the Korean coastal waters toward the SYS,

indicating freshwater discharge from rivers (Figure 2; Table 1).

Dissolved O2 concentrations ranged from 241 to 317 mmol L–1, with

surface waters having higher O2 concentrations than bottom waters

(Table 1). Dissimilar to the patterns observed for salinity and

temperature, O2 concentrations decreased from east to west (Table 1).
Grain size, organic carbon, and nitrogen
content in the surface sediment

The grain sizes in the surface sediments varied from clay to

gravel. Gravel content was 3% and was only found at site N3707

(Table 2). The sand content ranged from 2 to 86%, with the highest
Frontiers in Marine Science 05
fraction observed at N3707 (Table 2). The silt content ranged from 8

to 76%, and the clay content ranged from 3 to 40%; N3503 had the

highest silt content and N3613 had the highest clay content (Table 2).

The median grain size ranged from 2.5 to 7.8 Ø, with finer-grained

sediment at N3613 and coarser-grained sediment at N3707 (Table 2).

The OC and TN contents in the surface sediment (0–2 cm) ranged

from 0.28 to 1.58% and from 0.03 to 0.22%, respectively. The highest

values were in the fine sediment at N3613 and the lowest in coarse

sediment at N3707 (Table 2). The carbon to nitrogen (C/N) molar

ratios in the surface sediments ranged from 7 to 11, with the highest at

N3707 (Table 2). The Chl-a inventory in the surface sediment showed

values from 30 to 123mgm–2, with the highest at N3517 and the lowest

at N3711 (Table 2). The stable isotope d13C values were all between –

23.81 and –22.23‰, showing insignificant spatial variation (Table 2).
TOU, DOU, and BNF

The O2 concentration in the incubation chamber gradually

decreased over time (Figure 3). The TOU ranged from 11.9 ±
TABLE 2 The granulometric composition (gravel, sand, silt, and clay contents), median grain size, organic carbon (OC), total nitrogen (TN), carbon to
nitrogen (C/N) ratio, chlorophyll-a (Chl-a) inventory, and d13C in surface sediment (0–2 cm).

Station

Granulometric composition
Median grain size OC TN C/N Chl-a d13C

Gravel Sand Silt Clay

(%) (Ø) (%) (mol/mol) (mg m–2) (‰)

N3517 0 2 67 31 7.4 1.18 0.16 9 123 –22.67

N3513 0 9 68 23 6.9 1.08 0.15 8 55 –22.73

N3509 0 48 37 15 5.0 0.79 0.12 8 86 –22.76

N3503 0 4 76 20 6.4 0.93 0.16 7 104 –22.23

N3613 0 0 60 40 7.8 1.55 0.22 8 108 –22.35

N3609 0 15 67 18 6.4 1.58 0.21 9 63 –22.93

N3711 0 73 20 7 3.8 0.62 0.08 9 30 –22.96

N3707 3 86 8 3 2.5 0.28 0.03 11 66 –23.81
fro
TABLE 1 Sampling site locations, water depth, salinity, temperature, and dissolved oxygen (O2) concentrations in the water column.

Station
Longitude Latitude Depth Salinity

(surface/bottom)

Temperature
(surface/bottom)

Dissolved O2

(surface/bottom)

(°N) (°E) (m) (°C) (µmol L–1)

N3517 35.00 122.49 65 31.5/32.8 9.3/9.8 286/241

N3513 35.00 123.50 77 33.0/32.9 11.2/9.8 278/251

N3509 35.00 124.50 85 32.6/32.7 11.1/9.5 304/257

N3503 35.00 125.68 30 31.9/31.9 10.0/7.8 309/274

N3613 36.00 123.50 77 32.6/32.8 10.7/9.5 275/245

N3609 36.00 124.50 84 32.2/32.5 10.2/8.6 309/250

N3711 37.00 123.99 76 32.4/32.5 10.1/8.5 309/265

N3707 37.00 124.99 61 31.9/31.9 8.7/6.7 317/286
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0.02 to 20.5 ± 0.03 mmol m–2 d–1, with N3613 exhibiting

approximately 2 times higher TOU than N3707 (Table 3).

Vertical profiles of O2 (n = 3) in the pore water are shown in

Figure 4. Unfortunately, we could not measure the vertical O2

distribution at N3711 because the microsensor failed after collisions
Frontiers in Marine Science 06
with coarse particles or shell debris. The O2 penetration depth

(OPD) varied from 0.27 ± 0.02 cm at N3613 to 0.93 ± 0.11 cm at

N3509 (Table 3). The DOU ranged from 9.7 ± 2.47 to 19.4 ± 2.15

mmol m–2 d–1, with the highest value at N3613 and the lowest at

N3509 (Table 3).
FIGURE 3

Temporal changes in dissolved oxygen concentration in the overlying water of the incubation core. Total sediment oxygen uptake (TOU) is
determined through onboard incubation.
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The BNF results are also in Table 3. During the incubation, only

silicate was released from the sediment (Figure 5). The BNFs ranged

from –0.56 to 0.87mmolm–2 d–1 for nitrate, –0.12 to 0.68mmolm–2 d–1

for NH4
+, –0.05 to 0.07 mmol m–2 d–1 for PO4

3–, and 0.26 to 6.32 mmol

m–2 d–1 for Si(OH)4 (Table 3).
Frontiers in Marine Science 07
Discussion

Several control factors for sedimentary OC oxidation have been

suggested as underpinning the biogeochemical cycles of OC in the

continental shelf (Chen et al., 2022; Jørgensen et al., 2022).
TABLE 3 Total sediment oxygen uptake (TOU), diffusive oxygen uptake (DOU), oxygen penetration depth (OPD), and benthic nutrient flux (BNF).

Station
TOU DOU OPD

BNF

NO2
– + NO3

– NH4
+ PO4

3–
Si(OH)4

(mmol m–2 d–1) (cm) (mmol m–2 d–1)

N3517 14.3 ± 0.02 11.1 ± 1.80 0.55 ± 0.02 –0.56 –0.08 –0.01 0.89

N3513 15.2 ± 0.01 11.9 ± 3.29 0.63 ± 0.06 0.82 0.17 0.07 2.69

N3509 12.7 ± 0.01 9.7 ± 2.47 0.93 ± 0.11 0.11 –0.03 0.01 1.37

N3503 13.4 ± 0.01 12.6 ± 1.06 0.75 ± 0.06 0.62 –0.04 –0.01 0.33

N3613 20.5 ± 0.03 19.4 ± 2.15 0.27 ± 0.02 0.06 0.68 0.05 6.32

N3609 14.9 ± 0.01 11.1 ± 1.34 0.75 ± 0.07 –0.28 –0.04 –0.02 1.29

N3711 12.7 ± 0.02 n.d. n.d. 0.87 0.80 n.d. 0.54

N3707 11.9 ± 0.02 11.7 ± 0.74 0.36 ± 0.08 –0.20 –0.12 –0.05 0.26
n.d., not detected.
FIGURE 4

Vertical profiles of dissolved oxygen concentration near the sediment-water interface and oxygen penetration depth (OPD). The dotted lines
represent the sediment-water interface. Diffusive oxygen uptake (DOU) was calculated using Fick’s first law of diffusion, applied to the oxygen
gradient within the diffusive boundary layer.
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Generally, the PP in the water column, sedimentary OC content and

quality, sediment type, water depth, benthic fauna biomass, and

bottom water O2 and temperature are the key factors influencing

OC oxidation in the sediment. However, many of those factors in

continental shelf sediment can differ spatiotemporally according to

regional characteristics (Canfield et al., 2005; Giles et al., 2007;

Pastor et al., 2011; Chen et al., 2022). In particular, the SYS features

a variety of sediment types as a result of complex water mixing and

the presence of sandy sediments from ancient river deltas that

existed when sea levels were lower (Niino and Emery, 1961; Younm

and Kim, 2002; Shi et al., 2004). Thus, sediment types can be key

factors controlling sedimentary OC cycling in the SYS.
Frontiers in Marine Science 08
OC oxidation in SYS sediment

TOU values were significantly correlated with the surface

sediment’s median grain size (r = 0.73, p < 0.05) and OC

contents (r = 0.78, p < 0.05) (Figure 6). Our findings indicate that

OC content may act as a control factor, in combination with grain

size, for benthic OC oxidation in the YS, which is consistent with

previous studies (Upton et al., 1993; Giles et al., 2007). In the SYS,

sediment grain size can vary depending on local hydrodynamic

characteristics (Shi et al., 2004). Zhao et al. (2021) suggested that the

weak current energy and cyclonic cold eddies in the central SYS

contribute to the formation of the SYSMA. In contrast, the muddy
FIGURE 5

Comparison of benthic nutrient flux (BNF) measured through onboard incubation at different sampling sites.
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patch in the Eastern part of the SYS is formed by gradual deposition

of suspended particles driven by anticyclonic circulation (Shi et al.,

2004). Given that OC is preferentially adsorbed onto clay surfaces,

the OC content in YS sediment could be influenced by the presence

of fine sediments (Bock and Mayer, 2000; Ma et al., 2018; Guo et al.,

2021). Consequently, the highest TOU was observed in fine

sediment with high OC content (N3613), while coarse sediment

exhibited the lowest TOU and OC content (N3707). Therefore,

spatial variations in sediment OC oxidation in the SYS may be

attributed to the distribution of OC across sediment types.

Although TOU, in this study, varied with grain size and OC

content, the spatial differences in the SYS were not significant

(Tables 2, 3). The TOU values in SYS are comparable to those

measured in temperate shelf areas with similar water depth but

lower than those in temperate shelf areas with higher OC contents

(1.45–3.45%). Conversely, TOUs in this study were relatively higher

than those in polar regions with refractory OC composition (C/N:

7.1–17.3) and lower temperatures (–1.7 to 4.0°C) (Table 4). The

sedimentary OC oxidation was estimated using the Redfield ratio of

138O2:106C, and the total sediment OC oxidation rate (TCox)

ranged from 9.1 to 15.8 mmol C m–2 d–1, which is higher than

the values reported in previous studies in the YS, which ranged from

1.7 to 8.8 mmol C m–2 d–1 (Song et al., 2016; Zhao et al., 2018).

In this study, PP in the euphotic zone of the SYS ranged from 11.8

to 199.3 mmol C m–2 d–1 (Noh et al., 2024, unpublished). Assuming

that all pelagic PP was remineralized through sediment OC oxidation,

the TCox accounts for from 5 to 87% of PP in the water column in the

SYS (Table 5). Except for N3503, TCox/PP ranged from 5 to 26%,

which is comparable with values reported for the YS (8%; Song et al.,

2016) and East China Sea (17%; Kim et al., 2020). In contrast, the

higher TCox/PP at N3503 (87%) may be due to the low PP, likely

caused by high turbidity (Song, 2011). Indeed, at N3503, Brightness

Transmission (64.5–64.8%) and the Beam Attenuation Coefficient

(1.73–1.75m–1) in the surface water (0–5 m) were 1.3 times lower and

2.6 times higher, respectively, compared to the average values of the

other stations (84.6% and 0.67 m–1).
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Spatial variability of OC oxidation

The d13C and C/N ratios in sediments are commonly used as

proxies for determining the origin and/or quality of OC

(Figures 1, 7; Table 4). For example, marine origin OC shows a

higher d13C ratio (–21 to –19‰) and lower C/N ratio (~ 7) than

terrestrial OC (d13C: –26 to –24‰; C/N: > 10). Any mixture of

marine and terrestrial-derived OC can have values between these

two endmembers (Yao et al., 2015; Chen et al., 2021). Furthermore,

the normalized TOU relative to the C/N ratio can be used to

distinguish the remineralization states of OC. Higher values may

indicate oxidation of fresh OC, whereas lower values may suggest

the oxidation of refractory OC (Figure 7).

Previous studies have suggested that the properties of OC in

the surface sediment of the SYS are influenced by contributions

from both marine and terrestrial sources (Zhao et al., 2018; Liu X. et

al., 2020; Chen et al., 2021). The lowest value of TOU/(C/N)

was observed at station N3707, which had a relatively high

contribution of terrestrial OC. In contrast, other stations, with C/

N ratios from 7 to 8 and d13C values ranging from –22.96 to –

22.23‰, indicated a greater fraction of marine OC, resulting in

higher TOU/(C/N) ratios, approximately twice those at N3707

(Chen et al., 2021).

Terrestrial OC undergoes pre-aging before reaching an

aquatic system, making it more refractory than marine OC

(Arndt et al., 2013; Zhao et al., 2018). Burdige (2007) reported that

terrestrial OC is more likely to be preferentially buried, while marine

OC tends to be remineralized in marine sediment. Indeed, there is a

distinct difference between the burial efficiencies of terrestrial OC

(68%) and marine OC (7%) in YS sediments (Zhao et al., 2021).

Consequently, increased terrestrial OC in sediments can reduce

the efficiency of OC oxidation. These factors, which influence the

fate of sediment OC, are based on its quality and are particularly

significant in the SYS, where the complex distribution of OC

is influenced by interactions between various OC sources and

hydrodynamic characteristics.
FIGURE 6

The relationship between total sediment oxygen uptake (TOU) and median grain size (A), and organic carbon (OC) content (B).
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BNF and benthic–pelagic coupling

The nutrients accumulated in pore water through benthic OC

remineralization are exchanged across the SWI, potentially serving

as a nutrient source for primary producers in the water column

(Mortimer et al., 1999; Hopkinson et al., 2001; An et al., 2019; Guo

et al., 2020; Yang et al., 2021). Therefore, estimating nutrient flux is

essential for evaluating benthic-pelagic coupling. The BNFs

measured in this study were within the ranges reported in most

of the related literature (Table 4). The fluxes of nitrate, NH4
+, and

PO4
3– showed transport in either direction across the SWI, at

different stations, indicating that these nutrients were either

released from the sediment or absorbed into it.

During sediment OC oxidation, dissimilatory nitrate reduction

to ammonia can increase NH4
+ while decreasing nitrate (Nunnally

et al., 2013; Yang et al., 2021). However, our results did not show

simultaneous efflux of NH4
+ and nitrate influx (Figure 5).

Additionally, NH4
+ and nitrate fluxes were not correlated with

TOU (Spearman, r = 0.35, p = 0.40), and the average OPD was 0.61

± 0.21 cm (Table 3). These findings indicate that during spring the

SYS sediment was oxic, favoring nitrification (Song et al., 2021).

Janssen et al. (2005) demonstrated that in highly permeable, coarse-

grained sediment, greater oxygen penetration depth promotes

ammonium nitrification, leading to relatively lower ammonium

release compared to fine-grained sediments. Under oxic conditions,

nitrification can decrease NH4
+ and increase nitrate in the upper
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sediment layer, promoting NH4
+ influx and nitrate efflux (Rowe

and Phoel, 1992; Denis and Grenz, 2003; Rysgaard et al., 2004; Louis

et al., 2021). Zhou et al. (2022) suggested that a combination of

nitrification and denitrification processes may control the NH4
+

and nitrate fluxes in the SYS. Therefore, the relative contributions of

nitrification and denitrification processes, for OC oxidation, may

affect NH4
+ and nitrate fluxes at the SWI.

The benthic PO4
3–

flux was not correlated with TOU

(Spearman, r = 0.53, p = 0.18). Therefore, the low efflux and

uptake of PO4
3– might be attributed to removal processes

exceeding regeneration of inorganic nutrients via benthic OC

oxidation. The decrease in PO4
3–

flux is likely a consequence of

adsorption onto Fe-oxides in the oxidative environment of the

samples (Liu J. et al., 2020; Yang et al., 2021). An et al. (2019)

reported that the release of PO4
3– from iron-bound inorganic P (Fe-

P) results from the biotic and/or abiotic reduction of Fe(III) under

anaerobic conditions. In addition, Louis et al. (2021) reported that

low porosity can reduce the thickness of the oxic layer in sediment,

which can enhance the solubilization of Fe(III)-bound phosphorus,

thereby increasing phosphorus flux across the sediment-water

interface. Unlike dissolved inorganic nitrogen (DIN) and

phosphate (DIP), Si(OH)4 was released from sediment at all

stations (Table 3). Previous studies have shown that silicate efflux

is related to the biogenic silica concentration in the sediment and

benthic remineralization (Conley et al., 1989; Denis and Grenz,

2003; Miatta and Snelgrove, 2021; Yang et al., 2021). Although
TABLE 4 Total sediment oxygen uptake (TOU) and benthic nutrient flux (BNF) measured in various continental shelves.

Region Depth (m)
TOU

(mmol O2 m−2 d−1)

BNF (mmol m−2 d−1)

ReferenceNO2
–

+ NO3
– NH4

+ PO4
3− Si(OH)4

Southern Yellow Sea 30 − 85 11.9 − 20.5 −0.56 − 0.87 −0.12 − 0.80 −0.05 − 0.05 0.26 − 6.32 This study

Yellow Sea 57 − 81 1.7 − 8.8 n.d. n.d. n.d. n.d. (1)

East China Sea 40 − 96 5.8 − 16.4 0.12 − 0.16 0.07 − 0.57 −0.03 − 0.02 0.30 − 1.61 (2)

Southern Oregon and
Northern California

90 − 190 2.3 − 9.9 −2.20 − −0.60a 0 − 1.90 0.02 − 0.20 5.80 − 15.00 (3)

Gulf of Finland, Baltic Sea 36 − 76 7.3 − 17.7 n.d. 0.50 − 6.70 n.d. 1.70 − 11.00 (4)

Eastern Massachusetts 33 − 74 6.2 − 30.1 −0.20 − 0.67a −0.03 − 4.04 −0.03 − 0.49 1.80 − 14.10 (5)

Eastern North Pacific 42 − 98 2.2 − 19.2 −1.80 − −1.30 0 − 0.97 0 − 0.10 3.40 − 11.80 (6)

Eastern Canada 30 − 155 3.7 − 32.6 n.d. n.d. n.d. n.d. (7)

Northeastern New Zealand 25 − 82 6.9 − 13.0 n.d. n.d. n.d. n.d. (8)

Southern North Sea 25 − 81 8.0 − 13.0 n.d. n.d. n.d. n.d. (9)

Northwestern Mediterranean 24 − 89 7.0 − 15.6 n.d. n.d. n.d. n.d. (10)

Bering Sea 35 − 84 3.2 − 10.5 0.01 − 0.94 −0.15 − 0.48 n.d. 0.66 − 4.56 (11)

Arctic Sea 36 − 100 3.4 − 8.3 0.01 − 0.24 n.d. n.d. n.d. (12)

Gulf of Mexico 19 − 34 25.7 − 59.6 n.d. n.d. n.d. n.d. (13)
(1) Song et al., 2016, (2) Kim et al., 2020, (3) Berelson et al., 2013, (4) Almroth et al., 2009, (5) Hopkinson et al., 2001, (6) Devol and Christensen, 1993, (7) Grant et al., 1991, (8) Giles et al., 2007,
(9) Upton et al., 1993, (10) Pastor et al., 2011, (11) Rowe and Phoel, 1992, (12) Rysgaard et al., 2004, (13) Thompson et al., 2021.
aNO3

–, n.d., not detected.
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dissolved inorganic silicate (DSi) flux was not correlated with Chl-a

(Spearman, r = 0.10, p = 0.82), it was significantly correlated with

TOU (Spearman, r = 0.78, p < 0.05). These results imply that SYS

sediments could potentially serve as major sources of Si(OH)4 with

sediment OC degradation (Liu et al., 2016).

Using the Redfield ratio (C:N:P = 106:16:1, Redfield et al., 1963;

Conley et al., 1989), we estimated the contribution of BNF to the

nutrient requirements for PP in the water column. The levels of

DIN and DIP were, respectively, 1–33% and 2–14% of the nutrients

required for PP (Table 5). These findings suggest that the

significance of BNF in supplying N and P from sedimentary OC

remineralization in the SYS during spring, may vary among the

sediment types. In addition, the BNFs in this study were comparable
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with, or less than, those in other shelf seas with similar water depths

(Table 4). Moreover, the benthic-pelagic coupling in the SYS during

spring appears to be less significant than in other shelf areas (Denis

and Grenz, 2003; Kim et al., 2020; Yang et al., 2021).
Conclusion

The TOU measured in the SYS during spring suggests that

variations of OC content across sediment types play a crucial role

in controlling sediment OC oxidation. Regardless of OC content and

median grain size, the influences of variations in OC quality, as

indicated by the C/N ratio and d13C, on TOU exhibited distinct
FIGURE 7

Bubble chart of normalized total sediment oxygen uptake (TOU) relative to the C/N ratio (TOU/(C/N)) as a function of the C/N ratio and d13C. TOU/
(C/N) represents the remineralization state of organic carbon (OC) in the sediment. The boundaries of marine OC (blue area) and terrestrial OC
(yellow area) sources are based on Liu X. et al., 2020, and Chen et al., 2021.
TABLE 5 Total sediment organic carbon oxidation (TCox), TCox/primary production (PP), nutrient demand for PP, and contribution of benthic nutrient
fluxes (BNFs) to the requirement for PP.

Station
PPa TCox

b TCox/PP
Nutrient demand for PPc Contribution of BNFs to PP

DIN DIP DIN DIP

(mmol C m–2 d–1) (%) (mmol m–2 d–1) (%)

N3517 93.7 11.0 12 14.14 0.88 n.d. n.d.

N3513 51.6 11.7 23 7.79 0.49 13 14

N3509 57.3 9.8 17 8.65 0.54 1 2

N3503 11.8 10.3 87 1.78 0.11 33 n.d.

N3613 61.2 15.8 26 9.24 0.58 8 9

N3609 92.2 11.4 12 13.92 0.87 n.d. n.d.

N3711 59.1 9.8 17 8.92 0.56 19 n.d.

N3707 199 9.1 5 30.04 1.88 n.d. n.d.
aData from Noh et al., 2024, unpublished, bRedfield ratio was used to convert carbon:C:O2 = 106:138, cCalculated from the PP data using Redfield ratio of C:N:P = 106:16:1. n.d., not detected.
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differences. The contribution of terrestrial and marine sources to

sediment OC composition may control the efficiency of sediment OC

oxidation. Thus, both the quantity and quality of sediment OC are

key factors in determining the spatial characteristics of the benthic

OC cycle in the SYS. With the exception of DSi flux, BNFs exhibited a

weak correlation with sediment OC oxidation. Additionally, the

nutrient efflux observed in this study was comparable with or

lower than that on other continental shelves, and the contribution

of BNFs to the nutrient requirements of PP was minimal.

Consequently, the benthic-pelagic coupling in the SYS during

spring was weak due to low BNF, following the low sediment OC

oxidation rate. However, since our results are representative only of

the spring season, further studies on temporal variability are

necessary to fully understand the biogeochemical cycle in the YS.
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