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Mangrove ecosystems play a crucial role in coastal environments. However, due

to the complexity of mangrove distribution and the similarity among different

categories in remote sensing images, traditional image segmentation methods

struggle to accurately identify mangrove regions. Deep learning techniques,

particularly those based on CNNs and Transformers, have demonstrated

significant progress in remote sensing image analysis. This study proposes

TCCFNet (Two-Channel Cross-Fusion Network) to enhance the accuracy and

robustness of mangrove remote sensing image semantic segmentation. This

study introduces a dual-backbone network architecture that combines ResNet

for fine-grained local feature extraction and Swin Transformer for global context

modeling. ResNet improves the identification of small targets, while Swin

Transformer enhances the segmentation of large-scale features. Additionally, a

Cross Integration Module (CIM) is incorporated to strengthen multi-scale feature

fusion and enhance adaptability to complex scenarios. The dataset consists of

230 high-resolution remote sensing images, with 80% used for training and 20%

for validation. The experimental setup employs the Adam optimizer with an initial

learning rate of 0.0001 and a total of 450 training iterations, using cross-entropy

loss for optimization. Experimental results demonstrate that TCCFNet

outperforms existing methods in mangrove remote sensing image

segmentation. Compared with state-of-the-art models such as MSFANet and

DC-Swin, TCCFNet achieves superior performance with a Mean Intersection

over Union (MIoU) of 88.34%, Pixel Accuracy (PA) of 97.35%, and F1-score of

93.55%. Particularly, the segmentation accuracy for mangrove categories

reaches 99.04%. Furthermore, TCCFNet excels in distinguishing similar

categories, handling complex backgrounds, and improving boundary

detection. TCCFNet demonstrates outstanding performance in mangrove

remote sensing image segmentation, primarily due to its dual-backbone

design and CIM module. However, the model still has limitations in

computational efficiency and small-target recognition. Future research could

focus on developing lightweight Transformer architectures, optimizing data

augmentation strategies, and expanding the dataset to diverse remote sensing

scenarios to further enhance generalization capabilities. This study presents a

novel mangrove remote sensing image segmentation approach—TCCFNet. By
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integrating ResNet and Swin Transformer with the Cross Integration Module

(CIM), the model significantly improves segmentation accuracy, particularly in

distinguishing complex categories and large-scale targets. TCCFNet serves as a

valuable tool for mangrove remote sensing monitoring, providing more precise

data support for ecological conservation efforts.
KEYWORDS

mangrove remote sensing image segmentation, TCCFNet, CIM, multi-scale feature
fusion, mangrove
1 Introduction

Mangrove is one of the most ecologically valuable ecosystems in

nature (Kathiresan, 2021), known as the “natural coastal protection

project” and the “cradle of the ocean”. These ecosystems play

critical roles in maintaining coastline stability, water purification,

carbon sequestration and mitigating wave-related natural disasters

(Gijón Mancheño et al., 2024; Rahman et al., 2024; Wang et al.,

2024; Sun et al., 2025). Mangrove ecosystems harbor exceptional

biodiversity through their complex structural characteristics. Their

vegetation structure shows remarkable diversity (Anniwaer et al.,

2024; Bonet et al., 2024; Liu et al., 2024), creating vital habitats that

support numerous fish, bird, and other animal species (Mohamed

et al., 2024; Tasneem et al., 2024). This rich biodiversity underscores

the irreplaceable ecological value of mangrove ecosystems. The

growing recognition of mangroves’ ecological importance has led

to increased conservation efforts worldwide (Nijamdeen et al.,

2024). A key component of these conservation initiatives is the

effective monitoring and assessment of mangrove distribution and

health.Image segmentation can segment mangrove images into

different areas or objects, thus providing information on

mangrove distribution, area change, growth and destruction.

However, the traditional image segmentation method has some

unfavorable trends in the case of mangrove growth (He, 2022; Fu

et al., 2024). First of all, traditional methods often rely on hand-

designed features, and it is difficult to accurately divide different

areas such as trees, sediment and water in the complex and

changeable mangrove environment. In addition, the traditional

method has poor robustness to noise, which is difficult to adapt

to the low resolution and noise interference in remote sensing

images, and can not well meet the needs of large-scale and long-

term monitoring of mangrove growth. Deep learning image

segmentation method (Mei et al., 2025) has significant advantages

in image segmentation. It can automatically learn complex features

in the image, no need to manually design features, more adaptable.

Therefore, deep learning image segmentation provides an

important technical means for mangrove research. Deep learning

models, such as convolutional neural networks (CNN) and

architectures derived from them, such as U-Net (Azad et al.,

2024), SegNet (Li et al., 2024), DeepLabv3+ (Wang et al., 2024),
02
etc., can automatically learn multi-level features in images, reduce

the dependence on manual feature engineering, and better capture

complex spatial patterns and semantic information. So you can

perform well in different scenarios and conditions.

However, CNN’s inherent limitations still lead to deficiencies in

handling some task scenarios:
1. The CNN model does not perform well in handling long-

distance dependencies, because its receptive field is limited

by the size and number of layers of the convolution kernel,

resulting in certain limitations in capturing global

context information;

2. When the CNNmodel deals with scale changes and complex

backgrounds, it may lose or over-smooth the detailed

information, resulting in decreased segmentation accuracy.
To solve the first problem, Transformer architecture is one of the

mainstream research hotspots for feature extraction. Transformer

architecture itself is a method based on multi-head self-attention

mechanism. Li et al. (Li et al., 2024) introduced an efficient end-to-

end architecture called CNSST (Convolutional Network and Spectral

Space Transformer). This approach combines CNN’s strength in

local feature extraction with Transformer’s global modeling

capabilities to enhance hyperspectral image classification. The

CNSST architecture features two main components. First, a 3D-

CNN based network performs hierarchical feature fusion to capture

local spectral-spatial relationships. Second, a spectral spatial

transformer incorporates inductive bias to establish global

dependencies while preserving important local information. The

researchers validated their method through extensive testing on

multiple public hyperspectral datasets. Results consistently

demonstrated that CNSST outperforms existing state-of-the-art

approaches in classification accuracy. Yang et al. (Yang et al.,

2025) introduced the Adaptive Coupling Module (ACM), which

combines CNN for local context and Transformer for global

dependencies in hyperspectral image processing. The Adaptive

Response Fusion Module (ARFM) merges these representations

across resolutions, while cosine similarity constraints preserve both

aspects during mutual learning. Experiments on three public

datasets show ACTN outperforms state-of-the-art CNN and
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Transformer methods. The DC-Swin model designed by Wang et al.

(Wang et al., 2022) puts forward a new semantic segmentation

scheme that uses Swin Transformer(Shifted Window Transformer)

as the encoder. A Densely Connected Feature Aggregation Module

(DCFAM) is designed as a decoder to restore resolution and generate

segmentation maps. The experimental results show that The DC-

Swin model performs well on remote sensing semantic segmentation

data sets.

As for the second problem, usually the problem of using attention

mechanism to improve information loss, the research on attention

mechanism is also very rich. BANet (Tsai et al., 2022) introduced the

Blur-aware Attention Mechanism, which is used to improve the

accuracy of image segmentation in dynamic scenes. By combining

multi-scale features and attention mechanisms, this method can better

capture important information in images, enhance the ability to

capture target edges and details, and thus improve the accuracy and

robustness of segmentation. A2-FPN (MaL et al., 2021) proposes a

more efficient multi-head self-attention mechanism in terms of

attention mechanisms to reduce computational complexity. At the

same time, the paper discusses the combination of attention

mechanism and convolutional neural network (CNN) to improve

the effect of image feature extraction and improve the overall

performance of the model. Tang et al. (Ma, 2023) studied the

application of attention mechanism in image fusion. Specifically,

they use attention mechanisms to selectively highlight key features,

ensuring that important semantic information is retained during the

fusion process. Through the progressive semantic injection strategy,

the model can gradually introduce and fuse semantic features from

infrared and visible images, thereby improving the scene fidelity and

task performance of the fused images.

Based on the above situation, this paper proposes a method

based on two-channel cross-fusion network (TCCFNet). TCCFNet

addresses these limitations through several key innovations. Its dual

backbone architecture represents a significant departure from

previous hybrid models that treat CNN and Transformer paths

equally. Instead, TCCFNet implements an asymmetric design

specifically optimized for mangrove feature extraction, balancing

local detail capture through ResNet with global context modeling

via Swin Transformer. This design specifically addresses the multi-

scale nature of mangrove ecosystems, where both fine-grained

texture and broad spatial patterns carry important information.

In order to highlight the key points and improve the recognition

rate of the model for large target areas such as mangroves, rivers,

oceans and large tidal flats, TCCFNet adopts the following strategies

without neglecting small targets:
Fron
1. The model uses a dual backbone network structure. It

incorporates two key components: the ResNet residual

network and the Swin Transformer. This design leverages

the complementary advantages of both networks. ResNet is

good at capturing local details, which is conducive to the
tiers in Marine Science 03
identification of small targets. Swin Transformer

significantly improves the identification accuracy of large

target areas such as mangroves, rivers and oceans through

its advantages of hierarchical structure, multi-scale feature

extraction, sliding window mechanism and self-attentional

global feature modeling. It is able to capture global

information while maintaining detail , which is

particularly effective for dealing with large and complex

natural landscapes. The combination of the two can

effectively improve the sensitivity of the model to

different target regions, so as to improve the recognition

accuracy of the model under complex background.

2. In order to further enhance the feature expression capability

of the model, a Cross Integration Module (CIM) is designed

in this paper. The module first receives as input feature

maps from different levels of ResNet and Swin Transformer.

In the process of processing, the deeper feature map is first

sampled to the same size as the shallow feature map, and

then the features are channelled. Then it is processed by two

parallel branches: one branch uses global average pooling

(GAP) to extract the channel attention information, and

adjusts the channel weight by convolutional layer and

activation function; The other branch uses SlimConv

(consisting of two depth-separable convolution) for feature

extraction.GAP is a technique for reducing the spatial

dimension by calculating the average of each feature map.

This action helps capture global context information and

reduces computational complexity. SlimConv is a

lightweight convolution operation consisting of two deep

convolution layers. This design significantly reduces

computational requirements compared to standard

convolution operations, while maintaining efficient feature

extraction capabilities. The output of these two branches is

then fused with the original feature map. Finally, CFFM

(Cross Feature Fusion Module) is used to fuse all the

processed feature maps and output a unified size feature

map. CFFM is a specialized component that can combine

and process feature mappings from different network layers.

CFFM systematically integrates spatial and channel

information to generate a more comprehensive feature

representation. This design enhances the model’s

understanding of image details and global semantics

through cross-attention mechanism and multi-level feature

fusion, and effectively improves the segmentation accuracy.
To sum up, this paper proposes TCCFNet, which can effectively

identify mangrove areas and improve the model’s performance in

mangrove remote sensing image semantic segmentation by

adopting dual backbone network structure, combining the

advantages of ResNet residual network and Swin Transformer,

and the feature fusion capability of cross-integration module.
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2 Materials

2.1 Research area

The first research area is located in Hainan Dongzhaigang

National Nature Reserve (100°32 ‘-100° 37’ E, 19°51’ -20° 1’ N)

shown in Figure 1. With a total area of 3337.6 hectares, the reserve is

the largest coastal mangrove forest in China. It includes 35 species

in 18 families, including 24 true mangrove species in 10 families and

11 semi-mangrove species in 8 families. It is the first national

mangrove nature reserve in Hainan Province. The second study

area is Qinglan Port Nature Reserve (110°45 ‘-110°47’ E, 19°34 ‘-19°

37’ N), which is the area with the largest number of mangrove

species in China. There are 24 species of true mangrove and 10

species of semi-mangrove, accounting for 88.89% and 100% of the

total species of true mangrove and semi-mangrove in

China respectively.
2.2 Data

The data set used in this article is the same as that used in the

MSFANet (Fu et al., 2024) network. The proportion of each

category in the collected data set is shown in Figure 2. The three

types of features, mangroves, rivers and oceans, and tidal flats,

account for nearly 90% of the total, indicating the dominance of

these large targets in the dataset.

This study draws on a dataset of 230 high-resolution remote

sensing images. Following standard machine learning practices, we

divided the dataset into two parts: 184 images (80%) for model

training and 46 images (20%) for validation. The image size is set to
Frontiers in Marine Science 04
768 pixels, and the mangrove image data source is from Google

Maps and consists of a high spatial resolution (0.3 m) remote

sensing image taken on June 6, 2021.
3 Methods

3.1 Attention Aggregation based Feature
Pyramid Network

Attention Aggregation based Feature Pyramid Network (A2-FPN)

is a feature pyramid network based on attention aggregation. This

model mainly reduces the computational complexity by introducing a

more efficient multi-head self-attention mechanism. It combines the

attention mechanism with convolutional neural network (CNN) to

improve the effect of image feature extraction, and aggregates different

levels of features through the improved multi-head attention

mechanism, thus improving the overall performance of the model.
3.2 Adaptive Bezier Curve Network

Adaptive Bezier Curve Network (ABCNet) is a text detection

model based on deep learning, which is especially suitable for

detecting curved text in images. It is proposed to solve the problem

of curve text detection in natural scenes, and can maintain high

precision detection in complex background and irregular shape text.

ABCNet can perform end-to-end training, directly from image input

to detection result output, requiring manual design of complex post-

processing steps. This architecture not only simplifies the training

process, but also performs better in precision and speed.
FIGURE 1

Study area diagram. (a) China; (b) Hainan Province; (c) Hainan Dongzhaigang National Nature Reserve; (d) Qinglan Port.
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3.3 Boundary-Aware Network

Boundary-aware Network (BANet) is a deep learning model for

object segmentation and Boundary detection, which is mainly used

to improve the boundary accuracy in image segmentation tasks. By

introducing the boundary sensing module, BANet makes the model

pay more attention to the boundary region of the target, so as to

improve the detail processing ability of segmentation results.
3.4 Dual-channel Shifted
Window Transformer

Dual-channel Shifted Window Transformer (DC-Swin) is an

improved model based on Swin Transformer designed to enhance the

performance of Transformer in computer tasks such as image visual

recognition and segmentation. DC-Swin introduced a two-channel

structure and innovated Transformer’s window mechanism in Swin to

be more efficient and accurate in capturing global and local features.
3.5 UNetFormer

UNetFormer is a deep learning model combining U-Net and

Transformer, which is mainly used for image segmentation tasks,

especially for high-precision segmentation of medical images and

remote sensing images. UNetFormer combines U-Net’s multi-scale

feature extraction capabilities with Transformer’s global attention

mechanism, making the model excellent at capturing detail and

long-distance dependencies.
3.6 Multi-Scale Feature
Aggregation Network

Multi-Scale Feature Aggregation Network (MSFANet) is a deep

learning model designed for image segmentation, especially for fine
Frontiers in Marine Science 05
segmentation in complex scenes. Through multi-scale feature

aggregation and attention mechanism, MSFANet enhances the

model’s adaptability to objects at different scales, and can better

process details and boundaries in images.
3.7 Proposed method

3.7.1 Two Channel Cross Fusion Network
TCCFNet consists of two parts: the ResNet residual network on

the left and the Swin Transformer architecture on the right, as

shown in Figure 3.

The TCCFNet architecture consists of two parallel processing

paths: a ResNet-based path on the left and a Swin Transformer path

on the right. Both paths begin with the same input image of size H ×

W × 3.

The left path employs a ResNet structure similar to MSFANet,

processing the input through four sequential layers (Layer 0-3). At

each layer, the feature map undergoes downsampling, reducing its

spatial dimensions by half. These features then pass through

convolutional layers (conv1-conv4), which adjust the channel

dimensions to match the number of target categories (N).

The right path implements a lightweight version of Swin

Transformer (“SWin-T”) for efficient feature processing. This

path divides its processing into four stages (Stage 1-4). Initially,

the input image is partitioned into 16 non-overlapping patches per

channel, creating 48 patches total for the three-channel input. The

first stage performs Linear Embedding, converting these 48 patches

into 96 feature vectors, which then proceed through the Swin

Transformer Block.

In Stages 2, 3, and 4, Patch Merging operations progressively

combine patches while doubling the channel count. After each stage, a

convolutional layer (conv5-conv8) adjusts the output features to match

the dimensions of the corresponding left path features.

The two paths merge through the Cross Integration Module

(CIM), which enables effective information exchange between

different scales of features from both paths. The final processing

stage generates feature maps at 1/8, 1/4, and 1/2 scales of the

original input. These undergo successive upsampling and channel

fusion operations, denoted by ‘C’ in the architecture diagram,

shown in Figure 4. A final upsampling step produces the

segmented image at the original resolution.

3.7.2 Swin Transformer Block
Figure 5 shows the network structure of the Swin Transformer

Block. By using the W-MSA and MLP (Multilayer Perceptron)

modules alternately, and combining with the Layer Normalization

(LN) layer, the module can effectively capture the local and global

information of images and achieve efficient extraction of image

features. Among them, the W-MSA module is responsible for

feature interaction in the local window, while the SW-MSA

module is responsible for feature interaction across the window.

In this way, the model can effectively capture the global information

of the image and enhance the understanding of image features. On

the basis of the self-attention mechanism, MLP module further
FIGURE 2

Category distribution of mangrove remote sensing image
segmentation dataset.
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enhances the expressive ability of the model through nonlinear

transformation. LN layer can improve the training stability and help

the model converge faster by normalizing the input features. Swin

Transformer Block calculation process is shown in Equation 1.

Z = W −MSA(LN(zl−1)) + zl−1

ẑ l = MLP(LN(ẑ l)) + ẑ l

Ẑ l+1 = SW −MSA(LN(zl)) + zl

zl+1 = MLP(LN(ẑ l+1)) + ẑ l+1

(1)

Where, ẑ l and zl represent the output characteristics of W-MSA

and SW-MSA modules and MLP modules respectively, and l

represent the number of layers of Swin Transformer Block.

In summary, by combining the advantages of residual neural

networks ResNet and Swin Transformer, the TCCFNet model uses

multi-scale feature fusion and attention mechanism to improve the

semantic segmentation performance of mangrove remote sensing images.

3.7.3 Cross Integration Module
CIM is a specialized neural network component that combines

and enhances feature information from multiple network layers. The

module acts as a bridge between different parts of the network,

enabling more efficient information flow and feature refinement.The

CIM module can be used to integrate feature information from

different levels to improve the model’s ability of target recognition.

The CIMmodule consists of two parts: the attention mechanism part
Frontiers in Marine Science 06
and the feature fusion part. Figure 6 shows the architecture of the

cross-integration module CIM.

The attention mechanism component processes feature maps from

multiple network layers. It takes inputs F1 and F3 from convolutional

neural networks, and F2 and F4 from Swin Transformer. Before

processing, F3 and F4 are upsampled to match the dimensions of F1

and F2. The processing follows these steps:
1. F1 and F2 undergo concatenation to create a 2C×H×W

feature map;

2. Global Average Pooling (GAP) extracts channel-wise global

information, producing a C-dimensional vector;

3. Sequential processing through convolution layers and

ReLU activation adjusts the channel count to C;

4. A Sigmoid activation function computes channel weights;

5. These weights are applied to the original feature map to

emphasize important channel information;

6. The weighted feature map is combined with F2 to produce

feature map F6.
In a parallel path, the 2C×H×W feature map passes through

SlimConv convolution, outputting a C×H×W feature map. This

path follows similar processing steps to generate feature map F7. F3

and F4 undergo identical processing after upsampling. This dual-

path approach enables effective fusion of features from different

network layers, enhancing model performance.
FIGURE 3

TCCFNet architecture.
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FIGURE 5

Swin transformer block.
FIGURE 4

TCCFNet output structure diagram.
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The feature fusion component uses the Cross Feature Fusion

Module (CFFM) to combine feature maps F5, F6, F7, and F8. The

CFFM consists of three FFM modules: one processing F5 and F8,

another processing F6 and F7, and a final module combining their

outputs into a C×H×W feature map.

The SlimConv module employs two Depthwise Convolution

layers for efficient feature processing. It transforms a 2C×H×W

input feature map into a C×H×W output map. This design offers

significant computational advantages over standard convolution

operations. The first convolution layer extracts local features and

reduces channel dimensions, while the second layer refines these

features to produce the final output map.

3.8 Experimental setup and
evaluation method

In this paper, mangrove remote sensing images are used to segment

the dataset, and the dataset is divided into a training set and a validation

set with a ratio of 8:2. During the training process, a learning rate

strategy with an initial learning rate of 0.0001 and 40% reduction every

80 iterations was adopted, and a total of 450 iterations were carried out.

In the experiment, a stable Adam optimizer was used, and the cross-

entropy loss function was used as the training objective to minimize the

difference between the model prediction results and the real labels.

Model performance evaluation indicators include mean crossover

ratio (MIoU), pixel accuracy (PA), F1-Score, and category pixel

accuracy to fully evaluate the segmentation capability of the model.

The calculation methods of the evaluation metrics used in this study,

including MIoU, PA, F1-score, and class-specific accuracies, are

detailed in Equations 1–6. These equations form the foundation for
Frontiers in Marine Science 08
the quantitative assessment of model performance. The specific

calculation formula is shown in Equations 2-6 respectively.

MIoU  ¼ 1
ko

k

i¼1

 TP
ðTP þ  FP þ  FNÞ (2)

PA  ¼  
(TP þ  TN)

ðTP þ  TN þ  FP þ  FNÞ (3)

F1� score ¼ 2ñPrecisionñRecall
Precisionþ Recall

(4)

Precision ¼ TP
TPþ FP

(5)

Recall ¼ TP
TPþ FN

(6)

The four basic elements involved are: true cases (TP), which are

positive samples that are correctly predicted by the model to be

positive; True negative example (TN), that is, a negative sample that

is correctly predicted by the model to be a negative class; False positive

examples (FP), that is, negative samples incorrectly predicted by the

model to be positive; False negative cases (FN), i.e. positive samples that

are incorrectly predicted by the model as negative classes.

4 Results

In order to illustrate the advantages of TCCFNet model, we

selected five models with excellent performance in recent years,

including A2-FPN, ABCNet Wang, 2020, BANet, DC-Swin and
FIGURE 6

CIM architecture diagram. (a) Cross Integration Module; (b) CFFM; (c) SlimConv; (d) DWConv Schematic Diagram.
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UNetFormer, and compared them with MSFANet model. As shown

in Table 1. The corresponding optimum values of the parameters

have been shown in bold.

Performance evaluation of TCCFNet revealed superior results

across all key metrics when compared to the six benchmark models.

Through comprehensive testing, we assessed the model’s

capabilities using three critical performance indicators: mean

intersection ratio (MIoU), pixel accuracy (PA), and F1-score.

These metrics provide a thorough evaluation of the model’s

effectiveness in mangrove remote sensing image segmentation.

Quantitative analysis shows that TCCFNet achieved an MIoU

of 88.34%, a significant improvement over existing approaches. This

result notably surpasses both MSFANet (86.02%) and DC-Swin

(86.26%), which previously represented the state-of-the-art

performance in this domain. The enhanced MIoU demonstrates

TCCFNet’s superior ability to balance class intersection and union

ratios, a crucial factor in accurate image segmentation.

The model exhibits exceptional capabilities in handling

complex scenarios and boundary detection. TCCFNet successfully

processes challenging scenes and accurately distinguishes

boundaries between different feature types. This ability is

particularly valuable in mangrove remote sensing applications,

where precise feature delineation is essential for accurate analysis.

Additional performance metrics further validate TCCFNet’s

effectiveness. The model achieved a pixel accuracy of 97.35% and

an F1-score of 93.55%, surpassing all comparative models. These

results demonstrate TCCFNet’s comprehensive excellence in both

pixel-level classification accuracy and overall segmentation

performance, establishing it as a robust solution for mangrove

remote sensing image segmentation tasks.

In order to analyze the advantages of TCCFNet in more depth,

we further compared the performance of the various models in

different categories, and the following points can be drawn:
Fron
1. Mangrove class accuracy: The pixel accuracy (PA) of

TCCFNet in mangrove class reached 99.04%, which was

significantly better than other models. This result shows
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that TCCFNet can accurately identify and segment

mangrove areas, greatly reducing the phenomenon of

missing and mismarking.

2. Robustness of the beach class: the pixel accuracy (PA) of

TCCFNet in the beach class reaches 90.25%. The tidal flat area

is difficult to identify because of its complex texture, fuzzy

boundary and easy to be confused with the surrounding ocean

and mangrove areas. TCCFNet’s outstanding performance in

this category demonstrates its ability to accurately segment

targets under complex background conditions.

3. Advantages of model structure: TCCFNet’s dual backbone

network structure and cross-integration module design

enable it to have a stronger performance in capturing

image details and global semantic information. This

design effectively suppresses the interference of

background noise, thus improving the performance of the

model on the whole index.
Figure 7 shows the comparison between TCCFNet model and

DC-Swin, A2FPN and UNetFormer model in six types of ground

object segmentation results. Four representative pictures were

selected for analysis in the experiment. The six types of features

are: background, mangroves, rivers and oceans, buildings and

roads, ponds and beaches. The results show that the TCCFNet

model performs well in the recognition of these six types of objects,

and has advantages in distinguishing similar types, dealing with the

size difference of objects, and coping with the class imbalance.

First, the TCCFNet model performed well in identifying

mangrove, river, and tidal flat areas. In the first row of images, the

TCCFNet model accurately identified all three areas, and was

particularly accurate in the division of the river. In contrast, the

other three models have varying degrees of spacing when dividing the

river, which indicates that the TCCFNet model has a better

understanding of the target as a whole. In addition, the color of the

red box area in the original image is similar to that of the mangrove

area, which is prone to category errors. Both A2-FPN and

UNetFormer models showed such misclassification in the
TABLE 1 Experimental results of different models on mangrove dataset.

Model MIoU(%) PA(%) F1-score(%)

PA(%)

Mangrove
River

and ocean
Mudflat

A2FPN 84.48 96.11 91.20 98.48 95.81 87.29

ABCNet 81.57 95.95 88.94 98.13 96.48 82.20

BANet 79.49 93.67 87.23 98.72 96.07 82.09

DC-Swin 86.26 96.83 92.42 98.88 96.01 89.69

UNetFormer 80.77 95.13 88.27 98.83 94.78 83.41

MSFANet 86.02 96.42 92.03 99.80 96.44 83.61

TCCFNet 88.34 97.35 93.55 99.04 95.29 90.25
Bold values represent the optimal performance for each metric.
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background region, while TCCFNet model performed well without

misjudgment, which indicates that TCCFNet model has stronger

performance in distinguishing similar categories. Secondly, the

TCCFNet model also performs well in handling the recognition of

different target sizes. In the picture in the second row, TCCFNet

model performs well in river segmentation, while the other three

models all have the problem of inaccurate river segmentation. In

particular, UNetFormer model performs worst, identifying large

rivers as tidal flat. In the third row of images, the TCCFNet model

was able to accurately identify mangroves, rivers, ponds and

backgrounds. In contrast, DC-Swin and UNetFormer models

identified ponds as rivers, and A2-FPN models performed well. In

addition, except for the TCCFNet model, the other three models have

small beach identification errors, indicating that the TCCFNet model

has a high overall recognition of large targets and a strong

understanding of small targets. Finally, the TCCFNet model still

performs well against categorically unbalanced datasets. In the fourth

row picture, the TCCFNet model can also accurately identify

buildings with less data, which shows that the model can still

maintain good performance in the case of unbalanced categories.
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5 Discussion

5.1 CIM availability

In order to verify the effectiveness of cross-integration module

(CIM) and make a comparison under fair experimental conditions,

this paper designs the following experiment on the premise of

keeping the overall structure of TCCFNet model unchanged: After

upsampling the F3 and F4 feature maps, concatenate them with the

F1 and F2 feature maps in channel dimension. In order to ensure

the smooth operation of subsequent feature fusion, a 1×1

convolution layer is used to process the spliced feature map and

unify the number of channels. This design preserves the core

structure of the TCCFNet and enables independent evaluation of

the effectiveness of the CIM module to ensure the reliability and

persuasbility of the experimental results.

The ablation experimental data of CIM module are shown in

Table 2. After the CIM module is removed, the model shows a

significant decline in various evaluation indicators, especially in

category pixel accuracy and MIoU indicators. Specifically, the F1-
FIGURE 7

Comparison of segmentation results of TCCFNet model.
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score dropped from 93.55% to 90.68%, pixel accuracy dropped from

97.35% to 96.02%, and the average IoU dropped from 88.39% to

83.41%. In terms of pixel accuracy across categories, there was a

drop in accuracy across all categories, especially in the “buildings

and roads” and “ponds” categories. The absence of CIM module

weakens the model’s ability in fine-grained feature extraction and

target recognition, indicating that CIM module plays a key role in

improving the model’s ability to distinguish complex scenes and

similar categories.
5.2 Generalization performance
of TCCFNet

In order to further verify the generalization performance of

TCCFNet model in the field of segmentation and the effectiveness of

solving image segmentation problems. This paper selected the Urban

Drone Dataset (UDD) dataset (Oh and Yoon, 2024) collected and

labeled by the Graphics and Interaction Laboratory of Peking

University for testing. The UDD dataset is a collection of drone

image datasets collected at Peking University, Huludao City, Henan

University and Cangzhou City, including vegetation, buildings, roads,

vehicles and five other types of ground objects. In this paper, UDD5

version is used, which contains 160 images and is divided into 120

training sets and 40 verification sets according to the ratio of 3:1 to

evaluate the segmentation effect of the model on the UDD5 data set.

According to the comparative analysis of experimental data in

Table 3, it can be seen that TCCFNet has the best performance in

MIoU index, reaching 74.56%. Compared with the new model A2-

FPN, DC-Swin and UNetFormer, TCCFNet has a significant

advantage in the MIoU index, which is about 3% higher than that

of A2-FPN (71.46%) and DC-Swin (71.14%) with better data. It

shows its excellent performance in semantic segmentation task.

This shows that TCCFNet has stronger segmentation ability in
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complex image environment, and can capture and recognize

different types of detail features more accurately.

In terms of PA index, TCCFNet performs well, reaching

89.17%. Compared with other new models, such as A2-FPN

(88.07%) and DC-Swin (88.35%), TCCFNet still has a significant

advantage in PA. This shows that TCCFNet has a higher

classification accuracy at the pixel level, can segment images more

accurately, and improves the overall segmentation effect. Especially

in the processing of complex mangrove remote sensing images,

TCCFNet can effectively reduce misclassification and improve the

reliability of segmentation results.

With a model size of 196MB, TCCFNet is not a lightweight

model (Liu et al., 2024; Shi et al., 2024), but it strikes a good balance

between performance and complexity. Compared with large models

such as DC-Swin (256MB) (Hüseyin Ü et al., 2024), the TCCFNet

model size is relatively moderate while maintaining high

performance. This balance makes TCCFNet highly practical in

practical applications, which not only ensures efficient

segmentation effect, but also does not affect deployment and use

because the model is too large.

As shown in Figure 8, in the comparison of segmentation results

on the UDD5 dataset, TCCFNet model performs particularly well in

various scenes, showing its advantages in complex image segmentation

tasks. By comparing the segmentation effects of different models, we

can more clearly see the advantages of TCCFNet.

As shown in the red box area in the first and second lines of

images, TCCFNet performs well in edge and shape recognition on

buildings, backgrounds and large areas of vegetation, with clear and

accurate segmentation boundaries. In contrast, the segmentation

boundaries of other models such as A2FPN and UNetFormer are

fuzzy, and it is difficult to distinguish the target accurately. This is

mainly due to TCCFNet’s use of Swin Transformer’s long-distance

dependency establishment capability and ResNet’s local detail

capture capability, which effectively improves the recognition rate

of large target areas, especially when dealing with complex urban

structures. The third line of images shows the performance of

TCCFNet in complex urban architecture scenes, and its

segmentation effect of buildings and roads is very accurate, with

clear boundaries, and it can accurately distinguish different

categories. Other models are weaker in this regard, with blurred

edges and difficulty distinguishing details. In the red box area in the

figure, TCCFNet is also very accurate in distinguishing vegetation

and roads, and the other three models all have misclassification.

TCCFNet improves feature representation capabilities through

cross-integration modules (CIM), enabling it to more accurately

identify and segment different categories in complex contexts. The

fourth line of images further demonstrates TCCFNet’s detail

processing capabilities in urban scenes. The boundary of the

segmentation result is clear, and the details of the road and the

vehicle can be accurately segmented. In contrast, UNetFormer and

DC-Swin are poor, as shown in the red box area in the figure, and

slightly lacking in detail. TCCFNet enhances the understanding of

image details and global semantics through cross-integration
TABLE 2 Comparison of ablation experimental data of CIM modules.

Index
Ablation test
data of the
CIM module

Complete
experimental

data

F1-score (%) 90.68 93.55

PA (%) 96.02 97.35

MIoU (%) 83.41 88.34

PA(%)

Background 90.22 92.44

Mangrove 98.69 99.04

River
and Ocean

94.89 95.29

Buildings
and Roads

74.26 83.51

Pond 85.73 96.19

Mudflat 89.25 90.25
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module (CIM), inhibits the influence of background noise, and

improves the segmentation accuracy. In the fifth row image,

TCCFNet still performs well in the boundary recognition of roads

and buildings, and the segmentation results are clear and accurate.

The small background category of the red box area in the figure can
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also be accurately identified, while other models are weak in this

respect and cannot be accurately distinguished. TCCFNet’s dual

backbone network structure and cross integration module (CIM)

enable it to achieve high precision segmentation results when

dealing with complex backgrounds and different size target regions.
TABLE 3 Comparison of MIoU, PA and model sizes of different models on the UDD5 dataset.

Model MIoU (%) F1-score (%) PA (%) Model size (MB)

A2-FPN 71.46 82.45 88.07 46.5

DC-Swin 71.14 70.99 88.35 256

UNetFormer 60.27 70.73 83.59 44.9

TCCFNet 74.56 84.67 89.17 196
FIGURE 8

Comparison of segmentation results of TCCFNet model.
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5.3 Limitations and challenges

TCCFNet model performs well in mangrove remote sensing

image segmentation, but there is still room for improvement in the

following aspects:
Fron
1. Model complexity and computational efficiency: TCCFNet

adopts the dual backbone structure of ResNet and Swin

Transformer, which improves segmentation performance

but requires a large amount of computation. You can try to

introduce lightweight Transformer or optimize the

convolutional layer design to reduce the model

complexity and improve the reasoning speed, so as to

better adapt to the actual application needs.

2. Generalization ability of diverse datasets: This paper shows

the model’s performance on mangrove datasets and UDD5

datasets, but does not include the broader remote sensing

datasets. Follow-up studies can validate the generalization

and application potential by testing the model on more

different types of data sets.

3. Segmentation performance of small targets: Although

TCCFNet performs well in the recognition of large target

areas, there is still room for improvement in the detail

segmentation effect of some small targets. The multi-scale

feature enhancement module can be considered to further

improve the accuracy of the model on small targets.

4. Optimization of data enhancement methods: conventional

data enhancement methods such as rotation and noise are

used in the model training process, but for the particularity of

ecosystems such as mangroves, more targeted enhancement

methods may be introduced, such as simulation of light

changes or more random occlusion, to improve the

robustness of the model in different environments.
6 Conclusion

In this paper, a two-channel cross-fusion network (TCCFNet) is

proposed to improve the accuracy and robustness of mangrove

remote sensing image segmentation. In order to solve the problems

of similar categories, complex details and blurred boundaries in

mangrove images, TCCFNet adopts a dual trunk network structure

and combines ResNet and Swin Transformer to capture local details

and global semantic information of images respectively, so as to better

adapt to different target scales and improve segmentation accuracy. In

order to enhance the feature fusion effect, TCCFNet designed a cross-

integration module (CIM), which uses the cross-attention

mechanism and feature fusion strategy to further strengthen the

model’s recognition ability of similar categories under complex

background, and effectively suppress background noise.

Experiments were conducted on mangrove remote sensing

image datasets and UDD5 urban datasets, and validated the

significant advantages of TCCFNet on several evaluation

indicators such as mean intersection ratio MIoU, pixel accuracy
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PA, and F1-score. Compared with mainstream algorithms such as

A2FPN, BANet, DC-Swin and UNetFormer, TCCFNet has shown

higher accuracy and robustness in complex scenes such as

mangrove areas, rivers and beaches, especially in large-area

targets and similar category differentiation. Ablation experiments

further prove the effectiveness of CIM module. After the removal of

CIM module, the segmentation performance of the model is

significantly reduced, especially in complex background and

similar category segmentation tasks.

However, the dual backbone structure of TCCFNet makes the

model more complex and computates a lot, which limits its

applicability in real-time applications. Therefore, the optimization

and simplification of the model is the focus of future improvement.

In addition, in order to further improve the generalization ability of

TCCFNet, it can be tested on more types of remote sensing data sets

in the future, and enhance its segmentation accuracy for small

target regions, such as the introduction of multi-scale feature fusion

module to improve detail resolution.
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