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Sensitivity analysis of drag
coefficient and length scale of
wind influence on tropical
cyclone intensity change using
net energy gain rate
Sunghun Kim1, Woojeong Lee2*, Seonghee Won2,
Hyoun-Woo Kang1, Kyeong Ok Kim1 and Sok Kuh Kang3

1Ocean Circulation & Climate Research Department, Korea Institute of Oceanography Sciences and
Technology, Busan, Republic of Korea, 2National Typhoon Center, Korea Meteorological
Administration (KMA), Jeju, Republic of Korea, 3School of Earth and Environmental Sciences, Seoul
National University, Seoul, Republic of Korea
Predicting tropical cyclones (TC) rapid intensification (RI) is one of the most

significant challenges. This study refines the Net Energy Gain Rate (NGR) metric

to improve TC intensity predictions, focusing on uncertainties in the drag

coefficient (Cd) at extreme wind speeds and the effective length scale of TC-

induced momentum transfer to the ocean (Rw). Using data from the western

North Pacific basin (2004–2021), we conducted sensitivity analyses with four Cd

parameterizations (increasing, decreasing, constant, and control) and varied Rw

from 0.5 to 4 times the radius of maximum wind (Rmax). Results indicate that Rw

=1Rmax consistently yields the highest correlation coefficient between NGR and

intensity change in 24-hour among all combinations, especially for strong TCs

(Category 3 or higher). Among the Cd parameterizations, the scenario where Cd

decreases at wind speeds exceeding 50 m s-1 showed superior performance in

capturing intensity changes. Multi-linear regression models incorporating NGR,

prior 12-hour intensity changes, and vertical wind shear confirmed that

decreasing Cd at Rw=1Rmax provides the most reliable predictions, achieving

the highest prediction performance in the TC intensity change in 24-hour. These

findings underscore the importance of accurately representing Cd behavior

under extreme wind conditions and precisely defining Rw to enhance the

predictive skill of NGR-based TC intensity forecasts.
KEYWORDS

drag coefficient, tropical cyclone intensity change, rapid intensification, air-sea
interactions, net energy gain rate
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1 Introduction

The rapid intensification (RI) of tropical cyclones (TCs)—

defined as an increase in wind speed of at least 30 knots within

24 hours—remains one of the most significant challenges in weather

forecasting. Accurate predictions of these sudden surges in intensity

are crucial for issuing timely evacuation orders, implementing

disaster response measures, and minimizing damage to both

infrastructure and human life (Kaplan and DeMaria, 2003;

Sampson et al., 2011; Rappaport et al., 2012). With the growing

destructiveness of tropical cyclones in a warming climate (Emanuel,

2005; Mendelsohn et al., 2012; Liu et al., 2020), coupled with their

shifting genesis and maximum intensity to higher latitudes (Kossin

et al., 2014; Daloz and Camargo, 2018; Sun et al., 2019; Shan and

Yu, 2020; Feng et al., 2021; Studholme et al., 2022), reliable RI

predictions have become more critical than ever for coastal

populations around the world.

Despite advancements in dynamic and statistical TC prediction

skills, including artificial intelligence techniques such as machine

learning algorithms and neural networks (Atlas et al., 2015; Kim

et al., 2018; Chen et al., 2020; Kumar et al., 2023; Wang et al., 2023;

Majumdar et al., 2023), improvements in forecasting TC intensity

have been modest (Rappaport et al., 2012; DeMaria et al., 2014;

Balaguru et al., 2018; Cangialosi et al., 2020). One of the primary

sources of intensity forecast errors lies in the challenges associated

with predicting RI. The complexity of RI processes arises from

intricate interactions between oceanic and atmospheric conditions,

including sea surface temperature, ocean heat content, vertical wind

shear, mid-level moisture, and internal storm dynamics (Kaplan

et al., 2015). While advancements in modeling techniques have

somewhat improved RI forecasts, accurately capturing the timing

and magnitude of these events remains challenging due to their

highly dynamic and nonlinear nature. As a result, significant gaps

persist in RI prediction, with current models still struggling to

identify and fully understand the key factors that drive its

occurrence and intensity (DeMaria et al., 2014; Cangialosi et al.,

2020; Huang et al., 2021; Jiang et al., 2022).

The surface heat flux between the ocean and atmosphere—

particularly the latent heat flux—is a key energy source for TC

development (Emanuel, 1986; Bryan, 2012; Green and Zhang, 2014;

Zhang and Emanuel, 2016). Among these, the latent heat flux is

dominant in TC intensification and is significantly affected by TC-

induced sea surface cooling (SSC). TC-induced SSC is determined

by the ocean’s initial thermal structure and the total amount of

momentum transferred from the TC’s winds to the ocean. Greater

momentum transfer leads to deeper vertical mixing, which brings

cooler water to the surface and intensifies SSC (Price, 1981; Sanford

et al., 2011). The total momentum transfer is controlled by wind

stress and the duration of the TC’s influence over a given area, itself

dictated by the storm’s translation speed and the effective radius of

its winds (Rw). While numerous studies have examined the role of

translation speed in SSC, relatively few have focused on the critical

impact of Rw (Li et al., 2024). As the length scale over which wind

stress effectively transfers momentum to the ocean, Rw influences

the TC’s residence time over specific ocean regions and
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consequently affects the magnitude of SSC. Therefore, a targeted

sensitivity analysis of Rw is essential for accurately representing

ocean conditions during a TC’s passage.

The drag coefficient (Cd) is a critical factor in determining wind

stress, as it directly controls the efficiency of momentum transfer

from the wind to the ocean. A higher Cd increases wind stress,

amplifying the force exerted on the ocean surface. This enhanced

wind stress leads to deeper vertical mixing and enhanced SSC,

significantly influencing the energy available for a TC to intensify.

Additionally, increased Cd results in greater frictional dissipation in

the atmospheric boundary layer, dissipating the TC’s energy and

directly affecting its intensification process (Kim et al., 2022; Lee

et al., 2022). Given its significant impact on both processes, accurate

parameterization of Cd is crucial for improving TC intensity

predictions. Generally, Cd increases with wind speed under low to

moderate conditions—up to approximately 30 m s-1—but decreases

or levels off at higher wind speeds (Powell et al., 2003; Jarosz et al.,

2007; Edson et al., 2013; Donelan, 2018; Richter et al., 2021).

However, due to limited observational data under extreme wind

conditions, conflicting results persist regarding Cd’s behavior at

extreme wind speeds exceeding 50 m s-1 (Richter et al., 2016). Some

studies suggest that Cd decreases at these high wind speeds (Richter

et al., 2021; Lee et al., 2022), while others report that it increases

(Soloviev et al., 2014; Donelan, 2018), levels off (Takagaki et al.,

2012; Wang et al., 2024), or shows no clear trend (Bell et al., 2012).

This uncertainty poses a significant challenge for accurately

modeling air-sea interactions and predicting TC intensity,

especially during RI events.

The Net Energy Gain Rate (NGR), introduced by Lee et al. (2019),

builds upon the maximum potential intensity (MPI) framework

(Emanuel, 1988) to quantify the energy exchange between the ocean

and the atmosphere during TCs. In their study, they utilized a realistic

wind-dependent parameterization of Cd, suggested in previous

observation-based research, to calculate frictional dissipation.

Additionally, instead of using sea surface temperature, they employed

depth-averaged ocean temperature to compute the energy generation

term, allowing NGR to provide a more accurate representation of TC

energy dynamics. This metric strongly correlates with 24-hour TC

intensity changes, outperforming traditional predictors like MPI and

Intensification Potential (POT) in forecasting intensity changes (Lee

et al., 2019). Moreover, statistical model tests incorporating NGR

demonstrate significantly improved predictive skills for RI,

highlighting its potential as a valuable tool for enhancing TC

intensity forecasts (Kim et al., 2024).

Building upon the challenges in accurately modeling air-sea

interactions and predicting TC RI, this study aims to enhance the

reliability of TC intensity forecasts by refining NGR metrics.

Specifically, we address two critical uncertainties that may impact the

predictability of NGR: Rwand the relationship between Cd and high

wind speeds exceeding 50 m s-1. Firstly, due to the uncertainty

surrounding Cd at extreme wind conditions, we calculate four

different NGR values, each considering the various possible behaviors

of Cd under extreme winds. This method addresses existing

uncertainties in the frictional dissipation and representation of wind

stress, as well as its effects on the flux exchanges. Secondly, we conduct
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a comprehensive sensitivity analysis of Rw to systematically evaluate its

impact on TC-induced vertical mixing and the predictability of NGR.

This aims to optimize the NGR calculations to capture oceanic

conditions more accurately during the TCs. The data and

methodologies employed in this research are detailed in Section 2.

Section 3 examines the effects of the four different Cd parameterizations

on NGR and conducts a sensitivity analysis of Rw. Finally, Section 4

presents our discussions and summarizes the study’s key findings.
2 Data and methods

2.1 Data

This study used version v04r01 of the International Best Track

Archive for Climate Stewardship (IBTrACS) dataset (Knapp et al.,

2010). The best track data include various information derived from all

forecasting agencies, such as the geographic locations of TC centers,

maximum sustained wind speed, minimum central pressure, translation

speed, radius of maximum wind, and other relevant parameters. We

analyzed data provided by the Joint Typhoon Warning Center from

2004 to 2021. In this study, TCs are defined as storms with a maximum

surface wind speed of over 34 knots occurring in the western North

Pacific (WNP) basin, which is the region between 0°–60°N latitude and

100°–180°E longitude. To simplify the analysis and avoid possible

uncertainties introduced by interpolation, we used the 6-hour interval

track data. Cases in which the TC was within 259 km of the coastline—

corresponding to the global mean radius of 34kt winds plus one

standard deviation, based on a statistical analysis of TCs from 2001 to

2017 (Kim et al., 2022)—were excluded from the analysis to minimize

the influence of topography.

Several oceanic and atmospheric variables were examined to

calculate the NGR and mixing depth for individual TCs in the

WNP. Sea surface temperature (SST), DAT, and ocean temperature

and salinity profiles were obtained from the Hybrid Coordinate Ocean

Model (HYCOM) Navy Coupled Ocean Data Assimilation (NCODA)

nowcast/forecast system provided by the Naval Research Laboratory.

The HYCOM-NCODA data used include daily outputs for 2004–2018

and 6-hourly outputs for 2019–2021. The HYCOM salinity and

temperature profiles below the water surface were interpolated at

regular depth intervals of 1 m between 1 m and 500 m. The NGR

values were obtained based on Emanuel’s ‘pcmin.f’ Fortran function,

which is available online (pcmin_2013.f). The atmospheric variables

required to calculate NGR—air temperature, relative humidity, and

mean sea level pressure—were obtained from the Global Forecast

System (GFS) analysis data provided by the NCEP. The GFS data have

spatial resolutions of 1° × 1°for 2004–2016 and 0.5° × 0.5°for 2017–

2021, with 6-hour temporal resolution. All atmospheric and oceanic

variables were averaged within a radius of 200 km from the storm

center using prestorm conditions (3 days prior) (Lee et al., 2019, 2022;

Kim et al., 2022, 2024; Moon et al., 2022).

In this study, our ultimate goal is to develop an operational

model for predicting TC RI using GFS forecast fields as input. To

achieve this, we have trained our model with GFS analysis fields.
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Notably, the 6-hourly gridded analysis data provided by NOAA’s

NCEI has been available only from March 2004 onward.

Consequently, our overall analysis period was chosen to align

with these data availability constraints.
2.2 Net energy gain rate

NGR measures the difference between the enthalpy flux out of

the sea surface (G) and the surface frictional dissipation of energy

(D) in the atmospheric boundary layer, which is defined as:

NGR = G − D =
DAT − T0

T0
CkrVs(k*0 − k) − Cd(vs)rV

3
s

where DAT is the depth-averaged ocean temperature, T0 is TC

outflow temperature determined by the atmospheric vertical profile,

Ck is enthalpy exchange coefficient, r is the air density, Vs is surface

wind speed, k*0 is saturation enthalpy of the sea surface, k is surface

enthalpy in the TC environment. DAT is computed as:

DAT =
1
d

Z 0

−d
Ti(z)dz

where Ti is the initial ocean temperature, and d is the mixing

depth discussed in Section 2.4.
2.3 Drag coefficient parameterizations for
extreme winds

Owing to uncertainties in Cd under extreme wind conditions

(Powell et al., 2003; Donelan, 2018; Soloviev et al., 2014; Richter

et al., 2021; Lee et al., 2022; Wang et al., 2024), we evaluate four

different parameterizations that reflect possible behaviors of Cd for

winds above 50 m s-1. Following Kim et al. (2022), we considered four

different behaviors of the drag coefficient Cd: three experimental Cd

fittings and one control fitting. All three experimentalCd fittings are the

same up to 50 m s-1 but show different trends after 50 m s-1: increasing

(CD_IC), decreasing (CD_DC), and constant (CD_CN) (Figure 1).

These Cd fittings (CD_IC, CD_DC, CD_CN) range from 1 × 10−3 to 2.5

× 10−3 for wind speeds below 50 m s-1, which are within the range of

field and experimental study results (Powell et al., 2003; Jarosz et al.,

2007; Edson et al., 2013; Soloviev et al., 2014; Donelan, 2018; Richter

et al., 2021). In the control experiment (CD_DN), we used the Cd from

Donelan et al. (2004), where Cd increases up to 33 m s-1 (consistent with

the other three experimental Cd fittings) but saturated beyond 33 m s-1.
2.4 Depth of TC-induced mixing and
sensitivity analysis of Rw

To estimate the depth of TC-induced mixing (d), we use Price

(2009) method, which links vertical turbulent mixing to the TC

wind forcing under the criterion that the bulk Richardson number

of the surface mixed layer should not be less than 0.6 (Price, 1981):
frontiersin.org

https://doi.org/10.3389/fmars.2025.1536014
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Kim et al. 10.3389/fmars.2025.1536014
g½r(z = −d) − −1
d

Z −d

0
r(z)dz�d

r0( t
r0d

Rw
Uh

S)2
≥ 0:6  

where g is the acceleration due to gravity, r(z) is the density

profile derived from ocean temperature and salinity profiles, r0 is

the reference density, t is the wind stress, S is the non-dimensional

storm speed (S = 1.2) (Price et al., 1994), and Rw=Uh represents the

TC’s residence time over a given location. In many studies, Rw/Uh is

taken as 4Rmax/Uh (Price, 2009; Pun et al., 2019; Kim et al., 2022;

Moon et al., 2022), assuming the ocean is mixed by the time the TC

has completely passed. However, Because the ocean encountered by

the TC during its intensification is still in the process of mixing and

not yet fully mixed, using this method may lead to an

overestimation of SSC. To address this issue, we conducted

sensitivity experiments by varying Rw from 0.5Rmax to 4Rmax

increments of 0.5Rmax. This systematic approach identifies the Rw
value that yields optimal NGR-based prediction of 24-hour

intensity changes, especially during RI events.
3 Results

3.1 Sensitivity analysis of Cd
parameterizations and Rw values

To investigate how different Cd parameterizations and values of

Rw affect 24-hour TC intensity changes, we performed a series of

sensitivity analyses using four different Cd parameterizations—

CD_IC, CD_DC, CD_CN, and CD_DN—along with varying

values of Rw(from 0.5 to 4 times Rw). For each combination of Cd
Frontiers in Marine Science 04
and Rw, we calculated the NGR, and analyzed the correlation

coefficients between NGR and observed 24-hour changes in TC

intensity. Because the four Cd parameterizations show significant

divergence for wind speeds above 50 m s-1, we separately considered

all TCs (tropical storm or higher) and strong TCs (Saffir-Simpson

Category 3 or higher).

Figure 2 compares the correlation coefficients between NGR

and observed 24-hour intensity changes across the tested Rw and Cd

combinations. Although some Cd parameterizations achieve

relatively high correlations at Rw = 0.5 Rw, the highest correlation

among all combinations appears at Rw = 1 Rw, especially for

stronger TCs (≥ Cat3). Among the Cd parameterizations, CD_DC

and CD_CN consistently exhibit higher correlations, whereas

CD_IC (Figure 2, red solid line) generally shows the weakest

correlation across all Rw values—even lower than the control

(CD_DN; Figure 2, purple solid line).

In strong TCs, where most RIs occur (Lee et al., 2016), CD_DC

showed the highest correlation coefficients in the all Rw range.

CD_DC, where Cd decreases after 50 m s-1, notably shows improved

performance in capturing TC intensity changes, particularly strong

TCs experiencing RI events. This aligns with the findings of Lee

et al. (2022), which demonstrated that a decreasing Cd

parameterization significantly reduces the underestimation of TC

intensity in numerical models and provides the best prediction

performance for intense storms. This agreement further

underscores the importance of accurately parameterizing Cd for

capturing RI dynamics.

Figure 3 illustrates the effect of Rw values and Cd

parameterizations on the d and DAT for TCs of tropical storm

intensity (≥ TS) and strong TCs (≥ Cat 3). The wind stress is

proportional to the Cd times the wind speed squared (Rieder et al.,
FIGURE 1

Comparison of drag coefficients (Cd) parameterizations presented in previous studies as a function of 10-meter wind speed. The Cd

parameterizations used in this study are highlighted in the legend with gray shading.
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1994; Powell et al., 2003); this indicates that decreased or constant

Cd under high wind reduces the momentum flux into the ocean

compared to increased Cd, inhibiting vertical mixing of the upper

ocean. Consequently, SSC in the CD_DC and CD_CN experiments

is reduced, resulting in a higher DAT than CD_IC and CD_DN.

Moreover, as Rw increases (implying longer residence time of the

TC over a given location), d also increases—an effect that is

particularly notable in strong TCs. However, the correlation

analysis (Figure 2) reveals that the correlation coefficients drop

significantly as Rw increases, especially in cases with higher Cd

values. Given that Rw in NGR calculations only affects the

estimation of d, the decrease in correlation with increasing Rw
suggests that this trend is likely due to an overestimation of d. The

CD_CN (CD_DC), Rw = 1Rmax combination, which had the highest

correlation coefficient, showed an average mixing depth of 53 m (52

m) and a median of 50 m (50 m). These values align with the findings

of Lee et al. (2019), where the 50 m depth-averaged temperature-

based NGR demonstrated the highest prediction performance.
3.2 Multi-linear regression
model performance

To further quantify the influence of these findings on TC

intensity predictions, multi-linear regression models were

developed for all combinations, and their skill was evaluated.

Following Lee et al. (2019), the predictors included NGR, the

previous 12-hour intensity change, and vertical wind shear. The

models were trained using data from 2004 to 2017 and evaluated on

independent data from 2018 to 2021. We used Principal

Component Regression to address multicollinearity, ensuring

robust and efficient predictions.
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For both tropical storm intensity TCs (≥ TS) and strong TCs (≥

Cat 3), the highest coefficient of determination (R2) and lowest

mean absolute error (MAE) are observed in combinations using Rw

= 1Rmax (Figure 4). Among these, the Cd parameterization with

CD_DC consistently demonstrates the best predictive performance,

suggesting that Rw = 1 Rmax is the most suitable value for capturing

the relationship between NGR and 24-hour TC intensity changes.

This result aligns closely with the findings from the

correlation analysis.

When Rw exceeds 1 Rmax, both R2 and MAE degrade for all Cd

parameterizations, particularly for strong TCs (≥ Cat 3). This

pattern indicates that larger Rw values are less effective in

accurately representing the TC-induced mixing. Both R2 and

MAE analyses highlight the poor performance of CD_IC and

CD_DN across all Rw values. CD_IC, in particular, shows the

lowest R2 and highest MAE. By comparing the performance of

the Cd parameterizations, those that exhibit significant differences

above 50 m s-1, the behavior of Cd under extreme wind conditions

can be indirectly inferred. The contrasting predictive performance

of CD_DC and CD_IC for strong TCs (≥ Cat 3) indirectly suggests

that Cd behavior under extreme wind speeds is more consistent with

a decreasing trend. This supports the hypothesis that reduced

frictional dissipation and suppressed SSC are critical for

accurately capturing the dynamics of RI (Kim et al., 2022; Lee

et al., 2022). Thus, CD_DC appears better suited for NGR-based TC

intensity predictions, as it aligns more closely with the observed

physical processes during extreme wind events.

The R² and MAE values obtained using the CD_DC are similar

to those reported by Lee et al. (2019) when using the 50 m DAT-

based NGR. In Lee et al. (2019), attempts were made to calculate

NGR using SSTs that reflected mixing depths based on TC intensity

rather than a fixed-depth average. However, those results did not
FIGURE 2

Comparison of correlation coefficients between NGR and the 24-hour intensity change based on different Cd fittings as a function of Rw (in units of
Rmax). (A) shows results for TCs at tropical storm intensity or higher (≥ Tropical Storm), while (B) represents those rated at category three or higher
on the Saffir-Simpson scale (≥ Cat 3).
frontiersin.org

https://doi.org/10.3389/fmars.2025.1536014
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Kim et al. 10.3389/fmars.2025.1536014
outperform the more straightforward 50 m DAT approach.

Regardless of the Cd parameterization, the d at Rw= 1Rmax, which

showed the highest correlation coefficient, is around 50–60

m (Figure 3).

However, the regression model combining CD_DC with Rw =

1Rmax shows improved predictive performance compared to the

fixed-depth 50 m DAT-based NGR model. Specifically, during the

training period (test period), the CD_DC and Rw = 1Rmax model

achieved an R2 of 0.57 (0.54) and MAE of 11.0 (11.8) kt,

outperforming the fixed-depth model, which had an R2 of 0.54

(0.51) and MAE of 11.4 (12.3) kt. These improvements indicate that

a more realistic representation of ocean response—calculated by

adequately incorporating TC-specific information—can yield

higher predictive performance than a uniform 50 m mixing

depth. Furthermore, given that the predictive performance of Rw
= 4Rmax used before the sensitivity analysis (as evaluated in Lee

et al., 2019) was lower than the prediction based on the 50 m DAT,

our results demonstrate that carefully tuned sensitivity analyses can

significantly improve predictive skill.
Frontiers in Marine Science 06
4 Summary and discussion

This study conducted a comprehensive sensitivity analysis to

investigate the impact of the Cd and the Rw on the NGR and,

consequently, on TC intensity changes within 24 hours. By

evaluating four different Cd parameterizations—increasing (CD_IC

), decreasing (CD_DC), constant (CD_CN), and the control

(CD_DN)—and varying Rw from 0.5 to 4 times the Rmax, we aimed

to refine NGR calculations to enhance the predictability of RI events.

The results consistently showed that the highest correlations between

NGR and observed 24-hour TC intensity changes among all

combinations appear at Rw = 1 Rw, particularly for strong TCs

(Category 3 or higher). Among the Cd parameterizations, CD_DC

—where Cd decreases above 50 m s-1— produces the best predictive

performance, followed by CD_CN. This finding aligns with previous

studies indicating that a decreasing Cd in extreme winds reduces the

negative bias of TC intensity prediction in numerical models (Lee

et al., 2022). Furthermore, the analysis of d and DAT revealed that Cd

parameterization and Rw values significantly influence upper-ocean
FIGURE 3

Box plot comparison of TC-induced vertical mixing depth (d; upper panels) and the depth-averaged temperature (DAT; bottom panels) as a function
of Rw (in units of Rmax) based on different Cd fittings. (A, C) Results for TCs at tropical storm intensity or higher (≥ Tropical Storm). (B, D) Results for
TCs rated at category three or higher on the Saffir-Simpson scale (≥ Cat 3).
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response, which in turn affects TC intensity changes. A lower or

constant Cd at high wind speeds, as seen in CD_DC and CD_CN,

reduces oceanmomentum flux, leading to weaker vertical mixing and

higher DAT. This mechanism helps sustain warmer sea surface

conditions, which are crucial for TC intensification. While

increasing Rw results in a greater d, particularly in strong TCs, the

correlation analysis suggests that higher Rw values lead to a decline in

correlation coefficients, likely due to d overestimation. The CD_CN

(CD_DC) and Rw =1 Rmax combination exhibited the best correlation

and optimal mixing depth (~50 m), aligning with prior studies

demonstrating the predictive advantages of a 50 m depth-averaged

temperature-based NGR (Lee et al., 2019). In addition, multi-linear

regression models that incorporate NGR, previous 12-hour intensity

changes, and vertical wind shear were developed to assess predictive

performance. The highest R2 and the lowest MAE are achieved with

the combination of CD_DC and Rw = 1Rmax, further confirming the

findings from the correlation analysis. This consistency between the

regression model results and the correlation analysis strengthens the
Frontiers in Marine Science 07
conclusion that the CD_DC and Rw = 1Rmax combination provides

the most reliable framework for predicting 24-hour TC intensity

changes, particularly for strong TCs experiencing RI events. These

findings reinforce the importance of optimizing Cd parameterization

and Rw selection to improve TC intensity prediction, particularly for

RI events.

Wang et al. (2021) introduced a modified energy-based

dynamical system model to explain how the TC intensification rate

(IR) varies with storm intensity. According to their findings, the IR

depends on the balance between intensification potential (IP) and

frictional dissipation, with the IR peaking at an intermediate intensity

(30–40 m s-1) before decreasing. A key contribution of their model is

the concept of dynamical efficiency, which is governed by inertial

stability and clarifies why the IR initially increases but then declines as

TC intensifies. The NGR approach focuses on the imbalance between

frictional dissipation and enthalpy flux from the sea surface. Kim

et al. (2022) demonstrated that the reduction in frictional dissipation

within specific intensity ranges where Cd decreases sharply leads to an
FIGURE 4

Comparison of the R² (A, B; upper panels) and the Mean Absolute Error (MAE; C, D; bottom panels) of multi-linear regression models as a function
of Rw (in units of Rmax) based on different Cd fittings. (A, C) Results for TCs at tropical storm intensity or higher (≥ Tropical Storm). (B, D) Results for
TCs rated at category three or higher on the Saffir-Simpson scale (≥ Cat 3). Solid lines represent model performance during the training period
(2004-2017), while dashed lines represent the results of the test period (2018-2021). The multi-linear regression model incorporates NGR, previous
12-hour intensity change, and 850- to 200-hPa vertical wind shear as predictors, following Lee et al. (2019).
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increase in NGR, which in turn enhances IR in those storm intensity

ranges. This aligns closely with the results of Wang et al. (2021),

where a large IP relative to frictional dissipation (i.e., high NGR) leads

to a higher IR.

Li et al. (2024) found that while a larger size contributes to a higher

steady-state intensity, it also reduces the energy conversion efficiency,

resulting in two opposing effects that limit the overall impact of size on

IR. This study supports the validity of Wang et al. (2021)’s theory and

highlights that TC size plays a secondary role in determining

intensification rate compared to intensity. However, these results are

derived from an atmosphere-only model without considering ocean-

atmosphere coupling. TC size significantly influences momentum

transfer to the ocean, which in turn affects SSC. Therefore, analyses

of TC IR in relation to TC size should consider oceanic feedback to

ensure a more comprehensive understanding.

Kim et al. (2022) quantitatively demonstrated that the reduction

in Cd for wind speeds exceeding 33 m s-1, using the same

parameterization applied in this study, contributes to the increase

in NGR through both reduced frictional dissipation and suppressed

SSC. Specifically, 75% of the NGR increase was due to reduced

frictional dissipation, while 25% was attributed to decreased SSC

(DAT increase). This increase in NGR was observed primarily within

the TC intensity range (33-50 m s-1), where RI commonly occurs.

This finding highlights that Cd reduction plays a dual role in

enhancing the available energy for TC intensification, emphasizing

both frictional and oceanic thermal effects.

Although the behavior of Cd at wind speeds exceeding 50 m s−1

remains uncertain, Kim et al. (2022) demonstrated that a

parameterization in which Cd decreases beyond this threshold (i.e.,

CD_DC) most accurately reproduces the bimodal distribution of

lifetime maximum intensity (LMI) in global TCs. Building on this,

Lee et al. (2022) introduced an indirect method for estimating Ck/Cd

at extreme wind speeds by matching observed LMI with the
Frontiers in Marine Science 08
theoretical MPI. This refined parameterization, which includes a

decreasing Cd above 50 m s−1, has been shown to improve intensity

forecasts by reducing prediction errors by up to 32% compared to

traditional models, highlighting its effectiveness for capturing high-

wind dynamics. This result aligns with the findings of Kim et al.

(2022), which highlight two key roles of decreasing Cd: reducing

frictional dissipation and limiting SSC. These processes contribute to

an increase in excess energy, which enhances TC IR. Consequently,

this helps mitigate the underestimation of intense TC simulations, a

common issue in TC-ocean coupled models.

In this study, we found that applying Rw = 1Rmax instead of the

conventional 4 Rmax approach reduces the NGR-based TC intensity

prediction error by about 10% (Figure 4C; CD_DC, training period).

This improvement becomes especially relevant when considering that,

during intensification, a TC interacts with an ocean in the midst of an

active mixing process rather than one that is already fully homogenized.

The traditional assumption of 4 Rmax implicitly treats the upper ocean as

if it were thoroughly mixed by the time the storm passes, which can lead

to an overestimation of SSC and subsequently inflate forecast errors in

24-hour intensity change. The roughly 10% reduction in forecast error

underscores the importance of selecting an appropriate Rw to avoid

overestimating SSC and to better represent the energetics of the storm–

ocean system, particularly when RI is likely to occur.

While our study addresses several key uncertainties, notable

limitations remain. Yablonsky and Ginis (2009) have shown that the

SSC induced by slow-moving TCs (< 5 m s-1) differs substantially

between three-dimensional (3D) and one-dimensional (1D) ocean

models. Slow-moving TCs induce prolonged mixing and upwelling,

resulting in a deeper mixed layer andmore significant SST cooling (Tsai

et al., 2008; Chu et al., 2020; Yu et al., 2023; John et al., 2024). This

suggests that upwelling is crucial in accurately modeling SSC for slow-

moving TCs. To assess the impact of TC translation speed on the

correlation coefficient of NGR, TCs were divided into two groups: those
FIGURE 5

Comparison of correlation coefficients between NGR and the 24-hour intensity change based on different Cd fittings as a function of Rw (in units of
Rmax). (A) shows results for slow-moving TCs (≤ 5.1 m s-1), and (B) represents fast-moving TCs (> 5.1 m s-1). The threshold of 5.1 m s-1 corresponds
to the median translational speed of analyzed TCs in the western North Pacific.s
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with translation speeds ≥ 5.1 m s-1 and those with speeds < 5.1 m s-1.

The results indicate that the predictive skill of NGR is significantly more

excellent for fast-moving TCs (Figure 5). This difference in performance

can be attributed to the limitations of the 1D mixing depth estimation

model used in this study, which does not account for upwelling.

Therefore, to improve the accuracy of NGR calculations for these

storms, future work should incorporate a 3D process such as upwelling.

In this study, the Ck was assumed to be a constant in NGR

calculations. However, Cd and Ck are crucial in determining TC

intensity (Zhang and Emanuel, 2016; Sroka and Emanuel, 2022).

The assumption of a constant Ck overlooks the potential impact of

wind-speed-dependent changes in enthalpy flux, particularly under

extreme wind conditions where sea spray becomes significant

(Andreas and Emanuel, 2001; Andreas, 2011). Future studies

should investigate the wind-speed dependency of Ck and its

interaction with Cd to better represent the energy exchanges

during TCs. Collecting more observational data on Cd and Ck

under extreme wind conditions is also crucial. Such data would

help validate and refine the parameterizations used in predictive

models, reducing uncertainties and improving forecast accuracy.

This study underscores the critical importance of accurately

parameterizing both the Cd and Rw in modeling the energy

exchanges central to TC intensification. By refining these

parameters within the NGR framework, we have demonstrated

improved predictive skills for RI events. Our sensitivity analyses

suggest that a decreasing Cd for wind speeds above 50 m s-1,

together with a Rw set to 1Rmax, can effectively limit excessive

frictional dissipation and sea surface cooling—both of which are

essential for maintaining the latent heat flux needed to fuel high-

intensity storms. Nevertheless, the scarcity of in situ observations

under extreme wind conditions highlights the challenges in deriving

definitive empirical values for Cd (and possibly Ck). While our

results, based on model analysis data, align with the decreasing Cd

behavior indicated in prior work (Kim et al., 2022; Lee et al., 2022),

we acknowledge that deeper insight into TC-induced ocean mixing

requires additional observational validation. For instance, Argo

float measurements collected during a storm’s passage could

directly estimate the mixing depth, enabling more precise

momentum-transfer calculations. Incorporating such real-time

observational data is inherently difficult—especially in an

operational forecasting context—but remains a vital goal for future

research. Finally, our findings highlight the need for further

improving the realism of TC-ocean coupled models, particularly by

incorporating three-dimensional ocean processes and wind-speed-

dependent changes in both Cd and Ck. Such enhancements would

help mitigate the systematic underestimation of intense TCs and

strengthen the reliability of intensity forecasts. Continued

investigations in this domain are crucial not only for advancing the

scientific understanding of TC dynamics but also for reducing the

societal impacts of these devastating phenomena through more

accurate prediction and preparedness.
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