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Real-time prediction of
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on EMD-PSO-RBFNN
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Ronghui Li2 and Jingyu Guan1

1Naval Architecture and Shipping College, Guangdong Ocean University, Zhanjiang, China,
2Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching,
Guangdong Ocean University, Zhanjiang, Guangdong, China
Addressing the spatial variability, temporal dynamics, and non-linearity

characteristics of port water levels, a hybrid prediction scheme was proposed,

which integrates empirical mode decomposition (EMD) with a radial basis function

neural network (RBFNN), optimized using the particle swarm optimization (PSO)

algorithm. First, through the application of EMD, the port water level time series

was decomposed into sub-series characterized by lower non-linearity.

Subsequently, PSO was applied to fine-tune the center and spread parameters

of the RBFNN, thereby enhancing the model’s predictive performance. The

optimized PSO-RBFNN model was employed to make predictions on the

decomposed sub-series. Finally, reconstruction of the predicted sub-series

yielded the final water level predictions. The feasibility and effectiveness of the

proposedmodel were validated usingmeasured port water level data. Results from

simulations highlighted the model’s ability to deliver accurate predictions across

various lead times. Furthermore, comparative analysis revealed that the proposed

model outperforms alternative methods in port water level prediction. Therefore,

the proposed model serves as a reliable, efficient, and real-time prediction tool,

providing robust support for port operational safety.
KEYWORDS

port water level prediction, radial basis function neural network, particle swarm
optimization algorithm, empirical mode decomposition, hybrid model
1 Introduction

Port water level refers to the vertical distance of the water surface within a port relative

to a reference plane. It is typically influenced by various factors, including waves, river flow,

climatic changes, and the geological conditions of the port (Christodoulou et al., 2019;

Rabinovich, 2010). The variation in port water levels is a variable process, characterized by

spatial variability, temporal dynamics, and non-linear properties. Excessively high or low

water levels can significantly impact port scheduling, ship entry, and departure, as well as
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cargo loading and unloading operations (López and Pina, 1988). In

particular, during typhoons making landfall near ports, abnormally

high water levels may lead to substantial economic losses. Accurate

prediction of port water level is essential for port construction and

design, environmental protection, vessel operations, and

recreational activities. Therefore, real-time and precise predictions

of port water level are critical for preventing vessel grounding,

avoiding in-port collisions, managing ports and waterways, and

optimizing ship scheduling.

The phenomenon of harbor resonance (López et al., 2012),

caused by the interaction between harbor waters and ocean-

generated waves through multiple openings, results in continuous

fluctuations in the water level within the port. Additionally, tidal

influences, driven by celestial bodies, impact the sea level every 12

hours. Some ports experience significant water level fluctuations at

different times of the year along their navigational channels (Nur

et al., 2020), and these variations have a profound impact on port

operability (Gracia et al., 2019). Monitoring the port water level is a

critical task. For example, Ulm et al. (2016) investigated the impact

of Egmont Key’s loss on storm surge water levels and wind waves

along the Tampa Bay coastline through sensitivity simulations.

Appell et al. (1994) developed a port information system for

Tampa Bay, Florida, which provides water level reports every 6

minutes. Deng et al. (2022) proposed a particle swarm optimization

(PSO)-enhanced Elman neural network model for downstream

water level prediction in Dongting Lake, with input features

including upstream water station data such as water level, flow

rate, rainfall, and temperature, as well as rainfall data from

downstream stations. Gao et al. (2023) utilized the Bragg

reflection phenomenon and monitored the characteristics of port

wave height, wave motion, and water level based on arc-shaped

periodic undulating topography, significantly reducing the energy

of long-period oscillations within the port and effectively mitigating

harbor resonance issues. However, sensor-based monitoring

systems face challenges such as short monitoring periods and

poor real-time capabilities. To address these issues, Dong et al.

(2018) evaluated extreme port water levels using probabilistic

models. Zheng et al. (2022) employed artificial neural network

(ANN) models based on offshore parameters (wave height, period,

and direction) to estimate wave height inside ports rapidly. López

and Iglesias (2013) applied ANNmodels to estimate the infragravity

wave heights inside harbors, demonstrating that a one-step model

outperformed a two-step model in accuracy. Adnan et al. (2023)

used Bayesian averaging methods to predict effective wave heights

for short-term predictions. Yang et al. (2024) proposed a

convolutional long short-term memory (ConvLSTM) model

incorporating an attention mechanism for nearshore water level

prediction. The model leverages multiscale information from

historical water level data and enhances the importance of key

features through the attention mechanism, thereby improving

prediction accuracy and timeliness. Deo and Şahin (2016) utilized

the extreme learning machine model, based on input parameters

such as rainfall, sea surface temperature, and climate indices, to

simulate streamflow water levels at three hydrological sites in

eastern Queensland. The results demonstrated that the model

could perform streamflow predictions quickly and efficiently.
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However, due to the uncertainty of port water level fluctuations,

constructing a deterministic model that can be universally

applicable to all climate types and diverse terrains is undoubtedly

a highly challenging task (Ghorbani et al., 2018). Therefore, to

predict port water levels accurately and in real-time, an adaptive

non-linear model needs to be developed.

As advancements in intelligent computing and information

processing technologies emerged in the mid-to-late 20th century,

the potential for achieving real-time and accurate predictions of port

water level heights was established (Juan et al., 2023). Within the

broad spectrum of advanced computing approaches, neural networks

have garnered significant attention due to their inherent non-linear

characteristics and exceptional adaptability (Kumar et al., 2017). As

an efficient machine learning model, radial basis function neural

networks (RBFNNs) have exhibited superior performance across

various domains including recognition, prediction, and signal

processing. Notably, their rapid convergence and remarkable

capability in addressing non-linear system prediction problems

have made them a focal point of interest (Huo et al., 2023; Tao

et al., 2021). Moreover, they are widely employed in prediction tasks

within the fields of maritime and ocean engineering. For example,

Wang et al. (2024) used gray relational analysis to filter network input

features and employed Bayesian optimization of the RBFNN to

predict ship metacentric height in real-time. Yin et al. (2018)

applied discrete wavelet transform to break down the ship’s rolling

motion into sub-series and employed the RBFNN to approximate the

non-linear mapping for each component, ultimately achieving ship

rolling motion prediction through data reconstruction. Yin et al.

(2015) also employed harmonic analysis combined with the RBFNN

to develop a hybrid prediction mechanism for accurate and real-time

tidal prediction. Han (2021) employed a fractional gradient descent

method, characterized by its flexible updating mechanism and

efficient search capability, to adjust the RBFNN weights, facilitating

the estimation of vessel traffic flow in ports. Cao and Zhu (2014)

combined computational fluid dynamics technology with the

RBFNN to predict the hydrodynamics of submarines, achieving

notable accuracy and high efficiency. The accuracy of forecasts can

be significantly compromised by suboptimal parameter and structure

configurations in neural networks. To improve forecasting

performance, swarm intelligence algorithms can be employed to

optimize network parameters and structure effectively (Xu and Yin,

2024; Zhang et al., 2023).

As a tool for managing non-linear and non-stationary signals in

data preprocessing, empirical mode decomposition (EMD) has

recently gained significant attention (Song et al., 2023). Integrating

EMD as a preprocessing method has been shown to effectively

enhance the generalization ability of neural network models while

significantly improving their predictive performance. Numerous

studies and practical applications have validated the effectiveness of

this approach, leading to its widespread adoption in related fields. For

example, Yin et al. (2023) combined EMD with harmonic analysis

and a variable structure neural network to achieve precise tidal

predictions. Ruiz-Aguilar et al. (2021) enhanced the permutation

entropy-ANN model with EMD to predict wind speed. Hao et al.

(2022) utilized EMD to obtain sub-series with reduced non-linearity

and employed LSTM to predict each sub-series. By reconstructing the
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predicted sub-series, wave forecasting was achieved. The integrated

EMD-LSTM model demonstrated higher forecasting accuracy

compared to the LSTMmodel without enhanced EMD preprocessing.

Addressing the unpredictable and intricately related non-linear

variations in port water levels, this study proposes a real-time

prediction model for port water levels based on EMD-enhanced

PSO and RBFNN. Real-time simulations for water level prediction

were conducted using observed data from four ports—Port Angeles,

Port Townsend, Port Isabel, and Eastport—to verify the

applicability of the EMD-PSO-RBFNN model. Additionally,

under identical conditions, the proposed model’s effectiveness was

evaluated by comparing it against other neural network models.

The rest of this paper is structured as follows: Section 2 offers an

in-depth description of the key methods applied in this study,

including EMD, PSO, and RBFNN. Section 3 describes the sources

of the experimental data and the data processing procedures.

Section 4 presents the validation process of the proposed EMD-

PSO-RBFNN model for water level prediction at Port Angeles, Port

Townsend, Port Isabel, and Eastport, comparing its predictive

performance with other neural networks. Additionally, the

prediction results are analyzed and discussed in-depth. The

conclusions are provided in Section 5.
2 Methodology

This paper proposes a hybrid prediction model based on EMD,

PSO, and RBFNN for real-time port water level prediction. The

method consists of three main modules. First, the original data

series was decomposed using EMD to produce subsequences with

reduced non-linearity. Second, PSO was applied to optimize the

critical parameters of the RBFNN, such as the centers and spreads.

Finally, PSO-RBFNN was employed to model and predict the

decomposed sub-signals. The detailed description of each module

is provided below.
2.1 Empirical mode decomposition

EMD is an innovative multi-scale signal processing method

proposed by Dr. Norden E. Huang in the 1990s. This data-driven

approach stabilizes raw signals by adaptively decomposing non-

linear and non-stationary signals into a superposition of amplitude-

modulated and frequency-modulated components with zero mean

(Huang et al., 1998). EMD does not require any prior assumptions

about the mathematical model or distribution characteristics of the

signal but instead performs adaptive decomposition on the original

signal. In a variety of fields, this method has been extensively

applied, including oceanic and atmospheric studies, geosciences,

and astronomy, and is frequently utilized for tasks such as feature

extraction, denoising, detrending, compression, and identification

of signals (Yin et al., 2023).

Compared to traditional decomposition methods, such as

wavelet transform, EMD is capable of decomposing the original

signal into several independent intrinsic mode functions (IMFs)

automatically, each representing a specific frequency and amplitude
Frontiers in Marine Science 03
modulation component of the signal, along with a residual. This

eliminates the tedious process of manually adjusting to determine

the optimal number of sub-sequences. Here, R refers to a specific

time series, and the EMD computation process is defined in the

following steps:

Step 1: Locate the local maxima and minima of the signal. Using

these local extrema, construct the upper envelope UR and lower

envelope LR by fitting cubic spline functions.

Step 2: Calculate the local mean m(t) and generate the initial

signal component d(t) based on the original signal x(t), as shown in

Equations 1, 2:

m(t) =
UR + LR

2
(1)

d(t) = x(t) −m(t) (2)

Step 3: Before d(t) is transformed into an IMF, it must be

processed according to the following criteria:

oT
t=1

jdj(t) − dj−1(t)j2
(dj−1(t))

2 ≤ z (3)

where T is the signal length and j is the number of iterations.

The value of z is typically chosen within the range of 0.2 to 0.3,

where the decomposition achieves optimal performance.

Step 4: Continue iterating Steps 1 through 3 until the residual

signal can no longer be decomposed or contains only a single trend

component. According to Equation 4, EMD decomposes the

original sequence into a set of IMFs and a residual series r.

R = IMF1 + IMF2 +⋯+IMFj +⋯+IMFn + r (4)
2.2 Radial basis function neural network

The RBFNN employs a three-layer feedforward architecture,

utilizing radial basis functions as the hidden layer’s activation

functions (Dehdarinejad and Bayareh, 2023). Due to its

advantages of fast local response, strong non-linear mapping

capabilities, and efficient training performance, RBFNN has been

extensively utilized in various fields such as ship and ocean

engineering prediction, medical diagnosis, and environmental

recognition. Particularly in time series forecasting, RBFNN can

effectively and precisely model the temporal dependencies and non-

linear properties of the data, thereby achieving high-precision

prediction results.

The radial basis function utilized in this study is the Gaussian

function, as shown in Equation 5.

f(x, c) = exp ( −
jjx − cjj2
2s 2 ) (5)

where c denotes the neuron’s center, s represents the spread

parameter of the network, and x is the input data point.

The least squares method (LSM) is an important algorithm for

optimizing the output layer weights of RBFNN. It effectively mitigates

overfitting issues and enhances the network’s generalization ability.
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The core idea of LSM is to minimize the prediction error in the

output layer by adjusting the weight parameters, thereby achieving

optimal fitting to the training data. The adjustment of neural network

weights W during training is performed using the LSM, as shown in

Equation 6. The weights W obtained during training and the design

matrix ftest of the test data are then used to predict the output Ŷ of

the test set, as shown in Equation 7.

W = (fT
testftest)

−1fT
test

bY (6)

bY = ftestW (7)
2.3 Particle swarm optimization

PSO is categorized as an optimization algorithm rooted in

swarm intelligence, which simulates the process of collaboration

and information sharing among individuals in a group (Kennedy

and Eberhart, 1995). The core concept of PSO lies in leveraging

information exchange and collaboration among particles to identify

the best possible solution to the objective function (Feng et al.,

2024). The specific process for calculating the particle’s velocity and

position is outlined as follows.

1) Initialize the particle swarm: Randomly place particles in the

search space, each with an initial position l and velocity v. The n-th

particle’s position and velocity in d-dimensional space are as

follows:

l = ½ln,1, ln,2,……, ln,d�T (8)

v = ½vn,1, vn,2,……, vn,d�T (9)

2) Fitness calculation: Using the objective function, evaluate

each particle’s fitness to determine the effectiveness and quality of

the solution.

3) Update individual and global best positions: The optimal

position of each particle is determined by substituting the particle’s

position parameters into the fitness function. For the n-th particle,

its best position is represented as follows:

Pbest = (pn1, pn2,……, pnd) (10)

The current best position of the particle swarm is as follows:

Gbest = (gn1, gn2,……, gnd) (11)

where Pbest and Gbest represent the individual and global

optima, respectively.

4) Adjust particle velocity and position: Once the individual and

global best values are identified, the particle’s velocity and position

are adjusted according to Equations 12, 13:

vn,k(t + 1) = w · vn,k(t) + c1 · r1 · ½pn,k − ln,k(t)� + c2 · r2 · ½pg ,k
− ln,k(t)� (12)

ln,k(t + 1) = ln,k(t) + vn,k(t + 1) (13)
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where w represents the inertia weight, which balances the

particle’s exploration and exploitation capabilities; c1 and c2 are

learning factors that control the particle’s reliance on its own

experience and the group’s experience, respectively; k denotes the

k-th dimension of the solution variable; r1 and r2 are random

numbers between [0, 1].

Figure 1 illustrates the process of using the proposed model for

port water level prediction in this study. Four major steps constitute

the workflow: data preprocessing, PSO optimization of RBFNN,

PSO-RBFNN prediction of the sub-sequences, and the port water

level prediction is obtained through the reconstruction of sub-

sequence prediction results. The process is as follows.
3 Data description and processing

3.1 Data description

The data used in this study were sourced from the water levels

of four U.S. ports: Port Angeles, Port Townsend, Port Isabel, and

Eastport. The datasets for these four ports include hourly water level

measurements from January 1, 2021, to December 1, 2021, with a

total of 8,040 data samples per port. Table 1 presents the detailed

geographical information of the four datasets’ corresponding ports

used in this study. The water level variations for Port Angeles, Port

Townsend, Port Isabel, and Eastport are shown in Figure 2.
3.2 Data preprocessing

EMD was used to decompose and preprocess the water levels of

Port Angeles, Port Townsend, Port Isabel, and Eastport, obtaining

the low-frequency non-linear subsequences. Specifically, the

decomposition of Port Angeles yielded eight IMFs and one

residual, Port Townsend yielded eight IMFs and one residual,

Port Isabel yielded nine IMFs and one residual, and Eastport

yielded nine IMFs and one residual. The decomposition of the

water level sequences for each port using EMD is shown in Figure 3.

By comparing the original signals in Figure 2 with the subsequences

obtained from the decomposition, it is evident that the non-

linearity of the IMFs and residuals significantly decreased.
3.3 Prediction error analysis

To thoroughly assess the model’s effectiveness in predicting port

water levels, several evaluation metrics were used, including mean

absolute percentage error (MAPE), mean squared error (MSE), root

mean squared error (RMSE), normalized root mean squared error

(NRMSE), mean absolute error (MAE), and the coefficient of

determination (R2). Among these, smaller values of MAPE, MSE,

RMSE, NRMSE, and MAE indicate better prediction performance,

while an R2 value approaching 1 demonstrates higher prediction

reliability. The formulas for each evaluation metric are as follows:
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MAPE =
100%
n o

n

i=1

byi − yi
yi

���� ���� (14)

MSE =
1
no

n

i=1
(yi − by i)

2 (15)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(yi − byi)2

s
(16)

NRMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(yi − byi)2

s
=½max (y) −min (y)� (17)

MAE =
1
no

n

i=1
yi − byij j (18)
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R2 = 1 −o
n

i=1
(yi − byi)2=on

i−1
(yi − y)

2

(19)

where yi represents the actual value at a given time i, ŷi denotes

the predicted value at the same time i, n indicates the total number

of predicted data points, and y refers to the mean of the data.
4 Simulation testing and analysis
of results

In this study, the first 4,824 hours of the water level data from

Port Angeles, Port Townsend, Port Isabel, and Eastport were used

as the training data and the subsequent 3,216 hours as the testing

data, with a 6:4 ratio for the training and testing datasets. The PSO

parameters were set as follows: w = 0:5, c1 = 1, and c2 = 1 with a
TABLE 1 Geographical information of each port.

Ports Port Angeles Port Townsend Port Isabel Eastport

Latitude 48.1181°N 48.1170°N 26.0734°N 44.9062°N

Longitude 123.4307°W 122.7604°W 97.2086°W 66.9897°W
FIGURE 1

Model prediction process proposed in the paper.
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particle population size of 100 and a maximum number of

iterations set to 100. Considering that ship operations entering

and leaving the port require prior notification to the port

authorities, the prediction time step for the model was

configured to 6 hours. A multi-step prediction comparison was

conducted using Eastport as an example. The simulations were

executed in MATLAB 2019b.

Ship operations entering and leaving ports typically require

prior notification to port authorities. Therefore, a 6-hour lead time
Frontiers in Marine Science 06
was adopted to predict water levels, and comparisons were made for

the results at Port Angeles, Port Townsend, and Port Isabel.

Figures 4–6 present the water level prediction results and the

comparisons between the PSO-RBFNN model and the EMD-

PSO-RBFNN model for these three ports.

From Figures 4–6, it can be observed that the PSO-RBFNN

model already provides satisfactory prediction results for port water

levels. However, the EMD-enhanced model demonstrated even

greater prediction accuracy. For instance, in Figure 6, during data
FIGURE 2

Changes in water levels at various ports.
FIGURE 3

EMD decomposition of water level time series at various ports. (A) Port Angeles, (B) Port Townsend, (C) Port Isabel, and (D) Eastport. EMD, empirical
mode decomposition.
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points 7126–7135 (corresponding to 2021/10/24, 21:00 to 2021/10/

25, 6:00), the EMD-PSO-RBFNN model produced prediction

results that exhibit higher accuracy when compared to actual

values. In contrast, the PSO-RBFNN model showed limitations in

its prediction capability, particularly under extreme water level

conditions. This indicates that EMD enhanced the model’s

prediction performance, thereby improving the accuracy of the

PSO-RBFNN model.

To demonstrate the convergence performance of PSO in

optimizing the RBFNN model, the iterations of PSO during the

prediction process of subsequences for Port Angeles were analyzed,

as shown in Figure 7.
Frontiers in Marine Science 07
By analyzing the convergence curves in Figure 7, it is evident

that PSO demonstrated both normal and efficient optimization

performance for each subsequence during the forecasting process.

Most components achieved rapid convergence within 10–30

iterations, with fitness values quickly stabilizing and showing no

significant oscillations or fluctuations. This indicates that the

particle swarm performed stably during the local search phase,

without falling into local optima or encountering other

convergence issues.

The results of the convergence curves further show that PSO

can effectively reduce the fitness value to an extremely low level,

thereby confirming its significant contribution to improving the
FIGURE 4

Comparison of PSO-RBFNN and EMD-PSO-RBFNN prediction results for Port Angeles. PSO, particle swarm optimization; RBFNN, radial basis
function neural network; EMD, empirical mode decomposition.
FIGURE 5

Comparison of PSO-RBFNN and EMD-PSO-RBFNN prediction results for Port Townsend. PSO, particle swarm optimization; RBFNN, radial basis
function neural network; EMD, empirical mode decomposition.
FIGURE 6

Comparison of PSO-RBFNN and EMD-PSO-RBFNN prediction results for Port Isabel. PSO, particle swarm optimization; RBFNN, radial basis function
neural network; EMD, empirical mode decomposition.
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accuracy of water level predictions. The automatic parameter

adjustment capability of PSO not only highlights its efficiency

and intelligent characteristics but also enables rapid convergence

to near-optimal solutions. Throughout the entire model, PSO plays

a core optimization role, significantly enhancing the model’s

performance and providing strong technical support for the

development of a high-accuracy water level forecasting model.

To verify the proposed model’s effectiveness in port water level

prediction, a backpropagation (BP) neural network (Chen and

Zeng, 2013), known for its strong non-linear mapping capability

and optimization of network weights and biases via the error

backpropagation algorithm, and a recurrent neural network

(RNN) (Lu and Xu, 2024), proficient in handling sequential data

and capturing more subtle relationships and patterns, were selected

for comparison. The PSO-BP, PSO-RNN, EMD-PSO-BP, and

EMD-PSO-RNN models were constructed and employed for port

water level prediction under the same conditions for comparative

analysis with the proposed model. Figure 8 presents a visual

comparison of the evaluation metrics for water level prediction

across the three ports and all models, while Table 2 provides a

comprehensive numerical analysis of the prediction errors.

From Figure 8, it can be visually observed that among all

models, the EMD-PSO-RBFNN demonstrated the best prediction

performance for the water levels of the three ports. The prediction
Frontiers in Marine Science 08
accuracy of the PSO-RBFNN, PSO-BP, and PSO-RNN models

improved under the enhancement of EMD. Table 2 presents a

comprehensive numerical comparison of water level prediction

errors at Port Angeles, Port Townsend, and Port Isabel across all

models. As shown in Table 2, the EMD-PSO-RBFNN achieved

superior performance in every prediction evaluation metric

compared to other models. Notably, for the water level prediction

of Port Angeles and Port Townsend, the R2 values were 0.9935 and

0.9925, respectively, which were very close to 1. For the water level

prediction of Port Isabel, the evaluation metrics MAE, MSE, RMSE,

and NRMSE exhibited significantly low error values at 0.066,

0.0074, 0.0858, and 0.0233, respectively. The PSO-BP model

showed relatively poor prediction performance for the water

levels at the three ports. However, under the enhancement of

EMD, its prediction performance improved significantly. For

example, the R2 values of the EMD-PSO-BP model increased by

20.2%, 19%, and 43.6% compared to the PSO-BP model for Port

Angeles, Port Townsend, and Port Isabel, respectively. The PSO-

RNN model performed moderately for water level prediction at the

three ports, but its performance improved considerably after EMD

enhancement. These results indicate that EMD effectively reduced

prediction errors.

In previous studies, multi-step prediction has rarely been

considered due to its inefficiency and lack of accuracy. However,
FIGURE 7

PSO optimization convergence curves in Port Angeles water level prediction. PSO, particle swarm optimization.
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multi-step prediction is crucial in practical applications (Bai and

Xu, 2021). For multi-step prediction, the prediction error tends to

increase as the prediction horizon extends. Therefore, it is essential

to evaluate the prediction horizon within an acceptable accuracy
Frontiers in Marine Science 09
range, as the choice of horizon has a significant impact on the

results. In this study, Eastport was used as an example to perform

forecasts with lead times of 6 hours, 12 hours, and 24 hours to

validate the prediction performance of various models. The multi-
TABLE 2 Comparison of prediction errors for port water levels 6 hours in advance across different models.

Model Ports Prediction error (ft)

MAE MSE RMSE NRMSE R2

EMD-PSO-RBFNN Port Townsend 0.1593 0.0480 0.219 0.0159 0.9935

PSO-RBFNN 0.2017 0.0667 0.2583 0.0187 0.991

EMD-PSO-BP 0.761 0.9893 0.9946 0.072 0.8662

PSO-BP 1.2005 2.2815 1.5105 0.1093 0.6915

EMD-PSO-RNN 0.5745 0.5525 0.7433 0.0538 0.9253

PSO-RNN 0.7286 0.7934 0.8908 0.0645 0.8927

EMD-PSO-RBFNN Port Angeles 0.1588 0.0418 0.2045 0.0181 0.9925

PSO-RBFNN 0.1876 0.0569 0.2385 0.0211 0.9898

EMD-PSO-BP 0.677 0.7265 0.8524 0.0754 0.8696

PSO-BP 1.0774 1.6469 1.2833 0.1136 0.7043

EMD-PSO-RNN 0.5333 0.5128 0.7161 0.0634 0.908

PSO-RNN 0.7211 0.7663 0.8754 0.0775 0.8624

EMD-PSO-RBFNN Port Isabel 0.066 0.0074 0.0858 0.0233 0.978

PSO-RBFNN 0.0706 0.0088 0.0939 0.0255 0.9736

EMD-PSO-BP 0.1789 0.0502 0.2241 0.0609 0.8499

PSO-BP 0.3322 0.1741 0.4172 0.1134 0.4796

EMD-PSO-RNN 0.1446 0.0334 0.1828 0.0497 0.9001

PSO-RNN 0.1735 0.046 0.2144 0.0583 0.8626
MAE, mean absolute error; MSE, mean squared error; RMSE, root mean squared error; NRMSE, normalized root mean squared error; EMD, empirical mode decomposition; PSO, particle swarm
optimization; RBFNN, radial basis function neural network; BP, backpropagation; RNN, recurrent neural network.
Bold values indicate numericalmarkers with smaller prediction errors.
FIGURE 8

Visualization of prediction errors for water levels across three ports using different models.
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step prediction results of EMD-PSO-RBFNN, PSO-RBFNN, EMD-

PSO-BP, PSO-BP, EMD-PSO-RNN, and PSO-RNN for Eastport

water levels are compared in Figures 9–11.

From Figures 9–11, it can be observed that EMD effectively

improved the prediction performance of PSO-RBFNN, PSO-BP,

and PSO-RNN under different prediction horizons. Both EMD-

PSO-RBFNN and PSO-RBFNN demonstrated stable prediction

performance, with their predicted results remaining close to the

actual values over increasing prediction horizons. In contrast, the

deviations between the predicted results and actual values for EMD-

PSO-RNN and PSO-RNN gradually increased as the prediction

horizon extended. For EMD-PSO-BP and PSO-BP, the deviations

became more significant when the prediction horizon was extended

to 24 hours. The related prediction evaluation metrics for each
Frontiers in Marine Science 10
model were compared and are presented in Figure 12, and the

detailed numerical comparison of prediction errors is presented

in Table 3.

From the comparison in Figure 12, Table 3, it can be observed

that the prediction error of all models increased as the prediction

horizon extended. PSO-RBFNN and EMD-PSO-RBFNN achieved

favorable results across different prediction horizons. However, the

prediction errors of EMD-PSO-RBFNN were consistently lower

than those of PSO-RBFNN, indicating an improvement in

prediction accuracy over the PSO-RBFNN model. EMD-PSO-BP

and PSO-BP performed well for prediction horizons of 6 hours and

12 hours, but their prediction accuracy declined significantly for a

24-hour horizon. For instance, the MAPE values of EMD-PSO-BP

and PSO-BP for a 24-hour prediction were 62.66% and 97.07%
FIGURE 11

Comparison of 24-hour-ahead water level predictions for Eastport across different models.
FIGURE 10

Comparison of 12-hour-ahead water level predictions for Eastport across different models.
FIGURE 9

Comparison of 6-hour-ahead water level predictions for Eastport across different models.
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lower, respectively, compared to their 6-hour prediction. However,

under the enhancement of EMD, EMD-PSO-BP consistently

outperformed PSO-BP across different prediction horizons. For

example, for a 24-hour forecast, the R2 of EMD-PSO-BP
Frontiers in Marine Science 11
improved by 5.19% compared to PSO-BP. EMD-PSO-RNN and

PSO-RNN demonstrated good performance for a 6-hour prediction

but exhibited poor prediction accuracy for 12-hour and 24-hour

horizons. In particular, their MAE, MSE, and MAPE values showed
TABLE 3 Detailed numerical comparison of prediction errors for Eastport water levels at different lead times across models.

Model Forecast lead
time step

Prediction error (ft)

MSE RMSE NRMSE MAPE% R2

EMD-PSO-RBFNN 6 h 0.0475 0.218 0.0085 8.84 0.9989

PSO-RBFNN 0.0826 0.2873 0.0112 12.04 0.998

EMD-PSO-BP 0.4349 0.6595 0.0258 38.3 0.9896

PSO-BP 1.1448 1.07 0.0418 50.81 0.9726

EMD-PSO-RNN 0.6603 0.8126 0.0318 43.83 0.9842

PSO-RNN 1.3209 1.1493 0.0449 57.97 0.9684

EMD-PSO-RBFNN 12 h 0.126 0.355 0.0139 14.56 0.997

PSO-RBFNN 0.3676 0.6063 0.0237 24.39 0.9912

EMD-PSO-BP 0.8341 0.9133 0.0357 54.65 0.98

PSO-BP 1.8153 1.3473 0.0527 70.29 0.9565

EMD-PSO-RNN 8.2429 2.871 0.1122 168.82 0.8027

PSO-RNN 13.2821 3.6445 0.1425 155.54 0.682

EMD-PSO-RBFNN 24 h 0.5321 0.7295 0.0285 32.31 0.9873

PSO-RBFNN 1.1838 1.088 0.0425 37.87 0.9717

EMD-PSO-BP 7.0214 2.6498 0.10359 100.96 0.8319

PSO-BP 8.8273 2.9711 0.11615 147.88 0.7887

EMD-PSO-RNN 13.937 3.7332 0.14594 132.02 0.6664

PSO-RNN 16.418 4.0519 0.1584 157.64 0.607
MAE, mean absolute error; MSE, mean squared error; RMSE, root mean squared error; NRMSE, normalized root mean squared error; EMD, empirical mode decomposition; PSO, particle swarm
optimization; RBFNN, radial basis function neural network; BP, backpropagation; RNN, recurrent neural network.
Bold values indicate numericalmarkers with smaller prediction errors.
FIGURE 12

Visualization of prediction errors for Eastport water levels at different lead times across models.
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significant errors, and the R2 values remained below 0.85 for these

longer horizons.

The proposed EMD-PSO-RBFNN model in this study

demonstrated satisfactory performance in the prediction of port

water levels. Its effectiveness has been validated through

comparisons with the prediction results of other neural network

models. Data from four ports were used for verification, and the

model achieved favorable results for prediction horizons of 6 hours,

12 hours, and 24 hours. Its long prediction cycle makes it effectively

applicable to port operations.
5 Conclusion

To address the non-linearity and the influence of multiple factors

on port water level variations, this study proposed an enhanced

prediction scheme for port water levels using EMD for data

preprocessing and combining PSO with RBFNN. PSO was used to

optimize the center and spread parameters of the RBFNN, thereby

improving the prediction performance of the model. The PSO-

RBFNN model was employed to predict the low-non-linearity sub-

series obtained from EMD decomposition. This study conducted

experiments using water level data from four different ports and

performed multi-step prediction to validate the model’s prediction

performance. The results showed low errors between the prediction

and actual values. Comparisons with other neural network models

demonstrated the effectiveness of the EMD-PSO-RBFNN model for

the prediction of port water levels. The findings highlight that the

proposed model achieved strong performance in port water level

prediction, enabling real-time monitoring of water level variations

and enhancing port operational safety. In the future, we aim to

incorporate more factors influencing water level variations, such as

storm surges, climate change, and port wastewater discharge, to

improve the comprehensiveness of the prediction and adapt to the

diversity of port operations while extending the prediction horizon.

Additionally, we will explore the potential application of novel

intelligent optimization methods in prediction models.
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