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Forward-looking sonar object detection plays a vital role in marine applications

such as underwater navigation, surveillance, and exploration, serving as an

essential underwater acoustic detection method. However, the challenges

posed by seabed reverberation noise, complex marine environments, and

varying object scales significantly hinder accurate detection of diverse object

categories. To overcome these challenges, we propose a novel semantic-spatial

feature enhanced detection model, namely YOLO-SONAR, tailored for marine

object detection in forwardlooking sonar imagery. Specifically, we introduce the

competitive coordinate attention mechanism (CCAM) and the spatial group

enhance attention mechanism (SGEAM), both integrated into the backbone

network to effectively capture semantic and spatial features within sonar

images, while feature fusion is employed to suppress complex marine

background noise. To address the detection of small-scale marine objects, we

develop a context feature extraction module (CFEM), which enhances feature

representation for tiny object regions by integrating multi-scale contextual

information. Furthermore, we adopt the Wise-IoUv3 loss function to mitigate

the issue of class imbalance within marine sonar datasets and stabilize the model

training process. Experimental evaluations conducted on real-world forward-

looking sonar datasets, MDFLS and WHFLS, demonstrate that the proposed

detection model outperforms other state-of-the-art methods, achieving an

average precision (mAP) of 81.96% on MDFLS and 82.30% on WHFLS, which

are improvements of 7.65% and 12.89%, respectively, over the best-performing

existing methods. These findings highlight the potential of our approach to

significantly advance marine object detection technologies, facilitating more

efficient underwater exploration and monitoring.
KEYWORDS

marine object detection, forward-looking sonar, semantic-spatial feature
enhancement, attention mechanism, feature fusion
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1 Introduction

With the rapid advancement of underwater intelligent detection

technology, sonar-based object detection has become a pivotal tool

in a wide range of marine applications, including underwater

salvage (Neettiyath et al., 2024), shipwreck identification

(Character et al., 2021), mine detection (Hożyń, 2021), and

marine mapping (Fakiris et al., 2019). As a crucial marine

detection technology, forward-looking sonar utilizes multiple

beams to scan target areas, forming images through the reception

of echo signals (Liu and Ye, 2023). Its ability to synthesize beams of

different frequencies enables a wide detection range and fast

imaging, which makes it ideal for real-time underwater

exploration tasks (Kasetkasem et al., 2020). However, due to

challenges like environmental noise, seabed reverberation, and

equipment-related noise, the imaging resolution of forward-

looking sonar is often compromised, and cluttered background

information introduces significant complexity for object detection

(Hurtos et al., 2015). As illustrated in Figure 1, the presence of

complex noise and clutter makes it extremely difficult to accurately

distinguish object categories using human vision alone.

In recent years, sonar image object detection has received

increasing attention, leading to the development of various

methods designed to handle challenging underwater acoustic

environments. These methods can broadly be classified into

traditional feature-based methods and deep learning (DL)-based

methods. Traditional feature-based approaches rely on extracting

contour, edge, and texture features from sonar images, and then

applying a classifier to achieve object detection. For instance, Abu

et al. (Abu and Diamant, 2019) used a weighted likelihood ratio to

extract statistical features from sonar images, followed by support

vector machine (SVM) classification for object recognition. Zhou

et al. (Zhou et al., 2022) employed fuzzy C-means and K-means

clustering to extract significant regional features, followed by

nonlinear transformation and Fisher discrimination for object

classification. Alaie et al. (Komari Alaie and Farsi, 2018) used

maximum likelihood estimation to determine pixel distributions,

followed by Bayesian classification to achieve recognition results.

Other researchers, such as He et al. (He et al., 2023) and Zheng et al.

(Zhang et al., 2023a), applied advanced filtering techniques like

sparse matrix decomposition and non-local mean filtering to reduce

noise and enhance features for object detection. Although these
Frontiers in Marine Science 02
traditional methods offer certain advantages, their reliance on

manually crafted features often limits their ability to generalize to

diverse and complex underwater scenes.

With the emergence of convolutional neural networks (CNNs)

in computer vision (Li et al., 2021), DL-based sonar object detection

methods have been widely adopted, leveraging CNNs to learn deep,

meaningful features directly from sonar images. DSA-Net (Li et al.,

2024) uses feature pyramids and dual spatial attention mechanisms

to enhance multi-scale feature extraction, effectively improving

detection accuracy under complex conditions. To handle side-

scan sonar images, MLFFNet (Wang et al., 2022b) uses feature

extraction modules to identify critical features while mitigating

seabed clutter through feature similarity. YOLOv3-DPFIN (Kong

et al., 2019) employs a dual-path structure for feature extraction,

enabling accurate multi-scale feature fusion and classification of

sonar objects. AGFENet (Wang et al., 2021) leverages multi-scale

convolution and channel attention to address the detection of tiny

objects, while MBSNN (Wang et al., 2022a) uses dual attention

mechanisms to enhance feature extraction and local-global

modeling to improve accuracy. RMFENet (Zhao et al., 2023)

integrates semantic and spatial features by a composite backbone

model and utilizes a rotating IoU mechanism to optimize

object localization.

Despite these advancements, the imaging characteristics of

forward-looking sonar, such as low resolution, complex

background noise, and the presence of small-sized objects,

continue to pose challenges for accurate detection. To address

these challenges, we propose a novel semantic-spatial feature

enhanced detection model tailored for forward-looking sonar

images, focusing specifically on marine environments. Our model,

named YOLO-SONAR, is based on the high-performing YOLOv7

(Wang et al., 2023) architecture, but incorporates additional

enhancements to better suit sonar imagery in complex

underwater conditions. Firstly, to suppress the interference of

seabed clutter information, the YOLO-SONAR detector uses the

constructed competitive coordinate attention (CCAM) to obtain

the valuable feature information of the target area and filter the

redundant feature interference. Secondly, the spatial group enhance

attention mechanism (SGEAM) is used to extract the semantic and

spatial feature information contained in sonar image to improve the

positioning accuracy for different object categories. Then, to solve

the problem of tiny object detection in forward-looking sonar
FIGURE 1

Forward-looking sonar image with the interference of complex noise and clutter information.
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images, the context feature extraction module (CFEM) is used to

mine the feature similarity and multi-scale feature information

between different object categories to enhance the feature

representation of tiny object regions. Finally, the Wise-IoUv3 is

used as the optimal loss function of YOLO-SONAR detector to

solve the class imbalance problem of forward-looking sonar data

and stabilize the model training process. The main contributions of

this article are as follows.
Fron
• We propose a novel object detection model, YOLO-

SONAR, designed specifically for forward-looking sonar

imagery in marine environments. This model can fully

extract and enhance semantic and spatial features, thereby

significantly improving detection accuracy.

• To suppress the interference from seabed reverberation

noise and background clutter, we introduce CCAM and

SGEAM to establish inter-feature correlations and filter

redundant information. Additionally, CFEM is integrated

to boost the model’s ability to detect tiny objects.

• The Wise-IoUv3 loss function is employed to address class

imbalance and overfitting issues. Moreover, we introduce a

new dataset, WHFLS, consisting of real-world forward-

looking sonar images, to support future development in

marine sonar detection.
The remainder of this article is organized as follows: Section 2

presents the overview of related works. Section 3 details the

proposed method and its key components. Experimental and

analysis are provided in Section 4, and Section 5 provides the

discussion. Lastly, the conclusion is drawn in Section 6.
2 Related works

For deep learning-based sonar object detection, effectively

extracting valuable features while filtering out redundant

information during feature fusion is crucial for improving

detection performance in complex underwater environments.

Therefore, in this section, we review related works on feature

extraction and feature fusion, focusing particularly on their

impact on sonar image analysis.
2.1 Visual attention mechanism

Visual attention mechanisms (Guo et al., 2022) serve as core

components in enhancing the feature extraction capabilities of

CNNs models, allowing them to focus on valuable regions,

improve edge and detail perception, and alleviate class imbalance

issues. Visual attention has been widely applied across various

computer vision tasks to improve model performance by

capturing critical features. For instance, in order to capture the

correlations between channel and spatial features, DANet (Fu et al.,

2019) utilizes channel attention to strengthen local feature

representation, while spatial attention is employed to establish

contextual relationships. Deng et al. (Deng et al., 2021) proposed
tiers in Marine Science 03
an attention-gated network, leveraging a dual-gating mechanism to

focus on essential regions while suppressing background noise. To

mitigate feature redundancy, Tao et al. (Tao et al., 2020) designed a

multi-scale self-guided attention mechanism to filter redundant

information through correlations between local and global features.

Dai et al. (Dai et al., 2022) utilized the Transformer framework to

capture fine-grained local and global feature information,

significantly enhancing feature extraction. Cao et al. (Cao et al.,

2022) introduced Swin-UNet, which learns both local and global

feature information, employing a cross-scale feature fusion strategy

to reduce semantic loss during feature transfer. MSFENet Shi et al.

(2024) employs a dual attention mechanism, namely Squeeze-and-

Excitation (SE) and Efficient Channel Attention (ECA), for the

detection of underwater sonar objects. By integrating Swin-

Transformer with the Convolutional Block Attention Module

(CBAM), CBYOLO Wen et al. (2024) effectively captures the

detailed information of sonar objects, thereby enhancing

detection accuracy. Inspired by these advances in attention

mechanisms and Transformer models, we introduce the

Competitive Coordinate Attention Mechanism (CCAM) and

Spatial Group Enhance Attention Mechanism (SGEAM) to our

proposed model. These components help enhance feature

representation while effectively suppressing redundant

information, thereby improving the robustness of the sonar object

detection in complex underwater environments.
2.2 Context feature fusion

To improve the robustness, confidence, and accuracy of object

detection, context feature fusion strategies have been widely

employed (Li et al., 2020). Context feature fusion integrates

multi-scale features to strengthen contextual representation,

enhance the accuracy of tiny object detection, and reduce

semantic inconsistencies. In response to feature loss issues caused

by multiple pooling operations, Chen et al. (Chen et al., 2021)

proposed a bidirectional pyramid feature fusion strategy, which

fuses high-resolution detail features with low-resolution structural

features to achieve better feature complementation. Lv et al. (Lv

et al., 2022) developed a multi-scale feature adaptive fusion

approach to enhance the detection of small objects, particularly in

sonar imagery where such objects are often present. Zhang et al.

(Zhang et al., 2023b) introduced a global-local feature guidance

module to effectively obtain both local and global information,

using multi-scale fusion to hierarchically integrate features of

varying sizes. In low-resolution scenarios, Chen et al. (Chen et al.,

2023) used high-resolution feature fusion modules to mitigate the

influence of background noise, thereby enhancing feature

representation for object regions through contextual fusion.

LGFENet Wang et al. (2024) enhances the model’s perception of

tiny object regions by improving its ability to aggregate global

contextual information, thereby increasing detection accuracy.

However, existing feature fusion strategies struggle to adequately

address the challenges associated with complex underwater

environments, such as reverberation noise and cluttered

backgrounds. These issues can lead to feature redundancy,
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reducing the overall effectiveness of the detection model. To

overcome these limitations, we designed the Context Feature

Extraction Module (CFEM), which fuses multi-scale features

across different object categories, thereby improving the accuracy

of tiny object detection in forward-looking sonar images.
3 Methodology

This section first reviews the structure of YOLOv7, and then

describes the proposed detector structure named YOLO-SONAR.

As the object detection model with high detection accuracy,

YOLOv7 (Wang et al., 2023) is composed of input layer,

backbone network, Neck unit and Head structure. Specifically, the

input layer scales the original image size to 640 × 640, the backbone

network performs convolution operations to obtain feature

information with different sizes, the Neck unit fuses multi-scale

feature information, and the Head structure obtains the detection

results by performing non-maximum suppression (NMS) operation

on the predicted anchor box coordinates, categories scores, and

confidence. The specific structure of YOLOv7 is shown in Figure 2,

including CBS block composed of convolution combined with

batch normalization (BN) and ReLU activation function,

extended efficient layer aggregation network (E-ELAN), multipath

convolution (MPConv) and SPPCSPC module constructed by

spatial pyramid pooling (SPP) combined with contextual spatial

pyramid convolution (CSPC). For CBS block, it uses convolution,
Frontiers in Marine Science 04
normalization and activation functions to extract multi-scale

feature maps, and transmits features with different sampling rates

to the Neck unit by channel information fusion operations. The E-

ELAN module consists of two different branches, one of which uses

convolution operation to transform the number of channels, and

the other uses convolution kernels with different sizes to obtain

multi-scale feature information. The E-ELAM module enables the

model to obtain rich feature information by controlling the gradient

of different paths. The MPConv downsamples the feature map by

max-pooling and convolution with the stride of 2, which can fuse

the feature information of different paths and branches to obtain

sematic information. The SPPCSP structure consists of SPP and

CSPS, which firstly splits the feature into different branches, one of

which uses the CBS block for deep feature extraction, and the other

uses CBS combined with max-pooling to obtain multi-scale

features, and then fuses the features of different branches by the

concat function.

To improve the object detection accuracy of sonar image in

complex underwater environment, based on YOLOv7 detector, we

propose YOLO-SONAR detection model for forward-looking sonar

image object detection. As shown in Figure 3, we first embed the

constructed competitive coordinate attention mechanism (CCAM)

and spatial group enhance attention mechanism (SGEAM) into the

backbone network of the original YOLOv7 to enhance the feature

extraction performance of the model, reduce the feature

information loss and suppress the seabed reverberation noise

interference in complex underwater environments. Then, the
FIGURE 2

The specific structure of YOLOv7 object detection model.
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context feature extraction module (CFEM) is used to replace the E-

ELAN structure of the YOLOv7 detector to improve the detection

and poisoning accuracy of the object detector for tiny objects in

forward-looking sonar image. Finally, Wise-IoUv3 is used as the

loss function of YOLO-SONAR detector to solve the problem of

unbalanced number of object categories in sonar images and

stabilize the model training process.
3.1 Competitive coordinate
attention mechanism

Since the collection process of sonar image is affected by the

seabed environment, there is reverberation noise interference in

sonar image. To solve this problem, we propose a competitive

coordinate attention mechanism (CCAM), which obtains valuable

feature information and suppresses reverberation noise interference

by performing the competition between semantic and spatial

information. As shown in Figure 4, the proposed CCAM first

decomposes the global pooling into max-pooling and average-

pooling, which can reduce the feature map dimension and

smooth the image to minimize noise interference. In the process

of feature extraction, CCAM preprocesses the input features to

generate global descriptors
_
Uc
l ∈ R1�1�C and

_
Xc
l ∈ R1�1�C . The

specific calculation is as follows.
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_
Uc
l =

1
Hl �Wl

oHl
i=1oWl

j=1½Uc
l �i,j (1)

_
Xc
l =

1
Hl �Wl

oHl
i=1oWl

j=1½Xc
l �i,j (2)

where ½��i,j represents the feature information of the feature

mapping on position (i, j). To obtain the location information in the

feature mapping, the average-pooling and max-pooling operations

are used to aggregate the channel dimension features. Specifically,

the semantic features with hight h and width w are calculated as

follows.

_
Uavg
l (h) =

1
Wl
o0≤i<Wl

½Uc
l �i (3)

_
Umax
l (w) =

1
Hl
o0≤i<Hl

½Uc
l �i (4)

The above tensors are input into the adaptive mechanism

module to obtain tensors
_
Uadd
l (h) and

_
Uadd
l (w) with rich feature

information.

_
Uadd 
l (h) = 1

2 ⊗½
_
Uavg 
l (h)⊕

_
Umax 
l (h)�⊕

a⊗
_
Uavg 
l (h)⊕ b⊗

_
Umax 
l (h)

(5)
FIGURE 3

The specific structure of proposed YOLO-SONAR object detection model.
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_
Uadd 
l (w) = 1

2 ⊗½
_
Uavg 
l (w)⊕

_
Umax 
l (w)�⊕

a⊗
_
Uavg 
l (w)⊕ b⊗

_
Umax 
l (w)

(6)

where a and b are the adjustment coefficient in the range of

½0, 1�. The tensors
_
Uadd
l (h) and

_
Uadd
l (w) are spliced, and then input

into the conversion function F 1�1 composed of 1� 1 convolution

for multi-scale feature fusion.

fp = d F 1�1 ½
_
Uadd
l (h),

_
Uadd
l (w)�

� �� �
(7)

fv = d F 1�1 ½
_
Xadd
l (h),

_
Xadd
l (w)�

� �� �
(8)

where ½�, �� represents the feature splicing operation, d denotes

the nonlinear activation function, and f ∈ RC=r�(H�W) is the

intermediate feature mapping. The fp ∈ RC=r�H and fv ∈ RC=r�H

are decomposed into different tensors, which are applied to the

excitation operations in the horizontal and vertical directions of the

channel. Then, the combination of fp and fv is used as the joint input

of the excitation operation, and the specific calculation is as follows.

Sh = K ½f hp , f hv �
� �

= s F 1�1 f hp ; f
h
v

� �� �
(9)

Sw = K ½f wp , f wv �
� �

= s F 1�1 f wp ; f
w
v

� �� �
(10)

where K( � ) represents the activation function, and s denotes

the Sigmoid activation function. The feature Sh and Sw are scaled to

obtain the weight information of feature Ul and Xl .
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_
Ul = Shse ⊗ Swse ⊗Ul (11)

_
Xl = Shsp ⊗ Swsp ⊗Xl (12)

where ⊗ denotes the element-wise multiplication, Shse, S
h
sp ∈

RC�H�1 and Swse, S
w
sp ∈ RC�1�W . The overall calculation formula of

the proposed CCAM is as follows.

FCCAM = F se
ca(Ul ,Xl)⊗Ul + F sp

ca(Ul ,Xl)⊗Xl (13)

where F se
ca and F sp

ca represent the modeling of semantic features

and spatial features on the channel dimension.
3.2 Spatial group enhance
attention mechanism

In the process of sonar image feature extraction, the problem of

spatial feature information loss arises with the increase of

convolution layer. However, for the sonar image object detection

task, spatial features can provide valuable location information for

the model to position the sonar image object region. To further

enhance the representation of spatial feature information, we

construct a spatial group enhance attention mechanism

(SGEAM), and the specific structure is shown in Figure 5. The

proposed SGEAM first groups the input features in the channel

dimension to form multiple sub-feature maps. Then, the attention

mechanism Guo et al. (2022) is guided by the similarity between the
FIGURE 4

The structure of competitive coordinate attention mechanism.
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global features and local features contained in each group, and the

spatial average function F gp( · ) is used to approximate the global

statistical features to the spatial vector obtained by group learning.

g = F gp(Xl) =
1
mo

m
i=1om

j=1½Xl�i,j (14)

where m = Hl �Wl , the correlation coefficient between the

global feature g and other features is calculated by dot product

operation. The correlation coefficient measures the similarity

between global feature g and local feature ½Xl�i,j. The feature

information corresponding to each position in the feature map is

calculated as follows.

ci,j = g � ½Xl�i,j (15)

To reduce the difference of correlation coefficient between

different samples, the correlation coefficient ci,j of spatial

dimension is normalized. The specific calculation is as follows.

_
ci,j =

ci,j − mc

sc + e
(16)

mc =
1
mo

m
k ½ci,j�k (17)

s 2
c =

1
mo

m
k (½ci,j� − mc)

2 (18)

where e(e � g�, 1E − 5) denotes the constant introduced to

stabilize the numerical transformation. To ensure that the

normalization operation used in the model can achieve the

identity transformation, parameters g and b are introduced for

each coefficient
_
ci,j, and the specific calculation is as follows.

ai = g
_
ci,j + b (19)

To obtain the enhance feature vector
_
½Xl�i,j, the Sigmoid

function is used to scale the original feature ½Xl�i,j by the

generated important coefficient ai on the spatial dimension.

_
½Xl�i,j = ½Xl�i,j � s (ai) (20)

Since SGE can enhance spatial and semantic dimension

information in parallel, the calculation process is as follows.
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_
½Ul�i,j = ½Ul�i,j � s(ai) (21)

Pse
l =

_
½Ul�i,j ⊗ Shse ⊗ Swse (22)

Psp
l =

_
½Xl�i,j ⊗ Shsp ⊗ Swsp (23)

F SGEAM = Psp
l ⊗Xl + Pse

l ⊗Ul (24)

The above enhanced features are calculated by 1� 1

convolution operation to obtain Pse
l , where Psp

l ∈ RHl�Wl�C , and

the feature fusion is carried out by Equation 24.
3.3 Context feature extraction module

The tiny object feature information in sonar image mainly

focuses on the shallow features with rich location and detail

information, and the semantic information in the deep features

plays an important role in improving the detection accuracy for tiny

object categories. To solve the problem of poor detection effect

caused by low-level feature loss of tiny objects in the feature

extraction process, we construct a context feature extraction

module (CFEM) to integrate the context information of the

shallow feature into the deep feature information to improve the

model detection accuracy for tiny object regions. As shown in

Figure 6 the proposed CFEM first uses atrous convolution with

different atrous coefficients to expand the receptive filed of the input

feature map X, learns the local context information of the tiny

object, and obtains features X1, X2 and X3, respectively. The specific

calculation is as follows.

X1 = dconv23�3(conv1�1(X))

X2 = dconv33�3(conv1�1(X))

X3 = dconv53�3(conv1�1(X))

8>><
>>: (25)

where dconv (·) denotes atrous convolution, conv (·) represents

the standard convolution used to reduce the number of channels,

and the feature map is spliced to obtain the fusion feature map F.

The channel attention mechanism (Wang et al., 2021) is used to
FIGURE 5

The structure of spatial group enhance attention mechanism.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1539210
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Wang et al. 10.3389/fmars.2025.1539210
adjust the channel weight, and the pooling operation is used to

compress the dimension of the feature map. The channel attention

weight is obtained by multi-layer perceptron (MLP) and

normalization function of pooling feature, and it is splited into

weights a, b and g corresponding to features X1, X2 and X3, which

are calculated as follows.

½a , b , g � = F split(S(FMLP(Pm(F)) + FMLP(Pa(F)))) (26)

where F split( · )   denotes the chunk function used to split the

attention weight, and S (·) represents the Sigmoid function to obtain

the normalized weight;FMLP( · ) denotes the multi-layer perceptron

function composed of convolution, pooling and activation

functions; Pa (·) and Pm(·) denote average-pooling and max-

pooling operations respectively, which are used to compress the

H ×W × C; feature map to obtain the feature vector with 1 × 1 × C;

size. By multiplying the obtained weights with the input features,

the importance of different input features is adjusted to enhance the

representation of valuable features and suppress noise interference.

The feature Y of fusing context information is calculated as follows.

Y = conv1�1(a � X1 + b � X2 + g � X3) (27)

The input features X0 and Y with inconsistent semantic

information are used to obtain the dynamic fusion weights d and

(1 − d) of the input feature map by the attention feature fusion, and

then the weight is multiplied with the input feature to obtain the

fusion feature Z. The noise interference in sonar image can be

suppressed by the feature fusion operation. The specific calculation

of the fusion feature Z is as follows.

Z = X0 � d (X0 + Y) + Y � ½1 − d (X0 + Y)� (28)

where d (X0 + Y) represents the attention weight matrix

obtained using the convolution block attention mechanism

(CBAM). For the specific calculation of CBAM, it first obtains the

weight wc by the channel attention mechanism, and then obtains

the attention weight ws by the spatial attention mechanism (Fu
Frontiers in Marine Science 08
et al., 2019). To further enrich the semantic information of the

fusion feature, the obtained weight ws is multiplied by the fusion

feature Z, and then the attention weight Zo = S (Z × ws) is obtained

by using the normalization function.
3.4 Wise-IoU loss function

For the object detection task, the setting of loss function directly

affects the accuracy and confidence of object detection results. The

function of the loss function is to optimize the position error

between the detected object and true object, and generate a

prediction result that fits the ground truth bounding box.

However, severe interference from reverberant noise on the

seafloor results in poor resolution and severe category imbalance

in the sonar images. To solve this problem, we use Wise-IoUv3

Tong et al. (2023) as the loss function of YOLO-SONAR to balance

the influence of different resolution images on the model training

results. The Wise-IoU introduces category weights into the initial

IoU, that is, assigns weight information to each object category, and

then weights in the calculation process of different categories of IoU

to obtain more accurate detection results. The calculation details of

Wise-IoU are shown in Figure 7, which has developed different

improved versions (Wise-IoUv1, Wise-IoUv2, Wise-IoUv3).

Specifically, The Wise-IoUv1 is a two-stage attention mechanism

based on distance metric, which solves the negative impact of low-

quality data on the model training process. The specific calculation

process is as follows.

LWIoUv1 = RWIoULIoU (29)

RWIoU = exp 
(x − xgt)

2 + (y − ygt)
2

(W2
g +H2

g )*

" #
(30)

where the use of ∗ can separateWg and Hg from the calculation

graph, which can effectively improve the convergence efficiency,
FIGURE 6

The structure of context feature extraction module.
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and reduce the attention to the center point distance under the

condition of fitting the predicted bounding box with the ground

truth bounding box to enhance the model generalization

performance. The Wise-IoUv2 refers to the design principle of

focal loss, and constructs a monotonic focusing coefficient r (r > 0)

based on Wise-IoUv1, which effectively solves the problem of data

imbalance, so that the model can focus on difficult samples and

improve the detection performance. The specific calculation is as

follows.

LWIoUv2 =
L*IoU
LIoU

 !r

�LWIoUv1 (31)

On the basis of Wise-IoUv1, the Wise-IoUv3 constructs a non-

monotone focusing coefficient r by outlier degree. The specific

calculation is as follows.

r =
b

d � ab−d (32)

b =
L*IoU
LIoU

∈ ½0, +∞) (33)

LWIoUv3 = r � LWIoUv1 (34)

where b denotes the outlier degree used to characterize the

quality of the regression box;
_
LIoU represents the sliding average

with momentum m, and its dynamic update enables b to obtain the

optimal value, which can effectively solve the problem of slow

training convergence; a and d are hyperparameters, when the

outlier degree of the regression box satisfies b = C, the regression

box can obtain the optimal gradient gain. The Wise-IoUv3 can

focus on the anchor box with poor quality and improve the

positioning accuracy of the model to the object region.
4 Experiment and analysis

In this section, we first introduce the forward-looking sonar

image object detection datasets, and specific experimental details.

Then, the proposed method is compared with the existing state-of-
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the-art detection method to verify the effectiveness and feasibility of

the YOLO-SONAR detector.
4.1 Sonar image dataset

The MDFLS dataset is a publicly available ocean sonar object

detection dataset (Singh and Valdenegro-Toro, 2021). This dataset

uses ARIS Explorer 3000 as the forward-looking sonar image collect

device, which contains 1,868 original sonar images with 320 × 648

resolution and eleven object categories (bottle, can, chain, drink-

carton, hook, propeller, shampoo-bottle, standing-bottle, tire, valve

and wall). Some samples are shown in Figures 8A, B, it can be seen

that it is difficult for the human-eye to directly recognize the specific

object category in sonar image due to the interference of resolution

and seabed reverberation noise. Since the difference in object scale,

some categories only occupy fewer pixels. The statistical

information in Figure 8C explains the object categories

unbalanced distribution in the dataset. In the experiment, we

divide the dataset into training set, test set and verification set in

a ratio of 7:2:1.

To further verify the robustness of the YOLO-SONAR detector,

we construct a forward-looking sonar image dataset WHFLS. This

dataset uses BlueView M900 as the acquisition equipment to obtain

sonar images in real ocean scenes. The WHFLS dataset contains

3,752 original sonar images with resolution of 1024 × 646 and three

object categories (victim, boat and plane). Some samples are shown

in Figure 9 it can be observed that although the object size in the

dataset is large, the resolution of the object region is extremely poor

due to the influence of the ocean environment. In addition, there is

serious ocean clutter interference in the image, which brings great

challenges to the object detection task. We randomly selected 2,625

images from the dataset as the training set, 750 images as the test

set, and 377 images as the verification set.
4.2 Experiments setting

The proposed YOLO-SONAR detector is implemented on the

Nvidia RTX 3090 GPU with 24 GB memory using Pytorch 2.1.0 and

MMdetection 3.1.0. All experiments are performed on workstations

equipped with Intel i9-12900T CPU, 64GB RAM, and Ubuntu 18.04

operating system. The training epoch of the model is set as 24, and the

batch size is set as 8. In the training optimization process, we set the

initial learning rate as 0.001, and use the stochastic gradient descent

(SGD) (Amari, 1993) with momentum of 0.9 as the optimizer. To

quantitatively evaluate the performance of YOLO-SONAR detector,

precision, recall, mAP, F1_score, FPS and parameters, which are

widely used in object detection tasks, are used as metrics.
4.3 Comparative experiments on
MDFLS dataset

To illustrate the effectiveness and advantages of the proposed

method, we compare it with other object detection methods such as
FIGURE 7

The calculation details of Wise-IoU loss function.
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Faster R-CNN (Ren et al., 2016), CenterNet (Duan et al., 2019),

RetinaNet (Ross and Dollár, 2017), Cascade R-CNN (Cai and

Vasconcelos, 2018), Sparse-RCNN (Sun et al., 2021), VarifocalNet

(Zhang et al., 2021), EfficientDet (Tan et al., 2020), YOLOv8

Ultralytics (2023), YOLOv10 Ultralytics (2024), ViTDet Li et al.

(2022) and CO-DETR Zong et al. (2023) on the MDLFS dataset.

The quantitative evaluation results are shown in Table 1, from

which it can be observed that the YOLO-SONAR detector obtains

the optimal sonar object detection result compared to other

methods, and its mAP reaches 81.96%. The reason is that YOLO-

SONAR fuses semantic features and spatial features, fully exploits

the valuable feature information contained in the forward-looking

sonar image, and filters the interference of background noise and

clutter information. For Faster R-CNN with poor detection results,

its mAP is only 62.30% because it cannot effectively obtain the

detailed features and context information of the object region.

Benefiting from the multi-scale feature extraction structure and

powerful global context modeling ability, EfficientDet obtains the

better detection results for tiny object category. While YOLOv8 and

YOLOv10 show competitive performance with mAPs of 75.30%

and 76.55%, respectively, they fall short of YOLO-SONAR,

particularly in detecting irregular objects. Similarly, ViTDet

achieves a mAP of 74.59%, performing well in some categories
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but struggling with complex scene objects. CO-DETR, with a mAP

of 75.69%, is competitive with YOLOv8 and YOLOv10 but still lags

behind YOLO-SONAR, especially in detecting tiny objects (e.g.,

Shampoo-Bottle: 57.89% vs. 68.26% for YOLO-SONAR). Figure 10

shows the visual detection results of sonar images by different object

detection methods. The proposed YOLO-SONAR can accurately

detect and locate different object categories and obtain the highest

confidence. For the different object detection models compared, it

cannot obtain satisfactory detection results and suffers from the

problems of missing detection and false alarms. Moreover, the PR

curve of Figure 11A shows that YOLO-SONAR has a significant

improvement in precision and recall compared with other methods,

which further demonstrates the effectiveness and advantages of the

proposed method.
4.4 Comparative experiments on
WHFLS dataset

To further verify the robustness and feasibility of the YOLO-

SONAR detector, we compared it with different object detection

models on the WHFLS dataset. The quantitative evaluation results of
FIGURE 8

Sample (A, B) and quantity statistical information (C) of MDFLS dataset.
FIGURE 9

Some sample images of WHFLS dataset, including (A) Victim, (B) Boat, and (C) Plane.
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differentmethods are shown in Table 2. Since the dataset contains three

different types of objects, we use mAP(S), mAP(M) and mAP(L) to

measure the detection accuracy of object detection model for small,

medium and large size objects. In addition, FPS and Parameters are

used to compare the algorithm complexity of different object detection

models. It can be seen from Table 2 that the YOLO-SONAR detector

till obtains the optimal detection results, and its mAP value reaches

82.30%. Since the WHFLS dataset is interfered by more serious seabed

clutter information, the compared object detection models cannot

obtain better object detection accuracy. For example, RetinaNet only

obtains 32.16% detection precision for the victim category with small

object size. The reason is that the model fails to extract the valuable

feature information of small-size object region and is seriously

disturbed by the background information. For Varifocalnet, which

obtains the second-best result, it can better solve the problem of object

scale transformation due to the use of multi-scale deformation

convolution structure. While YOLOv8 and YOLOv10 achieve

competitive mAPs of 71.27% and 72.22%, respectively, they fall short

of YOLO-SONAR, particularly in detecting small objects. Similarly,

ViTDet achieves a mAP of 70.45%, performing well in some categories

but struggling with small objects. CO-DETR, with a mAP of 71.35%, is

competitive with YOLOv8 and YOLOv10 but still lags behind YOLO-

SONAR, especially in detecting small objects (e.g., Victim: 60.34% vs.

72.96% for YOLO-SONAR). In addition, we analyze the computational

complexity of different object detection models. Table 2 shows that the

proposed method has obvious advantages, and its FPS and parameters

are the best of all the compared methods. YOLO-SONAR achieves a

competitive FPS of 33.6 with 45.68M parameters, making it suitable for

real-time applications. The visualization of Figure 12 show that YOLO-

SONAR can correctly detect and locate the objects in sonar images, and

the compared models have the problems of missing detection and false

alarms. The PR curves of different object detection methods on the

WHFLS are shown in Figure 11B, the proposed method achieves a
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win–win situation between precision and recall, which demonstrates

the robustness and feasibility of the YOLO-SONAR detector.
4.5 Noise robustness analysis

Due to the complex nature of the underwater environment and

acoustic channels, as well as the attenuation, reverberation,

scattering, multipath effects, and side-lobe interference

experienced by sound waves during propagation, sonar images

often contain substantial noise. To assess the robustness of

YOLO-SONAR against underwater noise interference, Gaussian

noise, Poisson noise, and Multiplicative noise are added to the

original sonar images, each with a signal-to-noise ratio (SNR) of 45

dB. The results in Table 3 demonstrate the noise robustness of the

YOLO-SONAR model under Gaussian, Poisson, and Multiplicative

noise conditions at an SNR of 45 dB, compared to a no-noise

baseline. The model maintains relatively high performance across

all noise types, with Precision, Recall, F1_score, Average IoU, AP,

and mAP metrics showing only moderate degradation compared to

the baseline. The most significant performance drop occurs under

Multiplicative noise, indicating it poses a greater challenge. Despite

this, YOLO-SONAR’s ability to sustain high detection accuracy and

reliability in noisy environments underscores its robustness and

suitability for real-world applications where noise is prevalent.

Future work could focus on further enhancing its resilience,

particularly to Multiplicative noise, to narrow the performance

gap with the no-noise scenario. The experimental results

presented in Figure 13 provide a qualitative assessment of YOLO-

SONAR’s detection performance under various types of noise

interference. Each subfigure visually demonstrates the model’s

ability to detect objects under different noise conditions, offering

insights into its robustness and reliability in challenging
TABLE 1 Comparisons with other methods on MDFLS dataset in the precision (%) of different sonar objects and mAP (%), where the bold font is the
highest score.

Method Bottle Can Chain DC Hook Propeller SPB STB Tire Valve Wall mAP

Faster R-CNN 62.58 65.14 54.37 75.47 81.25 67.98 42.15 58.24 70.15 39.57 79.28 62.30

CenterNet 64.62 67.85 58.94 77.38 79.53 71.26 45.37 62.74 76.48 43.57 81.94 66.34

RetinaNet 63.27 71.32 61.78 78.94 81.35 74.63 48.21 64.53 75.65 46.38 82.26 68.06

Cascade
R-CNN

66.34 73.68 64.31 80.12 82.39 75.36 50.18 66.72 77.36 48.93 83.17 69.70

Sparse-RCNN 68.52 72.64 66.57 81.65 84.97 76.82 53.63 68.14 76.25 51.87 82.36 71.22

VarifocalNet 71.28 75.97 68.43 84.57 86.34 79.27 55.71 70.26 78.95 54.36 85.75 73.71

EfficientDet 75.39 77.18 71.26 83.32 85.62 78.14 56.23 71.85 77.63 56.49 84.32 74.31

YOLOv8 77.12 78.45 72.34 84.23 86.12 79.71 57.11 72.36 78.17 57.04 85.63 75.30

YOLOv10 78.34 79.12 73.56 85.98 87.23 80.65 58.45 73.67 79.53 58.74 86.75 76.55

ViTDet 76.23 77.11 71.84 83.35 85.78 78.89 56.47 72.34 77.16 56.53 84.78 74.59

CO-DETR 77.89 78.56 72.78 84.56 86.45 79.78 57.89 73.12 78.56 57.45 85.56 75.69

YOLO-SONAR 81.26 83.74 78.56 89.14 91.23 85.73 68.26 77.95 84.59 70.28 90.83 81.96
frontie
DC, SPB and STB denote the drink-carton, shampoo-bottle and standing-bottle respectively.
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environments. Overall , these visualizations underscore

YOLOSONAR’s robustness in maintaining detection accuracy

across different noise conditions. The model’s consistent

performance in the presence of Gaussian, Poisson, and

multiplicative noise highlights its potential for practical

applications in environments where noise interference is

inevitable. These results complement the quantitative metrics

provided in Table 3, offering a comprehensive evaluation of

YOLO-SONAR’s effectiveness in real-world scenarios.
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4.6 Ablation experiments

The proposed YOLO-SOLO detector includes core components

CCAM, SGEAM and CFEM. To demonstrate the effectiveness of

these components, we perform ablation experiments on the sonar

object detection dataset MDFLS. In the experiments, we use the

original YOLOv7 detector as baseline model and use the mAP, mAP

(S), mAP(M), mAP(L) and F1_score as evaluation metrics.
FIGURE 10

The visualization detection results (A–l) of different methods on MDFLS dataset.
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Figure 14 shows the visualization detection results of the baseline

model YOLOv7 combined with different components, and Table 4

shows the quantitative evaluation results of the ablation experiment.

Moreover, Figure 15 shows the visualization comparison of the

feature extraction process for different components.

4.6.1 Effectiveness of CCAM
To illustrate the effectiveness of proposed CCAM, it is

combined with the baseline model to demonstrate the

improvement of sonar object detection accuracy. It can be seen

from Table 3 that compared with the baseline model, YOLOv7

combined with CCAM is superior to the baseline on different

evaluation metrics. Specifically, the mAP is increased from

43.12% to 51.65%, and the F1_score is increased from 34.57% to

43.26%, which further explains the improvement of CCAM for
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sonar object detection performance. The visualization detection

results in Figure 14 shows that the use of CCAM can enhance the

positioning precision of the baseline model to the object region and

improve the confidence score of the object category recognition.

The visualization results in Figure 15 show that CCAM enables the

model to focus on feature extraction in the object region to suppress

noise interference.

4.6.2 Effectiveness of SGEAM
Compared with the existing attention mechanism, SGEAM uses

the form of group feature reconstruction to enhance the spatial

feature information to alleviate the loss of spatial information in

feature extraction process. To verify the performance improvement

of the detector using SGEAM, we combine the baseline with CCAM

and SGEAM to detect sonar objects. It can be seen from Table 4 that
FIGURE 11

PR curve analysis of different methods on MDFLS (A) and WHFLS datasets (B).
TABLE 2 Comparisons with other methods on WHFLS dataset in the precision (%), mAP(S)(%), mAP(M)(%), mAP(L)(%), mAP (%), F1_score (%), FPS and
Parameters (M), where the bold font is the highest score.

Method Boat Plane Victim mAP(S) mAP(M) mAP(L) mAP F1_score FPS Parameters
(/M)

Faster R-CNN 31.24 56.73 21.86 16.52 25.38 51.83 36.61 27.51 12.5 52.18

CenterNet 35.94 62.52 29.73 24.63 31.26 57.24 42.74 31.82 11.2 91.07

RetinaNet 39.05 66.42 32.16 27.45 34.87 61.87 45.88 36.41 18.7 55.13

Cascade
R-CNN

46.35 70.16 44.93 35.78 41.35 67.25 53.81 42.38 14.8 115.43

Sparse-RCNN 50.14 74.38 47.25 41.26 45.97 71.34 57.26 47.19 18.1 124.94

VarifocalNet 61.57 79.85 53.14 43.68 51.85 76.92 64.85 54.26 22.7 51.42

EfficientDet 68.37 82.26 57.61 50.81 62.42 79.61 69.41 58.73 16.5 119.38

YOLOv8 70.12 83.45 60.23 52.34 64.56 80.37 71.27 60.52 31.2 47.78

YOLOv10 71.34 84.18 61.14 53.87 65.09 81.15 72.22 61.54 33.1 46.12

ViTDet 69.45 82.78 59.12 51.63 63.72 79.26 70.45 59.57 20.5 85.34

CO-DETR 70.23 83.49 60.33 52.37 64.85 80.21 71.35 60.22 19.8 88.46

YOLO-SONAR 79.57 94.38 72.96 68.42 75.35 91.25 82.30 76.35 33.6 45.68
DC, SPB and STB denote the drink-carton, shampoo-bottle and standing-bottle respectively. mAP(S), Mean Average Precision for small objects (e.g., objects with fewer than 32×32 pixels); mAP
(M), Mean Average Precision for medium objects (e.g., objects between 32×32 and 96×96 pixels); mAP(L), Mean Average Precision for large objects (e.g., objects larger than 96×96 pixels).
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the baseline combined with CCAM and SGEAM significantly

improves the detection accuracy of the original YOLOv7 for

sonar objects. For example, mAP increases from 51.65% to

63.43%, and F1_score increases from 43.26% to 56.85%. In

addition, the combination of SGEAM improves the detection

accuracy for tiny objects, with mAP(s) increasing from 25.36% to

42.58%. It can be seen from Figure 14 that the introduction of

SGEAM improves the positioning and recognition accuracy for

different object categories. The results in Figure 15 show that the use
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of SGEAM can effectively suppress the influence of clutter

information on the feature extraction process.

4.6.3 Effectiveness of CFEM
The function of CFEM is to obtain the multi-scale feature

information contained in sonar image and perform feature fusion

to improve the detection accuracy for tiny objects. To verify the

effectiveness of CFEM in improving the performance of object

detection, we combine the baseline detector with CCAM, SGEAM
TABLE 3 Noise robustness test results.

Noise Type Precision (%) Recall (%) F1_score (%) Average IoU (%) AP (%) mAP (%)

Gaussian Noise 78.47 75.19 76.81 72.38 77.92 76.31

Poisson Noise 77.83 74.61 76.24 71.93 77.18 75.72

Multiplicative Noise 76.39 73.52 74.91 70.17 75.64 74.59

No Noise (Baseline) 81.29 77.98 79.62 75.41 82.37 81.96
Performance metrics of YOLO-SONAR under Gaussian, Poisson, and Multiplicative noise (SNR = 45 dB), compared to the baseline (no noise).
FIGURE 12

The visualization detection results (A–l) of different methods on WHFLS dataset.
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FIGURE 13

Visualization of YOLO-SONAR’s detection results under different categories of noise interference. (A) Original Images. (B) Gaussian Noise.
(C) Poisson Noise. (D) Multiplicative Noise.
FIGURE 14

The visualization detection results in ablation experiments of the proposed method on MDFLS dataset. (A) YOLOv7. (B) YOLOv7+CCAM. (C) YOLOv7
+CCAM+SGEAM. (D) YOLOv7+CCAM+SGEAM+CFEM.
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and CFEM to achieve sonar object detection. It can be seen from

Table 4 that the combination of different components significantly

improves the detection accuracy of the baseline model. For example,

for sonar object categories of different sizes, mAP(s) increases from

25.36 to 72.86%, mAP(M) increases from 39.85% to 82.36%, and

mAP(L) increases from 64.17% to 91.23%. The sonar object

detection results in Figure 14 and the feature extraction

visualization information in Figure 15 show that the introduction

of CFEM effectively improves the positioning and recognition

accuracy of the detector for tiny object categories, and

significantly enhances the feature representation of different

object regions.
5 Discussion

5.1 Discussion on dataset biases

The MDFLS and WHFLS datasets exhibit inherent biases that

may impact the generalizability and performance of YOLO-

SONAR. First, the resolution bias between the datasets

(320times648 for MDFLS vs. 1024times646 for WHFLS) could

affect the model’s ability to generalize across different image
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qualities, particularly in detecting small objects where lower

resolution may result in less detailed representations. Second, the

object type bias, with MDFLS containing 11 diverse categories (e.g.,

bottle, can, chain) and WHFLS focusing on only 3 (victim, boat,

plane), may limit the model’s adaptability to datasets with a broader

range of object categories. Third, the environmental bias, arising

from the datasets being collected in specific marine conditions, may

not fully capture the diversity of underwater environments (e.g.,

varying water clarity, seabed types, and lighting conditions),

potentially affecting performance in real-world scenarios. Finally,

the scale bias, characterized by an uneven distribution of small,

medium, and large objects across the datasets, could skew the

model’s performance toward detecting larger objects, as seen in

WHFLS, where boats and planes dominate. These highlight

the need for more diverse and representative datasets to improve

the model ’s robustness and generalizability in complex

marine environments.
5.2 Discussion on limitations

While YOLO-SONAR demonstrates superior performance in

marine object detection, it is not without limitations. First, the
TABLE 4 Quantitative evaluation results of ablation experiments on the MDFLS dataset in the mAP(S)(%), mAP(M)(%), mAP(L)(%), mAP (%) and F1_score
(%), where the bold font is the highest score.

Models CCAM SGEAM CFEM mAP(S) mAP(M) mAP(L) mAP F1_score

YOLOv7 – – – 25.36 39.85 64.17 43.12 34.57

Baseline

✓ – - 31.04 52.37 71.58 51.65 43.26

✓ ✓ - 42.58 73.12 80.62 65.43 56.85

✓ ✓ ✓ 72.86 82.36 91.23 82.15 73.62
FIGURE 15

The visualization comparison of feature maps for different modules. (A) YOLOv7. (B) YOLOv7+CCAM. (C) YOLOv7+CCAM+SGEAM. (D) YOLOv7
+CCAM+SGEAM+CFEM.
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model’s computational complexity, although balanced for real-time

applications, may pose challenges for deployment on resource-

constrained platforms such as underwater drones. Second, the

model’s scalability to larger and more diverse datasets remains to

be evaluated, as its performance has primarily been tested on the

MDFLS and WHFLS datasets. Third, YOLO-SONAR is specifically

designed for forward-looking sonar images, and its applicability to

other imaging modalities, such as side-scan sonar or optical

underwater imaging, requires further investigation. Finally, the

model’s reliance on annotated data for training highlights

the need for more efficient data annotation methods or

alternative learning paradigms, such as semi-supervised or

unsupervised learning.
6 Conclusion

In this paper, we propose YOLO-SONAR, a novel object

detection model specifically designed for forward-looking sonar

images in complex marine environments. YOLO-SONAR

incorporates three key components: competitive coordinate

attention mechanism (CCAM), spatial group enhance attention

mechanism (SGEAM), and context feature extraction module

(CFEM). These components improve feature extraction, enhance

object region representation, and boost the accuracy of detecting

tiny objects. Experimental results on real-world sonar datasets,

MDFLS and WHFLS, show that YOLO-SONAR outperforms

existing methods, achieving the average precision (mAP) of

81.96% on MDFLS and 82.30% on WHFLS, with improvements

of 7.65% and 12.89%, respectively. Ablation studies further confirm

the effectiveness of each component. This demonstrates that

YOLO-SONAR is a robust and efficient solution for marine object

detection. Future work will explore the integration of unsupervised

or semi-supervised learning techniques to further enhance the

model’s generalization capability and adaptability in diverse

marine environments.
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