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Sonar-based object detection
for autonomous underwater
vehicles in marine environments
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1College of Electronic Information, Xijing University, Xi’an, China, 2College of Computer Science,
Northwestern Polytechnical University, Xi’an, China, 3College of Computer Science, Xijing University,
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Sonar image object detection plays a crucial role in obstacle detection, target

recognition, and environmental perception in autonomous underwater vehicles

(AUVs). However, the complex underwater acoustic environment introduces

various interferences, such as noise, scattering, and echo, which hinder the

effectiveness of existing object detection methods in achieving satisfactory

accuracy and robustness. To address these challenges in forward-looking

sonar (FLS) images, we propose a novel multi-level feature aggregation

network (MLFANet). Specifically, to mitigate the impact of seabed reverberation

noise, we designed a low-level feature aggregation module (LFAM), which

enhances key low-level image features, such as texture, edges, and contours

in the object regions. Given the common presence of shadow interference in

sonar images, we introduce the discriminative feature extraction module (DFEM)

to suppress redundant features in the shadow regions and emphasize the object

region features. To tackle the issue of object scale variation, we designed amulti-

scale feature refinement module (MFRM) to improve both classification accuracy

and positional precision by refining the feature representations of objects at

different scales. Additionally, the CIoU-DFL loss optimization function was

constructed to address the class imbalance in sonar data and reduce model

computational complexity. Extensive experimental results demonstrate that our

method outperforms state-of-the-art detectors on the Underwater Acoustic

Target Detection (UATD) dataset. Specifically, our approach achieves a mean

average precision (mAP) of 81.86%, an improvement of 7.85% compared to the

best-performing existing model. These results highlight the superior

performance of our method in marine environments.
KEYWORDS

autonomous underwater vehicles, forward-looking sonar, marine object detection,
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1 Introduction

As an important underwater exploration means, sonar

technology is widely used in the field of marine resource

development (Zhang et al., 2022b), marine scientific studies

(Grzadziel, 2020), and national defense security (Hansen et al.,

2011). A forward-looking sonar (FLS) system can realize the

positioning, imaging, and recognition of underwater targets by

transmitting sound waves and receiving echo information (Liu

et al., 2015), so it has significant advantages in underwater object

detection and monitoring tasks. FLS image object detection

(Karimanzira et al., 2020) refers to using computer vision and

signal processing technology to perform object detection and

recognition on the image data obtained by sonar devices to achieve

the classification, positioning, and tracking of underwater objects.

Different from natural scene images, sonar images are affected by the

underwater environment and terrain. As shown in Figure 1, there are

serious interferences, such as seabed reverberation noise, sediment

shadow region, and background clutter information, in the sonar

image. Moreover, FLS images commonly contain underwater objects

with different scales and weak feature information, which presents

great challenges for sonar object detection.

Compared to object detection in natural scene images, sonar

image object detection faces unique challenges due to severe noise

interference, complex environments, substantial variations in object

scales, and weak saliency of object features. These factors often lead

to low detection accuracy, missed detections, and false positives. To

address these issues, many methods based on hand-crafted feature

extraction combined with classifiers have been proposed. These

approaches rely on algorithms for extracting features such as edges,

contours, and textures from sonar image regions of interest,

followed by classifiers such as support vector machine (SVM)

(Chandra and Bedi, 2021), AdaBoost (Collins et al., 2002), and K-

nearest neighbors (KNN) (Zhang and Zhou, 2007) for object

recognition. For example, Abu and Diamant (2019) developed an

object detection framework for synthetic aperture sonar (SAS)
Frontiers in Marine Science 02
images based on unsupervised statistical learning. In the context

of FLS images, Zhou et al. (2022b) combined fuzzy C-means and K-

means clustering to extract target features through global clustering.

Kim and Yu (2017) employed multi-scale feature extraction to

obtain Haar-like features from sonar target regions, leveraging

AdaBoost to cascade weak classifiers for detection. In efforts to

address noise interference, Xinyu et al. (2017) applied fast curve

transforms to filter noise and K-means clustering for object region

pixel extraction. Zhang et al. (2023) used non-local mean filtering to

remove speckle noise and applied super-pixel segmentation to

delineate object contours. Although these hand-crafted feature-

based methods combined with classifiers have been widely used

in sonar object detection, they are limited by their applicability to

simple underwater scenes or single-object detection. In more

complex underwater acoustic environments and multi-class object

detection scenarios, these methods exhibit shortcomings such as

insufficient robustness, poor real-time performance, and limited

ability to meet high-precision detection requirements.

Benefiting from the robust feature extraction and representation

capabilities of convolutional neural networks (CNNs) (Gu et al.,

2018), CNN-based methods have gained widespread use in object

detection tasks, achieving significantly improved detection

performance (Li et al., 2021). These methods leverage frameworks

similar to those used in natural scene object detection, such as Faster

R-CNN (Ren et al., 2016), You Only Look Once, Version 3

(YOLOv3) (Redmon and Farhadi, 2018), and FPN (Lin et al.,

2017a), to detect various types of sonar images, including forward-

looking sonar, side-scan sonar, and synthetic aperture sonar. For

example, based on the FPN framework, Li et al. (2024) proposed a

dual spatial attention network that utilizes a multi-layer

convolutional structure to extract features at different scales, with

the attention mechanism enhancing feature representation to

improve sonar object detection accuracy. To address sonar object

detection in complex underwater acoustic environments, Zhao et al.

(2023) introduced a composite backbone network that extracts multi-

level feature information. Their method uses the shuffle convolution
FIGURE 1

Example of a forward-looking sonar image containing object region, seabed reverberation noise, clutter information, and shadow interference.
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block attention mechanism and multi-scale feature fusion module to

suppress redundant feature interference. Inspired by the two-stage

object detection network architecture, Wang et al. (2022d) developed

the sonar object detection model, which includes multi-level feature

extraction and fusion modules to handle both forward-looking and

side-scan sonar detection challenges. Building on the YOLO series of

detectors, Zhang et al. (2022a) incorporated the coordinate attention

mechanism to extract spatial position features from sonar image

regions. They also employed model pruning and compression

techniques to enhance the real-time performance of their detector.

Yasir et al. (2024) proposed the YOLOShipTracker for ship detection,

which has achieved better results in tiny object detection in complex

scenes. For tiny object detection, Wang et al. (2022c) introduced the

multi-branch shuffle module to reconstruct features at different

scales, along with a mixture attention mechanism to strengthen

feature representation of small object regions and mitigate clutter

interference. Combining CNNs with transformer models, Yuanzi

et al. (2022) proposed the TransYOLO detector, which integrates a

cascade structure to capture texture and contour features from sonar

images, utilizing the attention mechanism for multi-scale feature

fusion. Kong et al. (2019) developed the YOLOv3-DPFIN, which

achieves effective sonar object detection in complex underwater

environments. Their approach employs dense connections for

multi-scale feature transmission and the cross-attention mechanism

to enhance object region features while reducing reverberation

noise interference.

Although CNN-based sonar object detection methods have

shown significant improvements over traditional hand-crafted

feature extraction techniques, they still face challenges in certain

difficult scenarios, such as seabed reverberation noise, shadow

interference, object scale variation, and tiny object detection. It is

well established that CNN-based object detection methods achieve

excellent performance primarily due to their powerful feature

extraction capabilities. However, the inherent characteristics of
Frontiers in Marine Science 03
sonar images, such as noise and interference, significantly hinder

the feature extraction process of CNN models, making it difficult to

fully capture the valuable information necessary for effective sonar

image object detection. As illustrated in Figure 2, we provide

visualization results of convolution feature heatmaps in

challenging scenarios involving seabed reverberation noise

interference, shadow interference, clutter, and multi-scale object

transformations. These visualizations clearly demonstrate how

these interference factors disrupt the feature extraction process of

CNN models, leading to a notable decline in detection accuracy

across different categories of sonar objects. To address the challenge

of sonar image object detection in complex marine acoustic

environments, we propose a multi-level feature aggregation

network (MLFANet) for FLS image detection. Different from

traditional CNN-based methods, MLFANet is specifically

designed for challenging sonar detection tasks. The main

contributions of this study are as follows:
• Low-Level Feature Aggregation Module (LFAM): We

introduce the LFAM, a novel module that enhances low-

level features and suppresses the impact of seabed

reverberation noise, improving feature extraction and

object detection in noisy underwater environments. The

LFAM significantly enhances the robustness of sonar object

detection in the presence of acoustic interference.

• Discriminative Feature Extraction Module (DFEM): To

handle large-scale shadow regions, we designed the DFEM,

which filters redundant features and refines object region

representations. The DFEM improves the accuracy of object

localization and classification, making MLFANet more

efficient in detecting objects even in highly cluttered or

shadowed regions.

• Multi-Scale Feature Refinement Module (MFRM): We

developed the MFRM to address the challenge of object
FIGURE 2

Visualization of convolution feature heat map under different interference scenes. (a) Two original FLS images. (b) Seabed reverberation noise
interference. (c) Shadow interference. (d) Clutter information interference. (e) Multi-scale object transformation.
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Fron
scale variation. The MFRM extracts and fuses fine-grained

multi-scale features, enabling the network to handle objects

of various sizes more effectively, ensuring that small,

medium, and large objects are all accurately detected.

• CIoU-DFL Loss Function: To address the issue of object

category imbalance in sonar datasets, we propose the CIoU-

DFL loss function. This loss function optimizes the model

by improving the accuracy of bounding box predictions and

reducing computational complexity, particularly for

chal lenging sonar image datasets with skewed

category distributions.

• Extensive Experimental Validation: We perform extensive

experiments on the Underwater Acoustic Target Detection

(UATD) dataset, demonstrating that MLFANet outperforms

existing state-of-the-art methods in terms of both efficiency

and accuracy. Our results highlight the effectiveness of

MLFANet in real-world sonar object detection tasks,

particularly in complex underwater environments.
The article is organized as follows. Section 2 presents an

overview of related works. Section 3 introduces the proposed

MLFANet framework and related components. Section 4 presents

the experimental results and analysis. Finally, the conclusion is

drawn in Section 5.
2 Related works

2.1 Multi-scale feature extraction

For CNN-based object detection methods, multi-scale features

play an important function in improving model detection accuracy,

fusing global context information, and enhancing model robustness

and generalization. Currently, widely used multi-scale feature

extraction methods include constructing multi-scale convolution

structures (Mustafa et al., 2019), using feature pyramid networks

(Lin et al., 2017a), and designing adaptive extraction strategies

(Zhou et al., 2022a). Guo et al. (2020) constructed AugFPN to

obtain semantic multi-scale features and used residual feature

augmentation to highlight the object region feature information.

Ma et al. (2020) used the cascade structure to extract multi-scale

context information and used feature parameter sharing to establish

the correlation of different scale features. To reduce the detail

information loss in the multi-scale feature extraction process,

Kim et al. (2018b) achieved feature restoration by constructing

the global relationship between channel and spatial features.

Jiang et al. (2024) used the dense feature pyramid network for

small object detection, which uses the multi-scale parallel structure

to obtain different scale feature information of the multi-scale object

region. MFEFNet (Zhou et al., 2024) uses the efficient spatial feature

extraction module to obtain context semantic information and uses

a progressive feature extraction strategy to obtain multi-scale

features of context information. Tang et al. (2022) constructed a

scale-aware feature pyramid structure to obtain multi-scale feature

information of the object deformation region and used the feature
tiers in Marine Science 04
alignment module to solve the feature offset problem. However,

these multi-scale feature extraction methods focus on the extraction

of spatial and semantic features, ignoring the important

contribution of low-level feature information. Especially for FLS

image object detection, low-level features can effectively improve

the positioning precision of the object detection model. In this

article, we construct the LFAM to obtain low-level multi-scale

feature information of the FLS image to improve positioning and

recognition accuracy for the sonar object region.
2.2 Contextual feature fusion

Since the contextual information can provide more object

region and background information, it can effectively improve the

detection accuracy of the object detection model for small object

categories. FLS image object detection is a typical small object

detection scene, so it is essential to fully mine and fuse the global

context feature information. Currently, the commonly used context

feature fusion methods include the context feature pyramid

(Kim et al., 2018a), global context model (Du et al., 2023), and

multi-scale context structure (Wang et al., 2022a). Liang et al.

(2019) used the feature pyramid structure to obtain multi-scale

context feature information and performed context feature fusion

using a spatial-channel reconstruction strategy. Cheng et al. (2020)

constructed a cross-scale feature fusion framework to extract local

context features and used the region feature aggregation module to

achieve context feature fusion. Lu et al. (2021) used the multi-layer

feature fusion module to obtain context feature information and

introduced a dual-path attention mechanism and multi-scale

receptive field module for context feature fine-grained fusion.

CANet (Chen et al., 2021) uses a patch attention mechanism to

obtain context patch spatial feature information and uses feature

mapping and semantic enhancement modules to filter the valuable

information of context features. Dong et al. (2022) used deformable

convolution and feature pyramids to obtain multi-scale global

information and the multi-level feature fusion module is used to

fuse local-global context features. These aforementioned context

feature fusion methods can effectively fuse feature information of

different scales to improve the feature representation for the object

region. However, for FLS image object detection, due to the

interference of shadow region and clutter information, the

existing context feature fusion method cannot solve the feature

redundancy problem. In this article, we design the DFEM to

suppress redundant feature representation and achieve context

feature fusion.
2.3 Visual attention mechanism

An important component of an object detection model, the

visual attention mechanism enhances feature representation,

solving object deformation and feature correlation modeling.

Currently, the attention modules widely used in object detection

models include the spatial attention mechanism (Zhu et al., 2019),
frontiersin.org
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channel attention mechanism (Wang et al., 2020), and self-

attention mechanism (Shaw et al., 2018). Gong et al. (2022) used

the self-attention mechanism to obtain the robust invariant feature

information of the object region to enhance the small object region

feature representation. Wang et al. (Wang and Wang, 2023)

constructed a pooling and global feature fusion self-attention

mechanism to obtain the feature correlation and used the feature

adaption module for fine-grained feature fusion. Zhu et al. (2018)

constructed a cascade attention mechanism to obtain global

receptive field information and used dual encoder-decoder

attention to reduce feature information loss. Miao et al. (2022)

used cross-context attention to obtain local-global feature

information and used a spatial-channel attention module to

enhance different scale features. To accurately detect multi-scale

objects with complex backgrounds, Xiao et al. (2022) designed a

pixel attention mechanism to model the pixel correlation

information of different object regions and used the self-attention

mechanism to enhance the pixel region feature representation.

Although the existing visual attention mechanism can effectively

enhance the model feature representation and solve the object scale

variable problem, for FLS image object detection, due to the serious

interference of clutter information and underwater terrain in the

object region, the existing attention mechanism struggles to fine-

grain enhance the object region feature information, so it cannot

obtain satisfactory detection results for small object categories. To

solve this problem, inspired by the deformable convolution and

attention mechanism, we construct the MFRM to improve the

detection accuracy for multi-scale sonar objects by extracting the

robust invariant feature information of the object region.
3 Methodology

To solve the problem of object detection in FLS sonar images,

based on the YOLOX (Ge et al., 2021) detector, we constructed
Frontiers in Marine Science 05
MLFANet to detect different object categories in sonar images.

As shown in Figure 3, the proposed MLFANet introduces the

LFAM, DFEM, and MFRM on the basis of the YOLOX detector.

Specifically, to improve the object detection performance in complex

seabed reverberation noise interference scenes, the LFAM is used to

enhance the shallow feature information (C1, C2, and C3) of the

backbone network, so that the model can obtain more feature

information that is conducive to improving the object positioning

precision. Then, to suppress redundant feature representation in deep

feature information (C4 and C5), the DFEM is used to obtain valuable

information on deep features to optimize the sonar object detection

effect under shadow interference conditions. Moreover, to improve

the recognition accuracy of the detector for different categories of

sonar objects, we introduce the DFEM into the neck structure, which

performs fine-grained fusion of multi-scale feature maps by

generating attention weights to further enhance the representation

ability of the feature maps and alleviate clutter noise information

interference. For the model parameter optimization, we combine

CIoU (Zheng et al., 2020) and the DLF (Li et al., 2020) loss function

to solve the problem of sample category imbalance and model

computational complexity.
3.1 Low-level feature aggregation module

Since the interference of signal intensity difference and

reverberation noise, there are many dark areas in sonar images,

which makes it difficult for the existing feature extraction network

(Elharrouss et al., 2022) to obtain low-level feature information

such as texture, edge, and contour of sonar object regions, and the

obtained low-level features lead to serious loss in the process of

convolutional feature transmission. To solve this problem, we

designed the LFAM and embedded it into the backbone network

to compensate for the feature information loss of deep convolution

by mining the low-level features obtained in the shallow
FIGURE 3

The overall architecture of the proposed multi-level feature aggregation network (MLFANet), including the low-level feature aggregation module
(LFAM), discriminative feature extraction module (DFEM), and multi-scale feature refinement module (MFRM).
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convolution stages. The LFAM is designed to enhance low-level

feature information, such as texture, edges, and contours, while

suppressing seabed reverberation noise that commonly disrupts the

feature extraction process.

The specific structure of the LFAM is shown in Figure 4, where

the backbone network consists of five convolution stages, and

denotes the feature map obtained in the lth convolution stage and

l∈ [1, 5]. The proposed LFAM takes the feature maps C1, C2, and C3

obtained in the shallow convolution stage as input features, and

performs feature fusion in turn to generate the aggregation feature

map G ∈ RC�H�W , so that it can retain more low-level feature

information. The specific fusion process is as follows:

G = K3�3(K3�3(C1)⊕ C2)⊕ C3 (1)

where K3�3( · ) represents the 3 × 3 convolution function for

feature map resolution and feature channel adjustment, and ⊕
denotes the element-by-element summation operation. The

aggregate feature map is used as the output of parallel pooling,

which uses different pooling layers to obtain the context

information of the aggregate feature map to extract more

discriminative low-level features. The parallel pooling consists of

different pooling functions, namely 1 ×W strip pooling, H × 1 strip

pooling, and S × S spatial pooling and residual connection. For the

aggregate feature map G with a size of H × W, the feature map is

averaged using strip pooling with a pooling range of (1,W) and

(H, 1), which compresses the feature map and encodes feature

information along the vertical and horizontal directions.

Furthermore, the use of strip pooling establishes long-distance

dependencies between discretely distributed feature regions for

spatial dimension information in the vertical and horizontal

directions and obtains low-level feature information such as edges

and contours of the object region in the global dimension. The

calculation of strip pooling is as follows:
Frontiers in Marine Science 06
yw =
1
Ho0≤i<HG(i,W) (2)

yh =
1
Ho0≤j<WG(H, j) (3)

where yw ∈ RC�1�W and yh ∈ RC�H�1 represent the feature

tensors obtained by strip pooling with sizes of 1 × 1 and 3 × 3,

respectively. The one-dimensional convolution is used to integrate

the adjacent feature information inside the feature tensor, and the

bilinear interpolation operation is used to recover the spatial

information of feature tensor yw and yℎ. To generate low-level

features with rich edges and contours, the feature tensor is fused by

using the element-by-element multiplication operation. The

calculation process is as follows:

z1 = F ex(f3�1(yw))⊕ F ex(f1�3(yh)) (4)

where F ex( · ) represents the bilinear interpolation operation,

and f3�1( · ) and f1�3( · ) represent the one-dimensional convolution

operation with the size of 3� 1 and 1� 3, respectively. Moreover,

the parallel pooling introduces spatial pooling with a range of S� S,

which can use rectangular pooling windows to detect densely

distributed object region feature information and obtain texture

feature information of sonar objects in the local receptive field

range. The residual connection is used to preserve the original

spatial information of the aggregate feature map G, and it is fused

with the spatial pooling feature to generate low-level texture feature

tensor z2. The specific calculation process is as follows:

z2 = Ps�s(G)⊕ G (5)

where Ps�s( · ) denotes the spatial pooling with a size of 1� 1.

For feature tensors z1 and z2, the 3� 3 convolution is used to

further extract detailed information, and the feature stitching

operation is used to generate feature map z3 ∈ RC�H�W with
FIGURE 4

The specific structure of the low-level feature aggregation module (LFAM) includes 3×3 convolution, 1 × 1 convolution, 3 × 1, 1 × 3 one-dimensional
convolution, element-by-element summation, channel stitching, and bilinear interpolation operation.
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more discriminative information. The calculation is as follows:

z3 = K1�1(½K3�3(z1);K3�3(z2)�) (6)

where K1�1( · ) and K3�3( · ) represent convolution operations

with sizes of 1×1 and 3×3, respectively, and [·; ·] denotes the feature

stitching operation on the channel dimension. The feature map z3 is

fused with the features C3 and C4 in the deep convolution stage of

the backbone network, and input to the subsequent convolution

stage to compensate for low-level feature information loss. The

feature maps C
0
3, C

0
4, and C

0
5 generated by the fuse operation can

retain more effective edge, contour, and texture feature information,

which is beneficial for improving the positioning precision for

different object categories. The generation process of feature maps

C
0
3, C

0
4, and C

0
5 is calculated as follows:

C
0
3 = C3 ⊕ z3 (7)

C
0
4 = K3�3(z3)⊕ F 4

conv(C
0
3) (8)

C
0
5 = F 5

conv(C
0
4) (9)

where K3�3( · ) represents the convolution operation with a size

of 3 × 3, and F l
conv(·) denotes the lth convolution stage. The LFAM

leverages feature aggregation and parallel pooling operations to

extract discriminative low-level feature information. By preserving

key spatial details and reducing noise interference, LFAM

enhances the model’s ability to detect object boundaries and

localization precision.
3.2 Discriminative feature extraction
module

Due to the redundant feature interference in the feature

extraction process of the convolution operation (Qin et al., 2020),

it is difficult to retain valuable tiny object region information. To

solve this problem, we propose the DFEM, as shown in Figure 5.

The DFEM improves the robustness of feature extraction in

shadowed and cluttered regions by suppressing redundant

features and enhancing salient object features. For the deep

feature information (C4 and C5) obtained by the backbone
Frontiers in Marine Science 07
network, given the specific feature mapping X ∈ RC�W�H , where

C,H, andW represent the number of channels, width, and height of

the feature map, respectively. To mine the local regions with

discriminative attributes in convolution features, the obtained

deep features are divided into k regions along the W dimension,

where each region feature is defined as Xi ∈ RC�W=k�H . The feature

description importance factor corresponding to each region is

calculated as

ai = SoftMax(FGAP(K1�1(X i))) (10)

where K1�1( · ) represents the convolution operation with a size

of 1 × 1, FGAP( · ) denotes the global average pooling function, and

the softmax function is used for feature normalization. The high

importance factor indicates that the region feature significance is

strong. By comparing the importance factor of different regions, the

region with strong discrimination feature description in W

dimension can be located. We use the descriptor Y to denote the

positioning region and separate it from the initial feature X. The
region Y is uniformly split into n sub-regions along the H

dimension, and Y j ∈ RC�W=k�H=n is used to denote the feature

information of each sub-region, where j ∈ ½1, 2,…, n�. The

calculation of the importance factor for sub-region feature

description is as follows:

bj = SoftMax FGPA(K1�1(Y j))
� �

(11)

The normalized importance factor of each sub-region can be

used to discriminate the sub-region Y
0
J ∈ RC�W=k�H=n with

important feature information in the feature mapping X. By
using the above feature discrimination process, it can effectively

solve the deviation problem of feature extraction and enhance the

localization ability for the discriminant feature region. To further

mine the valuable information in the feature map, we use the

discriminative feature enhancement-suppression strategy to

preprocess the sub-region feature Y
0
J , and obtain the feature

maps Y e ∈ RC�W=k�H and Y s ∈ RC�W=k�H . The calculation is

as follows:

Y e = Y + a � (E⊗Y) (12)

Y s = S⊗Y (13)
FIGURE 5

The specific structure of the discriminative feature extraction module (DFEM) includes saliency region discrimination, global feature information
extraction, saliency region selection, and saliency feature enhancement and suppression.
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where ⊗ represents the element-by-element multiplication,

and the specific calculation for features E and S are as follows:

E = (e1, e2,…, en)
T

ej =
bj, ifbj = max (b1, b2,…, bn)

0, otherwise

(
8>><
>>: (14)

S = (s1, s2,…, sn)
T

sj =
1 − b , ifbj = max (b1, b2,…, bn)

1, otherwise

(
8>><
>>: (15)

where a and b denote the coefficients used to control feature

enhancement and suppression, respectively. The original feature Y is

replaced by feature maps Y e and Y s, and fused with feature Xi along

theW dimension to generate the discriminative enhancement feature

Xe ∈ RC�W�H and the discriminative suppression feature Xs ∈
RC�W�H , respectively. By using a discriminative enhancement

operation, it can effectively suppress redundant feature

representation to improve the detection accuracy for tiny object

categories in sonar images. The DFEM improves the robustness of

feature extraction in shadowed and cluttered regions by suppressing

redundant features and enhancing salient object features.
3.3 Multi-scale feature refinement module

Due to interference in underwater environments, FLS images

contain serious object deformation problems, which makes it

difficult for the object detection network to extract fine-grained

feature information from the object region, and it is prone to lose

the valuable feature information in the shadow region. To solve this

problem, we constructed the MFRM and embedded it into the neck

structure of the detector to enhance the feature extraction capacity

for the deformation object regions. The MFRM consists of region

location branch and feature refinement branch, and the specific
Frontiers in Marine Science 08
structure is shown in Figure 6. The MFRM addresses the challenge

of detecting objects at varying scales by extracting robust, scale-

invariant features and refining multi-scale feature representations.

The region location branch is used to position the range of object

region, which uses 7 × 7 convolution to obtain local feature

information and extract the valuable feature region information

for the input feature map X ∈ RC�W�H . The 7 × 7 convolution

kernel provides a larger receptive field compared to smaller kernels

(e.g., 3 × 3 or 5 × 5), enabling the extraction of richer local feature

information. Parallel dilated convolution with different dilation

coefficients is used to expand the range of receptive fields and

stitch the dilated convolution features to aggregate fine-grained

context information. To generate the region attention map, the 3 ×

3 convolution is used to encode the context information to obtain

the object region features. The calculation is as follows:

U1 = K3�3(½F 6
atr(K7�7(X));F 12

atr(K7�7(X))�) (16)

where K3�3( · ) and K7�7( · ) represent convolution operations

with sizes of 3 × 3 and 7 × 7, respectively; F 6
atr( · ) and F 12

atr( · )

denote the dilation coefficients of 6 and 12; [·; ·] represents the

feature splicing operation on the spatial dimension. The feature

refinement branch obtains the fine-grained feature information of

the object region through the feature cross-dimensional interaction.

This branch performs different global adaptive pooling operations

on the input feature map X ∈ RC�H�W to obtain global spatial

feature information and perform feature space compression.

Specifically, 1 × 1 global adaptive average pooling is used to

compress the global feature spatial information, 3×3 global

adaptive average pooling is used to enhance the global feature

representation, and 2 × 2 global adaptive maximum pooling is used

to enhance the feature structure information and refine the global

feature information obtained by the global adaptive average

pooling. The feature tensor obtained by the different pooling

operations is converted into vector representation using feature

reconstruction to achieve a cross-dimensional interaction of feature
FIGURE 6

The specific structure of the multi-scale feature refinement module (LFAM) includes a region location branch and feature refinement branch.
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information on the spatial dimension and fuse it with the object

region features retained on the channel dimension to generate one-

dimensional feature vectors x1 ∈ RC , x2 ∈ R4C and x3 ∈ R9C . The

one-dimensional feature vector is spliced to obtain the feature

vector x4 ∈ R14C that aggregates rich cross-dimensional

interaction feature information. The specific calculation of this

process is as follows:

x1 = F resize P1
avg(X)

� �
(17)

x2 = F resize P2
avg(X)

� �
(18)

x3 = F resize P3
max(X)

� �
(19)

Xc = ½x1; x2; x3� (20)

where Pn
avg( · ) represents the global adaptive average pooling

function with a size of n×n, Pn
max( · ) represents the global adaptive

maximum pooling function with a size of n×n, and F resize( · ) feature

reconstruction operation. The multi-layer perceptron composed of

the fully connected layer and non-linear activation function is used to

encode the feature vector Xc to generate the feature descriptor U2 ∈
RC�1�1. The specific calculation process is as follows:

U2 = MLP(Xc) = F 1(d (F 2(Xc))) (21)

where F 1 ∈ RC=r�C and F 2 ∈ RC�C=r represent different fully

connected functions, and set r = 32; d denotes the ReLU activation

function. Element-by-element multiplication is used to fuse the

region attention mapping U1 and the feature descriptor U2, and

the Sigmoid function is used to normalize the feature values to the

range of (0, 1) to generate the attention weight M. The original

feature map X is weighted to achieve object feature adaptive

optimization to highlight the object region feature information

and reduce the seabed reverberation noise interference. The

specific calculation is as follows:

M = s (U1 ⊗U2) (22)

Y = X ⊕ (X⊗M) (23)

where ⊗ represents element-by-element multiplication, s
denotes the Sigmoid activation function, ⊕ denotes element-by-

element summation, and Y represents the multi-scale refinement

feature map. The MFRM uses a dual-branch architecture to

effectively model object regions at different scales. The region

location branch focuses on coarse object localization, while the

feature refinement branch enhances fine-grained feature details

through cross-dimensional feature interactions. This ensures that

objects of different sizes, from small to large, are accurately detected

and classified.
3.4 Loss function optimization

To optimize the proposed MLFANet detector, we combined

CIoU (Zheng et al., 2020) and DLF (Li et al., 2020) to calculate the
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regression loss of the bounding box. The constructed loss function

uses DLF loss to obtain the loss probability of the bounding box and

object label by calculating the cross-entropy function. The distribution

probability of the bounding box is restored as the prediction box, and

CIoU is used to calculate the loss value of the prediction box and truth

box to achieve the optimization of the prediction box generation

process. The calculation of CIoU is as follows:

LCIoU = 1 − IoU +
r2(b, bgt)

(cw)
2 + (ch)

2

+
4
p

arctan 
wgt

hgt
− arctan 

w
h

 !2

(24)

where IoU represents the intersection in the union of the

prediction bounding box and truth bounding box; r2(b, bgt)
denotes the Euclidean distance between the prediction box and

the truth box; ℎ and w represent the height and width of the

prediction box; hgt and wgt represent the height and width of the

truth box; ch and cw denote the height and width of the minimum

bounding box consisting of the prediction box and truth box. Since

CIoU ignores the problem of sample imbalance, smaller positional

offsets lead to significant decreases in IoU values for small object

regions in sonar images, while large size object regions will produce

an IoU difference. Moreover, since the calculation process involves

the solution of inverse trigonometric function, it increases the

model computational complexity. To solve this problem, we

introduce the normalized Wasserstein distance (NWD) position

regression loss function, which uses the two-dimensional Gaussian

distribution to calculate the similarity between the prediction box

and truth box. The loss calculation process can reflect the true

distance between the prediction box and object region distribution,

and it has strong robustness to the object scale scaling, so it is more

suitable for solving the tiny object detection problem. The specific

calculation of the NWD position loss function is as follows:

Na = ½cxa, cya,wa=2, ha=2�T (25)

Nb = ½cxb, cyb,wa=2, ha=2� (26)

W2
2 (Na,Nb) = ‖ (Na,Nb) ‖22 (27)

LNWD(Na,Nb) = exp  −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2

2 (Na,Nb)
q

=C

� �
(28)

where C denotes the number of object categories;W2
2 (Na,Nb)

denotes the distance measure; Na and Nb denote the Gaussian

distributions modeled by A = (cxa, cya,wa, ha) and B = (cxb, cyb,

wb, hb), respectively. Since CIoU is suitable for large size object

categories, we combine CIoU and NWD to construct the loss

optimization function. The specific calculation is as follows:

LCIoU_NWD = a · LCIoU + (1 − a) · LNWD (29)

where a represents the adaptive weight adjustment coefficient,

LCIoU and LNWD denote the CIoU loss function and the NWD loss

function, respectively.
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4 Experiments and analysis

In this section, we present a detailed description of the forward-

looking sonar image dataset, model training strategy, experimental

parameter setting, evaluation metrics, ablation studies, and

robustness analysis.
4.1 FLS image dataset

To verify the effectiveness and feasibility of the proposed

method, we conducted experimental verification on the UATD

dataset (Qin et al., 2020) in a real-scene underwater acoustic

environment. The dataset was released in 2022 and was provided

by Peng Cheng Laboratory, Shenzhen, China. It used Tritech

Gemini 1200ik multi-beam forward-looking sonar for image

collection. The sonar operates at two acoustic frequencies,

720kHZ for lone-range object detection, and 1,200kHz for

enhanced high-resolution imaging at shorter ranges. The data

collection sites were located in Golden Pebble Beach in Dalian

(39.0904292°N, 122.0071952°E) and Haoxin Lake in Maoming

(21.7011602°N, 110.8641811°E).

The dataset contains 9,200 high-resolution original forward-

looking sonar images and corresponding manual annotation

information. To improve the readability of the sonar images, we

performed Gaussian filtering and pseudo-color enhancement on the

original images, as shown in Figure 7. The annotation object

categories provided by the dataset contain a cube, ball, cylinder,

human body model, tire, circle cage, square cage, metal bucket,

plane model, and ROV, and the corresponding physical entities and

sizes are shown in Figure 8. We present the statistical information of
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the number of different object categories in Figure 9a, from which it

can be seen that the dataset has a serious category imbalance

problem. To further analyze the dataset, we calculated the area

and aspect ratio of the rectangular label boxes of different object

categories, and drew the corresponding histogram, as shown in

Figures 9b, c. It can be seen that the different object category sizes

were diverse, as the minimum area covered 12 pixels, and the

maximum area included 38,272 pixels; the rectangle minimum ratio

of length/width was 0.22, and the maximum ratio was 7.95. From

the above statistical information, it can be shown that the dataset

poses a great challenge to the sonar image object detection task.
4.2 Training strategies and implementation
details

The specific details of the dataset and hyperparameters in the

experiment are described as follows.

4.2.1 Dataset setting
For the 9,200 forward-looking sonar images contained in the

UATD dataset, we randomly split them into the training,

verification, and testing sets based on the ratio of 7:2:1.

Specifically, the training set contained 6,440 images, the

verification set contained 1,840 images, and the testing set

contained 920 images. To further improve the model robustness

and generalization performance, data augmentation methods

including random rotation, image deformation, brightness

transformation, image sharpening, and adding noise were used to

supplement the number of training set samples. The use of data

augmentation can also alleviate the overfitting problem in the
FIGURE 7

The original forward-looking sonar image and the preprocessed image from the UATD dataset. (a) original image. (b) preprocessed image.
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model training process. Moreover, limited by the device memory,

we uniformly scaled the original sonar image to 512×512 pixels in

the training process and maintained the original image size for the

verification and testing sets.

4.2.2 Training strategies
The experiments were conducted on a workstation equipped

with an Intel i9-12900T CPU, 64GB RAM, an NVIDIA GeForce

RTX 4090 GPU, and the Ubuntu 18.04 operating system. The code
Frontiers in Marine Science 11
was implemented using the PyTorch 2.1.0 and MMDetection 3.2.0

frameworks. All models were trained and evaluated on the UATD

dataset using the same training, validation, and testing splits to

ensure fairness. During training, input images were resized to

512×512 pixels, and data augmentation techniques, including

random horizontal flipping, random rotation, and color jittering,

were applied equally to all models to improve robustness and

prevent overfitting. Mixed precision training was employed to

enhance training speed and memory efficiency.
FIGURE 9

An overview of the detailed statistical information of the UATD dataset. (a) Object categories distribution statistics. (b) Object region pixel statistics.
(c) Label box length-width ratio statistics.
FIGURE 8

The physical sonar target entities and their corresponding size in the UATD dataset. The size is measured in meters.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1539371
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Wang et al. 10.3389/fmars.2025.1539371
For the proposed MLFANet, we used a ResNet-50 or ResNet-

101 backbone pre-trained on ImageNet. The batch size was set to 8,

and the optimizer was SGD with momentum (0.9) and a weight

decay of 0.0001. The initial learning rate was set to 0.02 and reduced

by a factor of 10 at epochs 8 and 11, with a total of 12 training

epochs (1× schedule). To further optimize performance, we adopted

a three-stage training strategy: (1) pre-training the backbone on

ImageNet with a batch size of 32 and an initial learning rate of

0.001, decayed every 1,000 iterations; (2) fine-tuning the pre-trained

backbone on the sonar image dataset with a batch size of 8, an initial

learning rate of 0.001, and decay applied every 500 iterations; and

(3) training the entire model with a batch size of 16, an initial

learning rate of 0.0001, and decay applied every 2,000 iterations.

This staged strategy ensured optimal parameter learning and

mitigated overfitting.

For the baseline models, we used their standard configurations

as described in their original implementations. For example, Faster

R-CNN, RetinaNet, Cascade R-CNN, Dynamic R-CNN, and DH R-

CNN were trained with a ResNet-50 backbone, a batch size of 8, an

initial learning rate of 0.02 (reduced by a factor of 10 at epochs 8

and 11), and 12 training epochs. CenterNet was trained with a

ResNet-101 backbone, a batch size of 16, an initial learning rate of

0.01 (reduced at epochs 30 and 45), and 50 training epochs. The

DETR-based models (e.g., DETR, DAB-DETR, Sparse R-CNN, and

CO-DETR) used AdamW optimizers, with a batch size of 4 and an

initial learning rate of 0.0001 for the transformer and 0.00001 for

the backbone. These models were trained for 50 epochs, with

learning rate reductions at epoch 40. ViTDet used a ViT-B

backbone, a batch size of 8, an initial learning rate of 0.0001, and

was trained for 36 epochs, with learning rate reductions at epochs

24 and 30. By using consistent preprocessing, training splits, and

hyperparameters tailored to each model, we ensured a fair and

comprehensive comparison across all methods.
4.3 Evaluation metrics

To quantitatively evaluate the effectiveness and advantages of the

proposed sonar object detection model, we used the precision, recall,

average precision (AP), false alarm rate (FAR), F1 score, and frames-

per-second (FPS) metrics commonly used in natural scene image

object detection tasks as the evaluation metrics. First, we defined TP,

FP, TN, and FN as true positive, false positive, true negative, and false

negative. Specifically, TP indicates the model correctly detects the sonar

object, FP denotes a non-object is falsely detected as the object region,

TN indicates the model correctly predicts the non-object category, and

FN denotes the object region is mistakenly predicted as a non-object.

The calculation of different evaluation metrics is as follows.
Fron
1) The precision is defined as the proportion of the model’s

correct object detection to overall detection results.
Precision =
TP

TP + FP
(30)
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2) The recall is defined as the proportion of model correct

object detection to the truth annotation object.
Recall =
TP

TP + FN
(31)
3) The AP is defined as the area under the precision-recall (PR)

curve used to evaluate the model performance.
APIoU =
Z 1

0
P (R) d (R) (32)

where IoU denotes the intersection-over-union threshold used

to determine whether the detection result belongs to TP or FP. For

the sonar object detection task, we set the IoU to 0.5. Additionally,

the evaluation metrics APs, APm, and APl of the Microsoft COCO

dataset (Lin et al., 2014) were used to further refine the evaluation

and analyze model performance.
4) The FAR evaluates the prediction result credibility by

calculating the proportion of FP in all the results.
FAR =
FP

TP + FP
(33)
5) The F1 score is defined as the harmonic mean of precision

and recall and can assess the comprehensive performance

of the object detection model.
F1 _ score =
2� Precision� Recall
Precision + Recall

(34)
6) The FPS represents the speed of the object detection model

to process a single frame image per second.
FPS = 1=Tsin gle (35)

where Tsin gle denotes the time taken to process a single forward-

looking sonar image.
4.4 Comparison experiments and analysis

To demonstrate the advantages of the proposed forward-

looking sonar object detector MLFANet, we compared it with 11

state-of-the-art object detection models on the UATD dataset.

The compared methods can be classified into CNN-based

methods and Transformer-based methods. Specifically, the

CNN-based methods included Faster R-CNN (Girshick, 2015),

RetinaNet (Lin et al., 2017b), Cascade R-CNN (Cai and

Vasconcelos, 2019), CenterNet (Duan et al., 2019), Dynamic R-

CNN (Zhang et al., 2020), DH R-CNN (Wang et al., 2022b), and

Spare R-CNN (Sun et al., 2023); the Transformer-based methods

included DETR (Carion et al., 2020), ViTDet (Li et al., 2022),

DAB-DETR (Liu et al., 2022) and CO-DETR (Zong et al., 2023).

To ensure experiment fairness, the compared methods were

retrained on the UATD dataset and used the same training

strategy and parameter settings as the proposed methods.
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The comparative analysis included quantitative comparison,

qualitative comparison, and model complexity analysis. The

details are as follows:

4.4.1 Quantitative analysis
The quantitative comparison of different object detection

methods was performed on the testing set of the UATD dataset.

The performance quantitative analysis results of different methods

are shown in Table 1. From the analysis results, compared with

other object detection models, the proposed MLFANet obtained the

optimal results on multiple evaluation metrics. Additionally, for

metrics APl, APm, and APs, the proposed method reached 62.79%,

58.24%, and 45.36%, respectively, which further explains the

comprehensive performance advantages of our MLFANet.

Specifically, compared with the CNN-based optimal model

CenterNet (Duan et al., 2019) and Transformer-based optimal

model CO-DETR (Zong et al., 2023), the proposed method was

6.53% and 2.85% higher for the AP metric, respectively. For the

CNN-based methods, such as Faster R-CNN (Girshick, 2015),

RetinaNet (Lin et al., 2017b), and Cascade R-CNN (Cai and

Vasconcelos, 2019), the AP values only reached 32.53%, 29.75%,

and 34.97%, respectively, and were accompanied by higher FAR

values. The reason for this phenomenon is that the seabed

reverberation noise and clutter information contained in the

sonar image seriously interfere with the feature extraction process

of the CNN model, and the use of a simple convolution operation

cannot fully extract the valuable feature information. Moreover, the

weak and dark light characteristics of the sonar image object region

diminish the positioning and recognition of the CNN-based

methods, so they cannot achieve the ideal detection accuracy.

Since the Transformer model has better global feature extraction

and modeling effect, compared with the CNN-based method, the

Transformer-based method has a slight advantage for the sonar
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image object detection task. For example, compared with Dynamic

R-CNN (Girshick, 2015), ViTDet (Li et al., 2022) was 8.40% and

6.86% higher for the AP and F1 score, respectively. Furthermore, for

the metrics APl and APm, the optimal Transformer-based model

CO-DETR (Zong et al., 2023) reached 58.93% and 54.68%,

indicating that the method can accurately detect large/medium

size objects in sonar images. However, the imaging characteristics of

sonar images cause redundant information interference in the

global information correlation modeling process of the

Transformer-based method, which makes it difficult to achieve

satisfactory results for small object detection. For instance, the

APs values of ViDet (Li et al., 2022), DAB-DETR (Liu et al.,

2022), and CO-DETR (Zong et al., 2023) were only 41.32%,

39.76%, and 42.18%, and these methods have high false alarm

rates. The reason for this problem is that the Transformer model

only focuses on global feature information extraction, ignoring the

important value of local feature information, resulting in false

discrimination of small object region features as background

information features. To verify the detection accuracy of different

object detection models for different object categories in sonar

images, we randomly selected 1,200 images from the UATD

dataset as experimental data. As shown in Table 2, the mean AP

(mAP) value of the proposed MLFANet was 81.86%, which is better

than all the compared methods. The quantitative results further

illustrate the superior detection performance of the proposed

method compared to other object detection models. For the AP

value of each sonar object category, we can conclude that for the

tiny object categories, i.e. the ball, circle cage, and tire, the optimal

CNN-based model CenterNet (Duan et al., 2019) only reached

61.28%, 39.78%, and 30.12%, and the optimal Transformer-based

model CO-DETR (Zong et al., 2023) only reached 62.85%, 45.63%,

and 35.92%. For the large-size object categories, i.e., the cube, plane,

and metal bucket, the experimental results in Table 2 show that
TABLE 1 Performance comparison of different object detection methods on the testing set of the UATD dataset, where the score in bold is the
highest score.

Model Backbone Precision Recall F1 score AP AP50 AP75 APl APm APs FAR

Faster R-CNN ResNet-50 0.8245 0.8547 0.8393 0.3253 0.8013 0.2179 0.4768 0.4312 0.3147 0.1755

RetinaNet ResNet-50 0.7852 0.8165 0.8005 0.2975 0.7928 0.1852 0.4573 0.4127 0.3052 0.2148

Cascade R-CNN ResNet-50 0.8564 0.8872 0.8715 0.3497 0.8417 0.2368 0.4892 0.4562 0.3387 0.1436

CenterNet ResNet-101 0.8864 0.8953 0.8908 0.3958 0.8736 0.2873 0.5579 0.5124 0.3865 0.1136

Dynamic R-CNN ResNet-50 0.8426 0.8692 0.8557 0.3375 0.8327 0.2295 0.4936 0.4457 0.3249 0.1574

DH R-CNN ResNet-50 0.8647 0.8873 0.8758 0.3589 0.8562 0.2674 0.5183 0.4618 0.3621 0.1353

DETR ResNet-50 0.8958 0.9267 0.9110 0.4122 0.8893 0.3275 0.5724 0.5218 0.4018 0.1042

Sparse R-CNN ResNet-101 0.8782 0.8879 0.8830 0.3624 0.8624 0.2587 0.5276 0.4835 0.3512 0.1218

ViTDet ViT-B 0.9128 0.9385 0.9255 0.4215 0.9032 0.3386 0.5597 0.5197 0.4132 0.0872

DAB-DETR ResNet-50 0.9067 0.9249 0.9157 0.4037 0.8924 0.3194 0.5482 0.4973 0.3976 0.0933

CO-DETR Swin-L 0.9273 0.9486 0.9378 0.4326 0.9162 0.3417 0.5893 0.5468 0.4218 0.0727

MLFANet (Ours)
ResNet-50 0.9438 0.9652 0.9543 0.4583 0.9548 0.3578 0.6142 0.5679 0.4427 0.0562

ResNet-101 0.9521 0.9716 0.9617 0.4611 0.9602 0.3792 0.6279 0.5824 0.4536 0.0479
fron
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these compared object detection models still cannot achieve

satisfactory detection accuracy. In contrast, the proposed

MLFANet obtained AP values of 95.84%, 98.14%, and 95.26% for

the large-size object categories, respectively. Additionally, for the

other object categories such as cylinder, human body, square cage,

and ROV, the proposed method achieved AP values of 92.03%,

83.06%, 80.14%, and 86.15%, which are the optimal results for all

compared methods. The quantitative analysis results in Tables 1

and 2 show that the proposed method has significant advantages in

solving sonar image object detection tasks. The reason is that
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MLFANet fully considers the interference of seabed reverberation

noise, shadow region, and clutter information in the sonar images,

and proposes corresponding solutions, so it can obtain better object

detection accuracy. To further intuitively compare the performance

of different object detection models, we drew the PR curve of

different object detection models for comparison. The PR curve in

Figure 10 demonstrates the performance of MLFANet compared to

baseline models across various classification thresholds. The PR

curve of MLFANet exhibits a higher AUC, indicating its ability to

achieve both high precision and high recall. This is particularly
TABLE 2 Comparison of category detection accuracy of different object detection methods, where the score in bold is the highest score.

Model Backbone Cube Ball Cylinder HB Plane CC SC MB Tire ROV mAP

Faster R-CNN ResNet-50 0.8126 0.5247 0.7582 0.6978 0.8668 0.3576 0.6632 0.8345 0.2864 0.7238 0.6516

RetinaNet ResNet-50 0.7834 0.4873 0.7763 0.6504 0.8174 0.2865 0.5983 0.7853 0.2981 0.7124 0.6195

Cascade R-CNN ResNet-50 0.8345 0.5562 0.7956 0.7126 0.8972 0.4128 0.6895 0.8672 0.2573 0.7559 0.6779

CenterNet ResNet-101 0.8872 0.6128 0.8325 0.7382 0.9203 0.3978 0.7326 0.8763 0.3012 0.8057 0.7105

Dynamic R-CNN ResNet-50 0.8257 0.5369 0.8154 0.6893 0.8438 0.3736 0.6782 0.8325 0.2297 0.7354 0.6561

DH R-CNN ResNet-50 0.8536 0.5738 0.7862 0.7025 0.9056 0.4265 0.7024 0.8614 0.2895 0.7564 0.6858

DETR ResNet-50 0.8842 0.6297 0.8537 0.7458 0.9159 0.4758 0.7253 0.8713 0.3158 0.8126 0.7230

Sparse R-CNN ResNet-101 0.8264 0.5261 0.7436 0.6951 0.8397 0.3695 0.6915 0.8427 0.2697 0.7327 0.6537

ViTDet ViT-B 0.8976 0.6385 0.8423 0.7626 0.9234 0.4425 0.7456 0.9057 0.3387 0.8051 0.7302

DAB-DETR ResNet-50 0.8653 0.5642 0.8535 0.7715 0.9386 0.3871 0.7167 0.8976 0.3254 0.8385 0.7158

CO-DETR Swin-L 0.8946 0.6285 0.8761 0.7869 0.9527 0.4563 0.7315 0.9143 0.3592 0.8274 0.7428

MLFANet (Ours)

ResNet-50 0.9473 0.7942 0.9182 0.8213 0.9738 0.5138 0.7826 0.9485 0.4895 0.8573 0.8046

ResNet-101 0.9584 0.8157 0.9203 0.8306 0.9814 0.5264 0.8014 0.9526 0.5123 0.8615 0.8161
fron
HB, CC, SC, and MB denote the human body, circle cage, square cage, and metal bucket.
FIGURE 10

Comparison of PR curves for different object detection models.
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important for FLS images, where the presence of noise, shadows,

and reverberation can lead to false positives or missed detections.

Compared to baseline models, MLFANet maintains a more gradual

decline in precision as recall increases, reflecting its robustness to

challenging underwater conditions. This is attributed to the

integration of the LFAM, DFEM, and MFRM, which together

enhance feature representation and reduce noise interference.

Additionally, the CIoU-DFL loss function contributes to this

improved performance by addressing class imbalance and refining

object localization and classification. The precision value of

MLFANet was the highest among all models, further supporting

the superior performance of the proposed framework. This analysis

highlights the effectiveness of MLFANet in achieving a favorable

precision-recall trade-off, making it well-suited for underwater

object detection.

4.4.2 Qualitative analysis
To further demonstrate the effectiveness of the proposed

MLFANet, we visualized the prediction results of sonar images

under different scene conditions contained in the UATD dataset. As

shown in Figures 11–13, these scenes include seabed reverberation

noise interference, shadow region interference, and object scale

variation. It can be seen from the prediction results that the

proposed method can accurately locate and recognize the

different categories of sonar objects in the test images with high

confidence scores. In contrast, the compared methods suffer from

location deviation, high false alarm rate, and recognition failures.

Additionally, as shown in Table 3, we present the confidence scores
Frontiers in Marine Science 15
of different object detection models for the object categories in the

test images. Following this, we present a detailed analysis of the

different object detection model prediction results under three

underwater scene conditions and the advantages of the

constructed sonar object detector. The qualitative comparison

results effectively illustrate the advantages of the proposed

method for sonar object detection.

4.4.2.1 Superiority in scenes with seabed reverberation
noise interference

The irregularity of underwater terrain seriously affects the

propagation and reflection of sound waves on the seabed, so a

forward-looking sonar image is disturbed by seabed reverberation

noise. As shown in Figure 11, under the interference of seabed

reverberation noise, it is difficult for the compared object detection

models to obtain satisfactory detection results. For example, for

CNN-based object detection models, Faster R-CNN (Girshick,

2015) and RetinaNet (Lin et al., 2017b) could not correctly detect

all object categories in sonar images, resulting in false detection and

missing detection. The reason is that the non-linear characteristics

of seabed reverberation noise interfere with the detection and

recognit ion process of CNN-based methods. For the

Transformer-based object detection models, ViTDet (Li et al.,

2022) and CO-DETR (Zong et al., 2023) obtained relatively better

detection results. However, the results in Figure 11 show that these

methods still struggle to accurately detect small-size object

categories. In contrast, MLFANet effectively suppress the seabed

reverberation noise interference on the feature extraction process,
FIGURE 11

Visualization detection results of different object detection models in seabed reverberation noise interference scenes.
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successfully detects different object categories and obtains the

higher confidence score. Moreover, in environments with strong

seabed reverberation noise, MLFANet occasionally misclassifies

noise patterns as objects due to their similar intensity and texture.

Future work could focus on integrating advanced noise suppression

or training with adversarial noise augmentation to mitigate

this issue.

4.4.2.2 Superiority in scenes with shadow region
interference

Since the underwater object has the characteristics of absorption,

reflection, and scattering of sonar signal, it is difficult for the acoustic

wave to directly penetrate the object entity, so the shadow

interference region is formed in the reverse of the object region.

The existence of the shadow region causes object occlusion, so it is

difficult for the object detection model to accurately extract the edge,

contour, and detail feature information. As shown in Figure 12, in the

shadow interference scene, the compared sonar object detection

models struggled to accurately locate and identify the object

category and obtained a lower confidence score. Among the

competitors, for CNN-based methods, CenterNet (Duan et al.,

2019) obtained relatively better detection results. The reason is that

the model uses a center point detection strategy to locate the object

region, which can effectively alleviate the shadow region interference

on the object feature extraction process. For the Transformer-based

methods, CO-DETR obtained the optimal detection results. The

reason is that it suppresses the representation of redundant feature

information in the shadow region through global context modeling,
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and uses the position encoder mechanism to improve the object

positioning accuracy. The proposed method obtains the optimal

detection effect, which suppresses and filters the shadow feature

interference by focusing on the discriminative feature information

of the object region to improve the location and recognition accuracy.

In addition, the objects located in regions with strong shadow

interference are sometimes missed due to low contrast and

insufficient discriminative features. Introducing adaptive contrast

enhancement or attention mechanisms could help improve

detection in such regions.

4.4.2.3 Superiority in scenes with object multi-scale
transformation

Due to the influence of different object entities, object distance

transformation, sonar beam angle, and object motion state, there

are complex object scale transformation phenomena in the forward-

looking sonar image. The variable object scale puts forward higher

requirements for the multi-scale feature extraction capability of the

object detection model. However, the existing object detection

methods can only solve the multi-scale feature extraction problem

of natural scene images, while multi-scale feature extraction for

sonar images still cannot achieve satisfactory performance. As

shown in Figure 13, for sonar images with different scale objects,

the compared methods had false alarms and missing detection

problems. Among competitors, Cascade R-CNN (Cai and

Vasconcelos, 2019) and Dynamic R-CNN (Zhang et al., 2020),

which use multi-scale feature extraction strategies, achieved

relatively better results. The reason is that these methods
FIGURE 12

Visualization detection results of different object detection models on shadow region interference scenes.
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FIGURE 13

Visualization detection results of different object detection models on object multi-scale transformation scenes.
TABLE 3 Comparison of the confidence scores of different object detection methods.

Models
Reverberation noise scenes Shadow interference scenes Object scale transformation

NA NO Confidence NA NO Confidence NA NO Confidence

Faster R-CNN 3 4 80.2%, 99.3%, 64.9%, 49.0% 3 2 68.1%, 34.6% 3 2 95.2%, 45.2%

RetinaNet 3 5 42.1%, 57.3%, 99.3%,
53.6%, 96.2%

3 5 93.8%, 67.0%, 58.3%,
30.6%, 81.2%

3 1 98.7%

Cascade
R-CNN

3 3 61.7%, 87.5%, 68.6% 3 3 86.2%, 94.0%, 49.4% 3 3 99.0%, 94.8%, 81.1%

CenterNet 3 3 81.0%, 83.2%, 51.0% 3 3 97.9%, 94.8%, 75.3% 3 3 47.0%, 31.7%, 72.4%

Dynamic
R-CNN

3 4 97.6%, 98.2%, 34.3%, 28.6% 3 1 69.0% 3 3 98.3%, 93.9%, 91.2%

DH R-CNN 3 5 36.0%, 61.7%, 44.3%,
93.8%, 86.8%

3 3 98.6%, 97.3%, 61.2% 3 1 52.2%

DETR 3 3 87.4%, 97.0%, 95.5% 3 3 98.2%, 98.3%, 38.4% 3 3 98.0%, 87.6%, 88.8%

Sparse R-CNN 3 4 91.6%, 98.9%, 48.6%, 82.0% 3 3 89.9%, 97.8%, 50.7% 3 2 70.6%, 45.6%

ViDet 3 3 84.9%, 97.9%, 93.8% 3 3 98.3%, 98.8%, 92.0% 3 4 98.9%, 32.9%, 46.6%, 96.7%

DAB-DETR 3 3 93.9%, 93.9%, 88.2% 3 4 97.8%, 45.7%, 78.3%, 85.0% 3 4 98.0%, 43.4%, 54.2%, 61.2%

CO-DETR 3 3 96.6%, 97.4%, 94.8% 3 3 97.2%, 98.3%, 92.2% 3 6 99.8%, 99.3%, 40.2%,
83.9%, 31.2%

MLFANet 3 3 99.7%, 99.8%, 99.6% 3 3 99.0%, 99.5%, 92.3% 3 3 99.0%, 94.8%, 81.1%
F
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HB, CC, SC, and MB denote the human body, circle cage, square cage, and metal bucket.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1539371
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Wang et al. 10.3389/fmars.2025.1539371
construct a multi-scale feature extraction structure, which can

alleviate the influence of object scale transformation. In contrast,

we can observe from Figure 12 that the Transformer-based object

detection models were less effective for object scale variable

scenarios. Taking the DAB-DETR (Liu et al., 2022) detector as an

example, it only focuses on the efficient modeling of global

information and ignores the extraction of scale-invariant features,

which leads to missing detection and false alarm problems. The

proposed MLFANet can effectively detect the different scale object

categories in sonar images and obtain a higher confidence score.

The reason is that the multi-scale feature refinement module can

accurately locate sonar objects with different scales and obtain the

robust invariant feature information in sonar image. Moreover,

MLFANet struggles with extreme scale variations, leading to missed

detections of very small objects or fragmented detections of very

large targets. Developing more robust multi-scale feature fusion

techniques or scale-invariant detection mechanisms could address

this limitation.

4.4.3 Performance in small sample scenarios
To evaluate the potential of MLFANet for small sample

learning, we conducted experiments by reducing the training

dataset size to simulate limited data conditions. Specifically, 50%,

25%, and 10% of the original training data were used, while the test
Frontiers in Marine Science 18
set remained unchanged. The performance of MLFANet and four

representative baseline models (Faster R-CNN, RetinaNet, DETR,

and CO-DETR) under these conditions is summarized in Table 4.

The results in Table 4 demonstrate that MLFANet consistently

outperforms the baseline models across all training data fractions.

Notably, in extremely small sample conditions (10% training data),

MLFANet achieved an AP of 30.85%, significantly surpassing Faster

R-CNN (18.57%), RetinaNet (16.42%), DETR (24.17%), and CO-

DETR (26.58%). This highlights the robustness and effectiveness of

MLFANet in low-data conditions.

4.4.4 Computational complexity analysis
Since the sonar image object detection task has high

requirements for algorithm real-time performance, we compared

and analyzed the computational complexity of different object

detection models, and the specific results are shown in Figure 14.

Table 5 presents the number of parameters, FLOPs (Floating Point

Operations), and FPS for each model on a workstation equipped

with an NVIDIA RTX 4090 GPU. It can be seen from the

comparison results that the CNN-based methods have advantages

in computational complexity and real-time performance compared

with the Transformer-based object detection models. To take the

Transformer-based method ViTDet (Li et al., 2022) as an example,

its calculation parameter reached 5,792 MB, and the inference speed
TABLE 4 Model performance verification under small sample conditions.

Data
fraction

Model AP (%) AP50 (%) AP75 (%) APl (%) APm (%) APs (%) FAR (%)

100%

Faster R-CNN 32.53 80.13 21.79 47.68 43.12 31.47 17.55

RetinaNet 29.75 79.52 18.52 45.73 41.27 30.52 21.48

DETR 41.22 88.92 32.75 57.24 52.18 40.18 10.42

CO-DETR 43.26 91.62 34.17 58.92 54.68 42.18 7.27

MLFANet (Ours) 46.11 96.02 37.92 62.79 58.24 45.36 4.79

50%

Faster R-CNN 29.20 76.80 18.50 43.12 39.84 28.74 19.80

RetinaNet 26.85 74.30 15.67 41.45 37.20 26.32 23.67

DETR 36.80 85.20 28.90 50.72 46.10 36.40 12.80

CO-DETR 39.40 88.10 30.70 53.34 49.36 39.20 9.72

MLFANet (Ours) 42.50 93.80 34.80 57.30 53.60 42.10 6.30

25%

Faster R-CNN 24.72 63.18 14.52 37.11 32.84 23.45 23.42

RetinaNet 22.17 64.82 12.33 33.84 30.11 21.52 26.64

DETR 31.25 76.41 23.74 43.55 39.62 30.18 15.63

CO-DETR 33.84 80.12 26.24 46.85 42.62 33.51 12.92

MLFANet (Ours) 37.58 86.74 30.66 49.25 46.13 36.35 8.87

10%

Faster R-CNN 18.57 55.42 9.83 25.17 22.52 15.68 27.92

RetinaNet 16.42 51.27 8.28 21.84 19.43 14.36 30.65

DETR 24.17 61.74 17.98 33.65 30.24 24.06 18.73

CO-DETR 26.58 65.97 20.42 36.84 33.41 26.17 15.83

MLFANet (Ours) 30.85 74.26 24.74 41.58 38.92 31.74 10.48
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was only 19.7 FPS. The reason is that the self-attention mechanism

used in the Transformer model requires the calculation of the

correlation of each pixel spatial position information, which

increases the model inference time and calculation parameters.

For the CNN-based methods, to take the Cascade R-CNN (Cai

and Vasconcelos, 2019) as an example, the number of calculation

parameters was 3,854 MB, and the inference speed reached 35.3

FPS. Although this method outperforms several Transformer-based

object detection models, it still fails to address the real-time

requirements of the sonar object detection task. In contrast, the
Frontiers in Marine Science 19
computational parameter of the proposed MLFANet reached 3,157

MB, and the inference speed was 82.3 FPS, which was significantly

better than the other object detection models. The proposed method

can achieve an advantage because it constructs the corresponding

feature extraction and fusion module for the sonar image, and

effectively alleviates the influence of redundant feature and noise

information on the inference process of the object detection model.

To further validate the feasibility of MLFANet for deployment on

embedded devices, experiments were conducted on an NVIDIA

Jetson Xavier NX. The model was optimized using quantization

techniques to reduce memory consumption and computational

overhead. After optimization, MLFANet achieved an inference

speed of 27.4 FPS with a memory footprint of 2.60 GB on the

Jetson Xavier NX. These results demonstrate that MLFANet meets

the real-time requirements of embedded systems, making it

practical for AUV applications such as obstacle avoidance and

object tracking.
4.5 Ablation study and analysis

To demonstrate the effectiveness of the important components

LFAM, DFEM, and MFRM in the constructed MLFANet, we

performed an ablation study on the UATD testing set, and the

specific quantitative analysis results are shown in Table 6. In the

experiment, we used the YOLOX detector (Ge et al., 2021) as the

baseline model and verified the detector performance improvement

by adding different components. Additionally, since the different

constructed components are mainly for feature extraction and

fusion of sonar images, we present the feature map visualization

results of the different component modules in Figure 15. The

specific analysis of the ablation study is as follows.
FIGURE 14

Comparison of our method with other object detection models in calculation parameters and inference speed.
TABLE 5 Comparison of the computational complexity of different
object detection models.

Model
Parameter

(MB)
FLOPs (G)

FPS (512×512
image size)

Faster R-CNN 4,138 207.1 32.6

RetinaNet 3,815 198.7 35.9

Cascade R-CNN 3,854 223.2 35.3

CenterNet 3,384 189.2 41.2

Dynamic R-CNN 4,052 204.7 30.1

DH R-CNN 4,327 212.3 29.6

DETR 5,748 350.2 19.4

Sparse R-CNN 4,877 298.1 22.3

ViTDet 5,792 420.5 17.8

DAB-DETR 6,015 368.4 18.5

CO-DETR 5,674 324.5 19.7

MLFANet (Ours) 3,157 183.4 82.3
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4.5.1 Effect of the LFAM
The constructed LFAM aims to fully exploit the low-level

feature information such as texture, edge, and contour in the

sonar image to improve the discriminating ability of the model

for object region and background information. As shown in Table 6,

when the LFAM was embedded into the baseline model, it achieved

68.74% (18.5% ↑) mAP on the testing set. Additionally, each object

category experienced a corresponding increase in AP value, for

example, the ball category had an increase of 25.58%, and the circle

cage category had an increase of 22.13%. The feature visualization

results corresponding to Figure 15 further show that the LFAM can

make the model focus on feature extraction in the sonar object

region and significantly enhance the model’s feature representation

ability for low-level feature information.
Frontiers in Marine Science 20
4.5.2 Effect of the DFEM
To filter the redundant feature information interference in the

feature extraction process, the DFEM was constructed, which obtains

the discriminative attributes of the object region by enhancing the local

feature information representation in deep convolution. As shown in

Table 6, when the DFEM was introduced into the baseline model, its

mAP on the testing set reached 70.60%. Moreover, the DFEM

enhanced the small object region feature representation, so that the

AP values of the ball, circle cage and tire small object categories

increased by 30.74%, 25.59%, and 9.60% respectively, and the AP

values of the cube, plane and metal bucket large-size object categories

increased by 15.69%, 11.47%, and 12.87% respectively. Combined with

the LFAM and DFEM, the baseline model achieved significant

performance improvement. Compared with the initial results, the
TABLE 6 Quantitative evaluation of the ablation study with different components, where the score in bold is the highest score.

Methods Cube Ball Cylinder HB Plane CC SC MB Tire ROV mAP

Baseline 0.7153 0.3274 0.5865 0.4317 0.7528 0.2154 0.5171 0.7349 0.2054 0.5366 0.5024

+LFAM 0.8543 0.5832 0.7941 0.7352 0.8759 0.4367 0.7185 0.8437 0.2681 0.7639 0.6874

+DFEM 0.8722 0.6348 0.8364 0.7281 0.8675 0.4713 0.6985 0.8636 0.3014 0.7863 0.7061

+MFRM 0.8657 0.5962 0.8046 0.7524 0.8854 0.3762 0.6735 0.8893 0.3267 0.8127 0.6983

+LFAM+DFEM 0.8875 0.6584 0.8536 0.7782 0.9107 0.4685 0.7639 0.9164 0.4172 0.8311 0.7485

+LFAM+DFEM+MFRM 0.9318 0.7653 0.8735 0.8094 0.9512 0.4956 0.7855 0.9381 0.4597 0.8535 0.7864
fron
NA denotes the number of actual objects and NO denotes the number of objects detected.
FIGURE 15

Visualizing the feature extraction effects of the LFAM, DFEM, and MFRM. (a) original forward-looking sonar images. (b) Feature extraction results
from baseline. (c) Feature extraction results with the LFAM. (d) Feature extraction results with the DFEM. (e) Feature extraction results with
the MFRM.
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mAP increased by 24.61%, and the AP values for the cylinder, human

body, square cage, and ROV increased by 26.71%, 34.65%, 24.64%, and

29.45%, respectively. The feature visualization results in Figure 15 show

that DFEM can effectively filter the redundant feature information

interference to improve the sonar object detection accuracy in clutter

and shadow information interference scene.

4.5.3 Effect of the MFRM
To solve the problem of multi-scale feature extraction in seabed

reverberation noise and shadow region interference scene, theMFRM

was constructed, which obtains the scale-invariant features of sonar

images by region location branch and feature refinement branch.

Different from placing the LFAM and the DFEM in the feature

extraction stage, we embedded the MFRM into the neck structure of

the detector. As shown in Table 6, when placing the MFRM in the

baseline model, it increased the mAP by 19.59%. Additionally, the

model obtained a significant boost in AP values for object categories

with different scales, for example, it increased by 26.88%, 16.08%, and

12.13% for the ball, circle cage, and tire, respectively. From the results

shown in Figure 15, it can be observed that the use of the MFRM

effectively improved the model’s receptive field deformation ability,

so that it could obtain the discriminative feature information of object

regions with different scales. Notably, when combining the LFAM,

DFEM, and MFRM, the baseline model performance was optimized,

and the mAP value on the UATD testing set reached 78.64%, which

further demonstrates the effectiveness of the different components in

improving the detector performance.
5 Conclusion

To solve the problem of forward-looking sonar image object

detection in complex underwater acoustic environment, in this

article, we propose a novel multi-level feature aggregation

network (MLFANet) to achieve an underwater sonar image object

detection task. The proposed MLFANet contains three innovative

modules, the LFAM, DFEM, and MFRM. Specifically, the LFAM is

used to enhance the low-level feature information representation of

sonar images to alleviate the influence of seabed reverberation noise

on the feature extraction process. The DFEM enhances the saliency

of object region features in deep convolution by constructing the

correlation of local-global features to filter shadow and clutter

information interference. The MFRM uses the region location

and feature refinement branches to extract robust invariant

feature information of different scale objects to solve the problem

of underwater object multi-scale variation. To demonstrate the

effectiveness and advantages of the proposed method, we

conducted a series of experiments on a real-scene sonar image

dataset, and MLFANet achieved better performance than the

existing state-of-the-art methods. The ablation studies further

validate the effectiveness and feasibility of the proposed different

innovation modules. Although the proposed method can obtain
Frontiers in Marine Science 21
better detection performance, it requires more training samples.

Therefore, in future work, we intend to explore the forward-looking

sonar image object detection method in small sample conditions.
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