
TYPE Methods 
PUBLISHED 16 July 2025 
DOI 10.3389/fmars.2025.1539828 

OPEN ACCESS 

EDITED BY 

David Alberto Salas de Leó n,
 
National Autonomous University of Mexico,
 
Mexico
 

REVIEWED BY 

Christoph Waldmann, 
Technical University of Applied Sciences 
Luebeck, Germany 
Zhao Dong, 
Hebei University of Engineering, China 

*CORRESPONDENCE 

Huanqing Huang 

icay233@gmail.com 

RECEIVED 04 December 2024 
ACCEPTED 11 June 2025 
PUBLISHED 16 July 2025 

CITATION 

Huang H and Bochdansky AB (2025) 
Optimizing an image analysis protocol 
for ocean particles in focused 
shadowgraph imaging systems. 
Front. Mar. Sci. 12:1539828. 
doi: 10.3389/fmars.2025.1539828 

COPYRIGHT 

© 2025 Huang and Bochdansky. This is an 
open-access article distributed under the terms 
of the Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction 
in other forums is permitted, provided the 
original author(s) and the copyright owner(s) 
are credited and that the original publication 
in this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms. 

Frontiers in Marine Science 
Optimizing an image analysis 
protocol for ocean particles 
in focused shadowgraph 
imaging systems 
Huanqing Huang* and Alexander B. Bochdansky 

Department of Ocean and Earth Sciences, Old Dominion University, Norfolk, VA, United States 
 

A variety of imaging systems are in use in oceanographic surveys, and the opto
mechanical configurations have become highly sophisticated. However, much 
less consideration has been given to the accurate reconstruction of imaging data. 
To improve reconstruction of particles captured by Focused Shadowgraph 
Imaging (FoSI)—a system that excels at visualizing low-optical-density objects, 
we developed a novel object detection algorithm to process images with a 
resolution of ~ 12 mm per pixel. Suggested improvements to conventional edge-
detection methods are relatively simple and time-efficient, and more accurately 
render the sizes and shapes of small particles ranging from 24 to 500 mm. In 
addition, we introduce a gradient of neutral density filters as a part of the protocol 
serving to calibrate recorded gray levels and thus determine the absolute values 
of detection thresholds. Set to intermediate detection threshold levels, particle 
numbers were highly correlated with beam attenuation (cp) measured

independently. The utility of our method was underscored by its ability to 
remove imperfections (dirt, scratches and uneven illumination), and by 
capturing the transparent particle features such as found in gelatinous 
plankton, marine snow and a portion of the oceanic gel phase. 
KEYWORDS 

optical oceanography, particle imaging, shadowgraphy, binarization, edge-detection, 
gels, particulate organic carbon, schlieren 
1 Introduction 

Investigating the spatiotemporal distribution of particulate organic matter and 
plankton organisms is essential for enhancing our understanding of the ocean ecology 
and particle fluxes. Over the years, methodologies used for collecting particle data have 
evolved from traditional tools such as plankton nets and sediment traps to cutting-edge 
optical systems including satellites and in-situ cameras. Optical instruments tailored for 
oceanographic observations, in terms of shadowgraph cameras including but not limited to 
In-situ Ichthyoplankton Imaging System (IRIIS), Zooplankton Visualization and Imaging 
System (ZooVIS) and other devices such as the Video Plankton Recorder (VPR), 
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Underwater Vision Profiler (UVP), Lightframe On-sight Key 
species Investigation (LOKI), Zooglider, Laser In Situ Scattering, 
Transmissometry and Holography (LISST-Holo) and digital 
holographic cameras have expanded our insight into ocean 
particle abundances with their high spatiotemporal coverage 
(Davis et al., 1992; Gorsky et al., 1992; Cowen and Guigand, 
2008; Picheral et al., 2010; Stemmann and Boss, 2012; 
Bochdansky et al. (2013); Schmid et al., 2016; Choi et al., 2018; 
Ohman et al., 2019; Giering et al., 2020a; Picheral et al., 2022; 
Daniels et al., 2023; Takatsuka et al., 2024; Li et al., 2024; Greer et al., 
2025). However, given the variety of platforms there has not been a 
consensus on what constitutes a particle, and what does not, a 
problem that is exacerbated by the numerical dominance of 
particles with low optical density (OD) and reflectance 
(Bochdansky et al., 2022). As a result, a large portion – if not the 
majority – of aquatic particles have not been accounted for by the 
optical systems listed above due to the particle-gel continuum 
(Verdugo et al., 2004; Mari et al., 2017; Bochdansky et al., 2022). 
In other words, the number of particles per volume is largely 
dependent on the sensitivity of the instrument, and the threshold 
settings used in the binarization step from the original grayscale 
image (Bochdansky et al., 2022). Particle concentrations can 
therefore only be compared among deployments of the same 
optical system and identical calibration (e.g., Picheral et al., 2010) 
and when different instruments are compared the offsets in particle 
numbers have to be aligned among instrument platforms (Jackson 
and Checkley, 2011; Zhang et al., 2023). 

Prior research has suggested that the choice of analytical 
methods for processing in-situ image data significantly influences 
the derived particle information (Schmid et al., 2016; Giering et al., 
2020b), which implies a well-designed image analysis protocol can 
extract more useful information, while a poorly constructed one 
may hinder the visualization of potential patterns within the same 
dataset. A variety of particle detection methods have been employed 
in plankton image analysis, including global binarization (Sieracki, 
1998; Davis et al., 2005), Canny Edge detection (Ohman et al., 2019; 
Orenstein et al., 2020), unsupervised learning segmentation (Cowen 
and Guigand, 2008; Iyer, 2012; Luo et al., 2018; Cheng et al., 2020b; 
Durkin et al., 2021; Takatsuka et al., 2024), and other image 
processing pipelines (Olson and Sosik, 2007; Tsechpenakis et al., 
2007; Cheng et al., 2020a; Picheral et al., 2022). However, the 
literature provides limited detail on these methods. Additionally, 
the threshold, a primary parameter determining the number and 
size of particles in the processing algorithm, has often been set 
arbitrarily. For example, in the Focused Shadowgraph Imaging 
(FoSI) approach used in this study, which depends largely on 
light absorbance and to a much lesser extent on scatter, a higher 
threshold (indicating lower sensitivity) tends to reveal optically 
dense particles only, whereas lower thresholds with higher 
sensitivity enable us the visualization of additional particles with 
low OD (Bochdansky et al., 2022). 

Moreover, to study small and low-optical-density particles via 
FoSI, acquiring particle information from images is complicated by 
the fact that particles ranging from tens to hundreds of micrometers 
are often represented by only a few pixels. Global thresholding 
Frontiers in Marine Science 02 
implemented based on the gray level of image pixels, can produce 
noisy and incomplete particle edges when dealing with faint 
particles, which has a larger effect on the reconstruction of 
smaller particles biasing particle number spectra. While Canny 
edge detection reduces noise in images, it tends to overestimate 
edges and overlook smaller particles (Ma et al., 2017; Stephens et al., 
2019; Giering et al., 2020b). Misinterpretation of large particles 
using unsuitable algorithms, especially for those consisting of 
multiple small fragments, further distorts the particle number 
spectrum (Bochdansky et al., 2022). 

Even with the application of a currently elusive, ideal algorithm 
in terms of extracting particle images, the challenge increases when 
attempting to compare data across different optical systems. As a 
result, these cross-comparisons are exceedingly rare. Establishing 
robust and standardized criteria is thus crucial for creating objective 
benchmarks for particle detection. To address this issue, we propose 
the use of stepped neutral density (ND) filters containing 11 
gradients with OD values from 0.04 to 1.0 as a calibration 
procedure for FoSI. While ND filters have not been widely used 
in oceanography as a standard reference, OD has been employed in 
ZooScan to ensure image comparability across various laboratory 
settings (Gorsky et al., 2010). In photomicrography, one study used 
ND filters as reference slides to obtain consistent images (Kim 
et al., 2011). 

Here, we first describe an image processing protocol (Figure 1) 
tailored to the FoSI camera with neutral density filter calibration, 
preprocessing and quality enhancing algorithms, and the removal of 
images containing schlieren artifacts using machine learning. 
Implementing particle reconstructions at various sensitivity settings, 
we demonstrate the effect thresholds have on particle analysis. While 
our analysis is mostly geared towards shadowgraph imaging such as 
FoSI, ISIIS and ZooVIS, much of the image analysis tools provided 
here can be applied to other platforms as well. The narrative provides 
much detail and justifications for each individual step in the image 
analysis pipeline so that it simultaneously serves as an introduction 
and tutorial for novice users. 
2 Materials and equipment 

FoSI features a straightforward design with an inline 
configuration of illumination and camera resulting in high 
sensitivity and a large depth of field compared to non-shadowgraph 
imaging systems (Figure 2). A red-light LED (625 nm, Cree XLamp) 
is used as a point source. The light is collimated by a 25.4 mm plano
convex lens (focal length = 150 mm) and travels through 24.4 mm 
thick sapphire windows that delimit a sample space of exactly 3 cm 
before it is focused by another plano-convex lens (focal length = 100 
mm) into a 25 mm camera lens (Marshall Electronic, V-4325, f/2.5) 
attached to a board camera (ImagingSource, model DMM 
27UR0135-ML, 1/3” sensor). While only the center of the image 
volume is perfectly in focus, image blur is tolerable at extreme 
distances of the image volume and the blur is symmetrical so that 
the edges of particles are rendered accurately after binarization 
(Watanabe and Nayar, 1998; de Lange et al., 2024). The images are 
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labeled consecutively with the date and time in the format {Image 
number} + {YY-MM-DD} + {HH-MM-SS}. Sorting the image 
sequence in chronological order from the beginning to the end is a 
crucial prerequisite for analysis in MATLAB, as the implemented 
function dir in the current analysis does not sort the list of data by 
their labeled image numbers. The captured images are in grayscale 
and saved as bitmaps. We do not recommend using jpeg or other 
compressions as we found artefacts associated with these formats 
after binarization (unpublished results). 

FoSI acquires 1280 x 960 pixels images, with a spatial 
resolution of 11.9 mm per pixel. The depth of field is adjustable 
Frontiers in Marine Science 03 
depending on the oceanic system FoSI is deployed in. For the data 
presented in this study it was set to 3 cm, which lead to the total 
sample volume of ~5.18 milliliters per image before image 
subtraction. During image analysis, the image data were 
converted using function im2double() and analyzed as matrices of 
double-precision arrays rather than image variable (uint8 variable) 
because they allow the numbers to have decimals in their precision 
and are not limited to integers and the fixed numeric boundaries of 
0 to 255. For instance, during the calculation of reference images, 
the rolling average of 100 sequential frames using uint8 variables 
cannot exceed 255, e.g., 100 + 200 equals to 300 numerically but in 
FIGURE 1 

Pipeline of the image analysis protocol for image preprocessing, including illumination correction, image subtraction, and MicroDetect edge 
detection, followed by segmentation into small regions of interests (ROIs). 
FIGURE 2 

Optical configuration of Focused Shadowgraph Imaging (FoSI). Built into a pressure case, the operational depth of this system is 6000 m. Dotted 
lines represent the light path. Rays are parallel across the imaging gap producing shadows on the sensor. 
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uint8, it is capped at 255. In other words, any pixel values greater 
than 255 are truncated to 255, and those less than 0 are set to 0. 

Prior to image segmentation, the grayscale images were 
converted into binary images. A binary image contains only white 
(value = 1) and black (value = 0) pixels. The regions of interest 
(ROIs), which contain useful features, are represented by clusters of 
white pixels, while the black pixels form the background. The 
corresponding code for algorithms mentioned in the current 
study was created and executed using MATLAB 2022a (The 
MathWorks, Inc.). 

Large batch analysis was conducted at Old Dominion 
University High Performance Computing Center (ODU HPC) 
run by bash scripts. We also compared beam attenuation, derived 
from light transmission data collected by a transmissometer (WET 
Labs C-Star, with a path length of 25 centimeters) and fluorescence 
(Chelsea Aqua 3) with the results analyzed by the current protocol, 
as well as UVP5 particle spectrum data from the same region and 
season but in a different year (Kiko et al., 2022). 
3 Method 

3.1 Illumination correction 

Illumination unevenness impairs the accuracy of particle 
information, as varying brightness levels alter the dynamic range 
of pixels at different regions within the same image. Thresholding is 
a technique in image processing that converts grayscale images into 
binary images (black or white pixels). Local adaptive thresholding 
can overcome illumination unevenness since unlike global 
thresholding which applies a single threshold value to process the 
entire image, local adaptive thresholding determines the threshold 
value of a pixel by the small local neighborhood of that pixel (Otsu, 
1975; Lie, 1995; Bradley and Roth, 2007; Singh et al., 2012; Roy et al., 
2014). However, for consistency we employed global thresholding 
by using one constant threshold value across the entire image. 
Because of that, whole-image illumination correction was necessary. 
Frontiers in Marine Science 04
Based upon our investigation, flat-field correction, a method that 
removes the effects of illumination unevenness by applying an 
inverse matrix containing pixelwise correction factors of the 
uncorrected image and ideal even-illuminated image, has been 
used to effectively address this problem (Figure 3) (Seibert et al., 
1998; Emerson and Little, 1999; Abdelsalam and Kim, 2011; Luo 
et al., 2018; Ohman et al., 2019; Wang et al., 2019). More precisely, 
flat-field correction involved creating a pixel-by-pixel correction 
factor matrix based on a standard gray level and a reference (or 
standard) image. This matrix was then applied to the original image 
to correct for variations in illumination, resulting in a more uniform 
final image (Figure 3). The binary image produced by global 
thresholding significantly benefited from prior illumination 
correction, as it served to alleviate the impact of edge effects and 
other uneven lighting issues. The current protocol adopted a 
correction method based on Wilkinson (1994). To implement this 
method, we first computed the correction factor for each pixel as 
described in Equation 1: 

Gs 
Gain(x, y) =  (1)

B(x, y) 

where Gain(x,y) denotes a matrix of a pixel-by-pixel correction 
factor, Gs the standard gray level, B(x,y) the blank image. While 
matrices are not capable of performing division operations with 
other matrices, Gs is assigned to each element in matrix B(x,y). The 
multiplication of correction factor matrix with the uncorrected 
image generates the corrected images, 

C(x, y) =  Gain(x, y) · I(x, y) (2) 

where I(x, y) is the raw image, Gain(x, y) the output from 
Equation 2, and C(x, y) the corrected image. 

Image correction begins with a standard gray level, a blank 
image, and a raw image (the image to be corrected). The standard 
gray level was determined by calculating the average gray level 
across the entire dataset (e.g., images of an entire cast), and this 
value was used as a reference for the correction process. The 
standard value was computed by first averaging the whole image 
FIGURE 3 

Gradient neutral density filter before (left) and after (right) illumination correction. The darker stripes exhibit higher OD values than the lighter stripes 
in this original image positive. 
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sequence to one single image and then applying it to each pixel that 
is representative for the background gray level. Thus, the Gain 
function Equation 1 contains the correction factors for each pixel. A 
blank image is generated by averaging the deep-sea images with low 
particle concentration or images taken in particle free water (e.g., 
deionized water). Note that Equations 1, 2 should be applied to each 
image in the sequence after quality control and the obtained 
correction matrices might vary from image to image. 

Overcorrection due to severely uneven illumination may occur 
when the images exhibit dark corner, in which case we capped the 
correction factors using clip() function to prevent this drawback. 
However, this step was not needed for images in this study and that 
exhibit minimal variance in illumination. 
3.2 Image subtraction 

Some severe artifacts such as dirt or scratches on optical 
surfaces may persist despite illumination correction, and image 
subtraction was subsequently applied to mitigate those artifacts. 
Function imabsdiff() is used to attain the subtraction (Equation 3), 

    Id (x,  y) =  Ci(x, y) − Cj(x, y) (3) 

where Ci(x, y) denotes the i
th corrected image (numbered as ith 

image) in a chronological sequence, K(x, y) is  Cj(x, y) in the second 
subtraction, in which j=i+1. Id (x,  y) denotes the subtraction results 
of two corrected images. The subtracted image can either be a blank 
image, or in oceanographic casts, two consecutive images are 
subtracted from each other. Each image is solely used once to 
avoid data redundancy (Figure 4), reducing the image number to 
half and increasing the image volume for the resultant images by 
twofold (to ~ 10 ml). It is noteworthy that a particle is only 
registered as a particle when it appears or disappears in sequential 
images. Particles that remain stationary, or those that are shaded by 
another particle in subsequent images are not registered. In typical 
oceanographic deployments, where water always moves in front of 
the camera, is typically replaced completely for each image, and 
when particle concentrations are low, shading and self-shading of 
particles represent a minor problem. In highly productive 
Frontiers in Marine Science 05 
environments, with a significant amount shading, a blank image 
based on particle free water is a better choice. 
3.3 Threshold calibration (gray level 
calibration) 

The term “threshold” represents the gray level used to 
differentiate between the background and objects within an image 
during binarization. It is simply the sensitivity level at the post-
production level (i.e., after the images were recorded), with a lower 
threshold corresponding to a higher sensitivity level. 

To ensure the equivalency of sensitivity levels across different 
camera setups, a stepped ND filter (Edmund Optics, #32-599) was 
introduced for calibration purposes (Figure 5). The ND filter used 
in this study comprises 11 stripes, with OD ranging from 0.04 to 1.0, 
where lower OD values indicate more transparent stripes. OD, or 
absorbance in turn, is defined as 

T 
A = − log10 ( ) (4)

100 % 

where T is transmittance in % (Beer, 1852). According to 
Equation 4, an OD of 1 thus corresponds to a transmission of 
10% of the light (90% absorbed). 

The same illumination correction and subtraction procedures 
outlined in Section 3.1 and 3.2 were performed prior to measuring 
gray levels. A manually cropped 200 x200 pixels area was 
subsequently selected, and the median gray level was computed 
for the corresponding OD strip. To predict the relationship between 
OD and gray level, the first model tested was a fifth-degree 
polynomial function (Equation 5), exhibiting an r2 value of 
0.9992 (Figure 5). 

5 4 3 2f (x) =  p1x + p2x + p3x + p4x + p5x + p6 (5) 

where x here denotes gray level in this case. f(x) denotes the 
predicted OD value. p1, p2, p3, p4, p5, p6 denote the constants. 

The exponential model also accurately predicted the 
relationship (Equation 6), 

bx dx g(x) =  ae + ce (6) 
FIGURE 4 

A diagram of the illumination correction and subtraction. The illumination correction is implemented on each image, while the subtraction half the 
number of images. 
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where x is the gray level and g(x) denotes the predicted OD. e 
denotes the exponential constant. a, b, c, d are the constant 
variables. Although the fit is slightly weaker than the previous 
one (r² = 0.9976), the prediction remains closely aligned with the 
observed OD for gray levels below 100. 

Within the gray level interval between 0 and 50, the exponential 
model undershoots while the polynomial model overshoots the 
predicted OD value. Therefore, to achieve the highest accuracy, an 
ensemble model was used as shown in Equation 7, 

E(x) =  af (x) +  bg(x) (7) 

where a and b are weighting factors for f (x) and  g(x), 
respectively. The dashed line in Figure 5 showed an example of 
choosing both weighting factors to be 0.5, which averages the results 
of the two models. The results of the ensemble model for 
corresponding OD values across gray levels 0 to 255 are provided 
in Supplementary Table 1. 
3.4 The MicroDetect algorithm 

This section is a critical component of our pipeline and named 
for the fact that detection of particles in the size range from 24 to 
500 mm was optimized with this method. The name was derived 
from the Sieburth scale (Sieburth et al., 1978), which categorizes 
plankton into seven size classes. Here we show the major steps and 
underlying rationale for each step. Note this threshold-Canny 
combined algorithm was inspired by Nayak et al. (2015). The full 
MATLAB code together with example images is available in the 
Supplementary Section. Consult the MATLAB Imaging Toolbox for 
more details on the individual functions. 

The first step involved a preprocessed grayscale image diff and a 
selected threshold value T (see below for the practical selection of 
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threshold values) as the inputs of MicroDetect. A modified Canny 
edge detection function subsequently enhances the reconstruction 
of particles, for the purpose of noise reduction, and particle edges 
refinement. The edge detection was performed first through global 
thresholding, the command used here is Img=diff > T, where the 
pixels with gray level higher than T are classified as object pixels 
thus becoming white pixels in a binary image. Note “>“ was used 
since the image subtraction step results in image negatives with dark 
background and bright particles. Herein, the left side of the 
command was assigned as the names of the output image. 

Following global thresholding, a simple morphological 
operation bridges 0-valued pixels with two or more 1-valued 
pixels in the neighborhood by Img1=bwmorph(Img, ‘bridge’). The 
neighborhood defined here refers to 8-connected pixels centering at 
the 0-valued pixels. The term 8-connectedness relates to how pixels 
touch each other. In 4-connectedness, pixels are only considered 
part of an edge when they touch on their flat sides. In 8
connectedness, they are considered a part of an edge if they touch 
on the corners as well. Next, an operation Img2=imfill(Img1, ‘holes’) 
function serves to fill the 0-valued pixels surrounded by 1-valued 
pixels. Particles less than 3 pixels were removed using 
Img3=bwareaopen(Img2, 3) to reduce noise. 

Before applying Canny edge detection, we used the imclose 
function with Img4 = imclose(Img3, SE). This close operation 
performs a dilation followed by an erosion. Dilation expands the 
particles by adding more pixels to the boundaries, while erosion 
contracts them by removing pixels from the boundaries. This step 
further bridged the gaps of those nearby but unconnected clusters 
around the particle boundaries. The variable SE represents the 
structuring element, defined as SE = strel(‘disk’, 1). The

structuring element is a matrix that determines whether a pixel is 
added or removed from a boundary by defining the shape of the 
neighborhood of that pixel (a disk-shaped structuring element in 
this case). Although the structuring element could be adjusted 
dynamically, the protocol only used a single value for consistency. 

Conventional Canny edge detection involves four stages. All steps 
are integrated into one function named CannyDetection, which  are
called with the command Img5 =CannyDetection(Img4). This function  
operates in four steps as follows (Canny, 1986): 

3.4.1 Smoothing 
The input image is blurred with a 5x5 Gaussian filter (s = 1.42). 

3.4.2 Computing edge gradients 
Sobel kernel filters illustrated in Figure 6 (Sobel and Feldman, 

1968), were applied convolutionally to calculate the pixel intensity 
changes, also known as intensity gradients in horizontal (Gx) and 
vertical (Gy) directions respectively. The gradient magnitude for a 
given pixel G(x,y) was then computed by Equation 8: 

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
Magnitude(G) =  (G2 + G2) (8)x y 

Since edge gradient is a vector defined by a quantity along with 
direction, the gradient directions, which represent the directions of 
the intensity gradients on the basis of the horizontal and vertical 
FIGURE 5 

OD levels of the neutral density array plotted against their gray 
levels. The blue line represents a 5th order polynomial, the red line 
the 2-parameter exponential model, and the dashed black line the 
ensemble model. 
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gradients, Gx and Gy, were determined using the four-quadrant 
inverse tangent function atan2(Gy, Gx), as given by Equation 9: 

Gy−1(Angle  (G) =  tan ) (9)
Gx 

Subsequently, the directions were converted from radians to 
degrees and adjusted to 0°, 45°, 90°, or 135° with approximation. 
The identification of gradient directions facilitated the following 
non-maximum suppression step. 

3.4.3 Non-maximum suppression 
This step preserved only the maximum gradient in Angle  (G). 

The algorithm examined whether the processed pixel has the 
maximum gradient intensity in comparison to the adjacent two 
pixels along the gradient direction. The processed pixel preserved its 
gradient if it has the maximum gradient intensity, otherwise its 
gradient intensity is set to zero. 

3.4.4 Hysteresis thresholding 
Hysteresis thresholding allows the closely located line sections 

with only small gaps in between to form a continuous line. We set 
the lower and upper thresholds to be 0.01 and 0.02 of the maximum 
gradient intensity, respectively. The selection of lower and upper 
thresholds in Canny edge detection typically follows a ratio between 
1:2 and 1:3. The ratio of these thresholds has a more significant 
influence on the results than using the specific threshold values. 
Additionally, empirical testing across various threshold ratios 
revealed minimal impact on the results when the ratio is equal to 
or less than 1:2. Specifically, pixels were classified based on their 
intensity gradient: those with gradients higher than the upper 
threshold were marked as edge pixels, whereas those below the 
Frontiers in Marine Science 07 
lower threshold were marked as non-edges, and those with 
gradients in between were considered edge pixels only if they 
connected to pixels above the upper threshold. 

A series of delicate morphological operations were performed 
after Canny edge detection. The function Img6=bwmorph(Img5, 
‘bridge’) was applied to bridge gaps of a single pixel wide. Then the 
command Img7=imfill(Img6, ‘holes’) filled in the holes within the 
perimeter of the particle. Since conventional Canny edge detection 
tends to overestimate particle size (Ma et al., 2017; Stephens et al., 
2019; Giering et al., 2020b), we added the following command that 
removes excess particle edges created by the algorithm for a more 
accurate rendering of the particle: Img7(edge_from_canny ~= 0)=0 
(Figure 7D). The holes were filled again, and particles less than 3 
pixels in area were removed from the image. Finally, the output of 
global thresholding was reinforced by applying fill_edge=imfill 
(Img4 | Img7, ‘holes’), ensuring that the hole-filled union of Img7 
and Img4 generate the final edge detection results. 
3.5 Ringing artifact removal 

When parallel light beams travel through regions adjacent to 
high-contrast interfaces, fringe interference artifacts are prone to 
occur. These artifacts are frequently encountered in out-of-focus 
images of dense copepods and fecal pellets. Ringing artifacts are 
similar to Gibbs ringing that pose a significant challenge in medical 
imaging diagnosis as well (Yatchenko et al., 2011; Veraart et al., 
2016). Various techniques exist for Gibbs artifact removal (Nasonov 
et al., 2007; Block et al., 2008; Krylov and Nasonov, 2008; Krylov 
and Nasonov, 2009; Nasonov and Krylov, 2009), and due to their 
similarities we can apply it to our protocol. We employed the cross-
FIGURE 6 

The operators of Sobel edge detection. Gx and Gy calculate the intensity gradient in the x and y axis direction, respectively. 
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section method from the ringing level estimation of Nasonov and 
Krylov (2009) (Figure 8). 

The method first creates a series of cross lines along the major 
axis of the particles, determined by identifying the two farthest 
points on the object’s edge. Perpendicular cross lines on each pixel 
along the major axis were calculated by the pixel coordinate and 
slope since the slope product of two perpendicular lines in a two-
dimensional Cartesian plane is always -1. The primary principle in 
this process was to distinguish the main signal from noisy signal in 
each cross section along the major axis (Nasonov and Krylov, 2009). 
We analyzed the signal in each cross-section line using findpeaks() 
function to obtain both peaks and troughs as maximum gray level in 
each signal serves to define the main signal baseline. Essentially, the 
function searches for the local maximum and minimum values in a 
signal vector which further serves as a reference to filter out the 
weak sections, i.e., the part assumed to be the artifact. The signal 
segments continuously greater than 60% of the maximum are 
considered the main signal and peak signals lower than 60% are 
considered noises. Finally, based on the monotony of the peak 
signals, the nonmonotonic ones are removed since they might 
potentially be Gibbs artifacts (Figures 9A–D). 
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3.6 Special case: schlieren detection 

In this section, we incorporated a preprocessing step to 
eliminate low-quality images ahead of the analysis owing to 
background distortion due to density discontinuities. 

Schlieren, typically caused by inhomogeneous media such as the 
camera moving through pycnoclines in our case, exhibits curved 
structures and distorts true particle information during image 
binarization. It is noteworthy that schlieren are not authentic 
particles but rather manifestations of density differences, and simple 
brightness-level-based particle detection algorithms often misidentify 
schlieren as particles. Even the accuracy of transmissometers can be 
impaired by schlieren effects (Karageorgis et al., 2015). Hence these 
artifacts need to be removed from the dataset before further analysis. 
By checking our FoSI image data collected from various oceanic 
systems, we observed the schlieren phenomenon associated only with 
strong pycnoclines. 

To the best of our knowledge, the impact of schlieren had only 
been addressed in a few in-situ image studies (Mikkelsen et al., 2008; 
Luo et al., 2018; Ellen et al., 2019) and discussions on schlieren 
detection and filtering methods are very limited, except for Luo et al. 
FIGURE 7 

Example of edge detection in a particle under threshold=11. (A) is the particle after quality enhancement. (B) is the binary particle with global 
thresholding . (C) is the binary image after processing image B through the morphological operator. (D) is the binary particle after modified Canny 
Edge detection. (E) the final output of the modified Canny edge detection used in this study. 
FIGURE 8 

The flow chart of the Ringing artifact removal process. One major axis for each object are calculated from the longest Euclidian distance between 
two points along the particle edges and cross (orthogonal) lines are drawn based on that. 
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(2018). Based on the distinction of morphological characteristics 
between schlieren and real particles, we built two algorithms for 
schlieren detection. 

3.6.1 Feature-based schlieren detection 
Prior to schlieren detection, a reference schlieren-free image 

was acquired either by calculating the rolling average of a certain 
number of images or recording an image in clean water. Unlike the 
above image analysis pipeline, schlieren detection omitted the 
illumination correction. The first step involved numerically 
subtracting the reference image from the target image. Note the 
positive or negative signs were preserved, in which the data were not 
technically treated as ‘image’, since the brightness level on an image 
cannot be lower than 0. This was based on the observation in 
Figure 10A that different from the predominant real particles 
captured in the image, schlieren showed sections brighter than 
the background adjacent to features darker than the background. 
Following the subtraction process, the resultant grayscale images 
were further converted into binary images using the MicroDetect 
Algorithm (described in Section 2.5), with a threshold value of 0.001 
in double precision. The primary strategy involves enhancing 
negative pixels post-subtraction (i.e., brighter than background) 
to find anomalies featured by schlieren. Consequently, a threshold 
value of 0.001 is preferred over 0 to effectively eliminate noises 
falling within the range of 0 to 0.001 (Figure 10C). A threshold of 0 
might introduce excessive noise into the binary image, complicating 
the detection of schlieren structures. Objects less than 30 pixel area 
were removed in the subsequent step to retain only the segments 
representing broader schlieren effects. 

The schlieren structure filter evaluates aspect ratio and areas of 
each particle. We computed the former feature from the ratio of 
minor and major axes of an ellipse with the same normalized 
second central moment with the ROIs (Yuill, 1971). Specifically, the 
filter preserved objects exhibiting aspect ratio less than 0.2 as well as 
areas greater than 100 pixels². The MATLAB function regionprops 
() is used to determine the major and minor axis lengths. In cases 
when schlieren are intense and cover a large region in the image, a 
high-pass filter with a 40,000 pixel area threshold was introduced to 
capture these features instead. Following the enumeration of 
schlieren structures across the entire image, an image was 
classified as a schlieren image if there were three or more such 
structures present simultaneously (Figure 10D). 
3.6.2 Deep learning-based schlieren detection 
Transfer learning is a deep learning model widely implemented 

in computer vision related tasks (Ahmed et al., 2008; Simonyan and 
Zisserman, 2014; Bozinovski, 2020). In comparison to traditional 
machine learning methods, transfer learning demonstrates 
improved performance by achieving high prediction accuracy 
with minimal manual annotation (Cheplygina et al., 2019; Shaha 
and Pawar, 2018; Zhuang et al., 2020; Morid et al., 2021). We used 
transfer learning to classify schlieren patterns in addition to the 
feature-based detection model above. 
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The base model was a pretrained VGG-16, a deep learning 
model known for its high performance in image classification 
(Simonyan and Zisserman, 2014). The model was initially 
trained on ImageNet, a large-scale dataset comprising 20,000 
types of images not including schlieren. Nevertheless, the 
features learned from ImageNet appeared to be transferable in 
the current study. 

The dataset used in this study consisted of 594 images 
categorized into two classes: schlieren and no schlieren. This 
dataset was further divided into training, testing, and validation 
sets in a 7:1:2 ratio. The last five layers were made trainable while 
keeping all other layers frozen to retain the initial parameters. We 
froze some layers to retain the learning that has already occurred, 
focusing on training only the last five layers to adjust the weights for 
the new schlieren dataset. Unlike the typical approach of resizing 
images to 244 x 244 pixels, the original image size of 1280 x 960 
pixels was maintained to minimize information loss. The learning 
rate was set at 10–5 with 50 epochs and a batch size equal to 20. The 
program used in the current protocol is a modified version of the 
Python demo provided by Elgendy (2020). 
4 Results 

4.1 Comparison of the particle abundance 
with beam attenuation (cp) 

We first compared particle abundance derived from the Fall 
2021 Oceanic Flux Program (OFP) cruise with the beam 
attenuation coefficient (cp). The results were crucial for validating 
our findings with respect to a widely used optical property. The cp 

coefficient is used as a proxy for particle concentration, particularly 
for particles ranging from 0.5 to 20 mm Equivalent Spherical 
Diameter (ESD) (Gardner et al., 2003). Our analysis from FoSI 
revealed a similar trend across most casts when examining particle 
abundance of those ranging from 24 to 50 mm ESD (Figure 11 and 
Figure 12; Supplementary Table 2; Supplementary Table 3). This 
specific size range was chosen because it is in the smaller part of the 
size spectrum in FoSI, and therefore more related to those observed 
with the transmissometer while larger particles create statistical 
noise due to their rarity. The scarcity of larger particles was 
apparent in the number spectrum analysis (Figure 13). In the 
epipelagic zone, the coefficient of determination (r2) of  cp and 
FoSI particle numbers reached their highest values at thresholds 
between 13 to 21 with the corresponding attenuation values ranging 
from 0.7711 to 0.8848 across different casts (Supplementary 
Table 2). We also observed a slight increase in r2 values as we 
increased sensitivity (by lowering the threshold, see above), 
substantiating that the emerging particles at lower thresholds, at 
least down to a threshold of 21, possess characteristics beyond mere 
random noise. For linear regression analysis between cp and particle 
numbers, the p-values were smaller than 0.0001 except for cast-4 at 
threshold equal to 11 (Supplementary Table 2). The correlations 
became poorer, at thresholds < 13 in general. In addition to particle 
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abundance, linear regression analyses of particle-projected area, 
total particle volume (TPV) with cp were conducted for comparison. 
Overall, particle area and volume parameters showed a consistent 
pattern in linear regression analyses. Nonetheless, the particle 
projected area shows the lowest r2 under same sensitivity level 
and cast, whereas the r2 values of TPV fell between particle 
abundance and area. 

For direct comparison, the vertical profiles of particle 
abundance, TPV, cp and chlorophyll data for the corresponding 
casts were shown in Figures 12A–F for a particle size range of 24-50 
mm ESD. Particle abundance tightly correlated with cp in the 
epipelagic zone (<= 200m), which became weaker in the deep 
ocean (> 200m) where the transmissometer reached its lower 
dynamic range limit. We observed a peak in the particle 
abundance and TPV in the nepheloid layer due to resuspension 
(Figures 12C, D) that was simultaneously captured by the 
transmissometer. Chlorophyll maximum depth could be found in 
the surface layer; however, the chlorophyll concentration rapidly 
dropped to undetectable levels in the mesopelagic zone. Notably, 
the Chlorophyll maximum depth aligned with particle abundance 
peak in some but not all casts. 
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4.2 Reconstruction of gel-type particles 

To investigate how the MicroDetect algorithm performed on 
recognizing the transparent particle fraction, we compared the 
binary image processed by global thresholding and our algorithm 
at a high sensitivity level (threshold = 13, corresponding to 
OD=0.1681 based on Figure 5 and Supplementary Table 1). The 
results showed that the MicroDetect algorithm is capable of 
recognizing the gel-like portion of inhomogeneous particles, such 
as marine snow, Rhizaria and Appendicularia, the transparent 
fraction of which are almost undetectable using the global 
thresholding method (Figure 14). In Figure 14A, the  MicroDetect 
Algorithm not only captured the transparent gel matrices of marine 
snow particles but also identified fragmented small particles as part of 
larger irregular aggregates. The enhancement seen with MicroDetect 
Algorithm suggested its capacity in terms of recognizing transparent 
particle features in the ocean environment, accounting for more 
accurate particle reconstruction at the same sensitivity level. It is 
noteworthy that the goal was not to highlight detailed features in the 
particles but to arrive at a more accurate representation of the true 
particle dimensions. The accurate rendering of larger connected 
FIGURE 9 

Example particles before and after removal of the ringing artifacts. (A) Original grayscale image, (B) original binary image, (C) grayscale image after 
ringing effect removal, (D) binary "deringed" image. 
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particles is important as it influences the slopes of particle size 
spectra. Another possible solution for this problem is density-based 
spatial clustering as suggested by Bochdansky et al. (2022). 
 

4.3 Comparison of particle number spectra 
between FoSI and UVP5 data collected in 
the same region 

We defined 28 particle size classes  within  the range  of  0.0403
millimeters to 26 millimeters as in Kiko et al., 2022. This analysis used  
the particle data from  the  upper  400 m  collected  in  spring  2021  during  
Frontiers in Marine Science 11 
 

an Oceanic Flux Program (OFP) cruise.The particle number spectra 
were created using Equation 10 described in Jackson et al. (1997), 

Particle Number 
n = (10)

(Su − Sl) x Vsamp 

where n refers to the particle number spectrum, Su refers to the 
upper value of the size class. Sl refers to the lower value of the size class. 
Vsamp represents the sample volume. The particle number spectrum  
represents the number of particles in each size class, divided by the size 
class width and sample volume (Jackson et al., 1997). FoSI and UVP5 
were deployed at the same site but different years (Figure 13). The 
elevation of the FoSI particle number spectra was substantially higher 
frontiersin.or
FIGURE 10 

An example of schlieren detection (A) The raw schlieren image. (B) a blank image. (C) The binary image highlighting the negative pixels (brighter than 
background after subtraction). (D) The binary image after using the MicroDetect and the schlieren feature filter. 
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than the UVP5 except for two casts (Figure 13) indicating that 
shadowgraph imaging is capable of detecting more particles 
especially those with low OD. While the threshold selected for UVP 
spectrum analysis is unknown, the particle numbers detected by FoSI at 
threshold equivalent to 7 (OD= 0.1168) fall approximately two orders 
of magnitude higher than the UVP spectra (Figure 13). 
 

5 Discussion 

The method described in this paper presented a detailed image 
analysis pipeline primarily designed for shadowgraph imaging. In 
contrast to other existing image analysis algorithms, our method 
more efficiently extracted information to small and low-optical
density particles from in-situ images. The accurate particle 
recognition protocol will support studies that require high-
resolution data as a solid foundation to further investigate the 
biological significance of aquatic particles (Verdugo et al., 2004; 
Giering et al., 2020a; Irby et al., 2024; Huang et al., 2024). 

The illumination correction involved the simple flat fielding 
method devoid of histogram equalization, as any change in image 
contrast may alter the preceding calibration model. Overcorrection 
occurred when some pixels in an image are extremely bright (close 
to 255) or dark (close to 0) (Xu et al., 2010). Piccinini and 
Bevilacqua, 2018 described a method to avoid overcorrection by 
maintaining all the pixels with 255 unchanged in the image before 
and after illumination correction. To resolve this issue in our 
protocol,  we  added  an  artifact  mask  to  exclude  those  
overcorrected pixels. Similarly, illumination correction has been 
applied to effectively acquire clean particle data in microscopic 
images (Leong et al., 2003). 

Changes in OD are explicitly observed in shadowgraph imaging 
systems because the configurations enable us to identify this
Frontiers in Marine Science 12 
difference. A similar calibration is not feasible with other optical 
systems such as LISST which are based on scatter, and which lack 
the capacity to recognize this variation. Threshold calibration offers 
objective comparison across different camera settings accompanied 
by an explicit absolute OD value. Having a precise OD value that 
determines the analytic threshold provides an objective reference 
(OD) that makes the results comparable. As previously discussed 
(Bochdansky et al., 2022), the threshold selection process is highly 
arbitrary when particles are extracted from in-situ images and few 
researchers aware that varying these thresholds can result in 
differences of several orders of magnitude in the estimated 
particle abundance (Figure 13). 

Image subtraction is a simple yet critical step in image 
processing (Oberholzer et al., 1996; Russ, 2006). Gray levels in an 
image cannot be negative, meaning the image subtraction always 
results in a positive value. Meanwhile, even if the probability of 
overlap is low in oligotrophic environments (Conte et al., 2001; 
Gundersen et al., 2001), absolute subtraction might cause some 
errors when particles in two consecutive images overlap on the 
same pixel regions. In cases of high particle concentrations such as 
estuarine and coastal systems, we recommend filming deionized 
water images taken either before or after the cast as reference or by 
physically decreasing the imaging gap between light source and the 
camera housing to decrease the image volume. In oligotrophic 
systems such as in the Sargasso Sea and in deep sea environments 
as shown here, particles are so rare that particle overlaps are a 
statistically negligible problem. 

In shadowgraphs, particles are typically darker than the 
background, but few exceptions arose during the analysis as we 
occasionally observed gel-like particles brighter than the background 
seawater, which was also observed in the presence of schlieren 
(Figure 10). Most marine particles are known to be of higher OD 
than the surrounding seawater (Mobley, 2022). However, it is 
FIGURE 11 

The coefficients of determination (r2) between particle abundance in the 22-40 µm size range and the beam attenuation coefficients (0-200 m 
depth range). r2 values reach their highest values at intermediate threshold (i.e., sensitivity) values. 
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conceivable that gels as well as density discontinuities such as 
schlieren lead to a lensing effect in which light is concentrated in 
certain small regions of the image sensor. 

In our search for an effective algorithm to analyze millions of 
small particles from large datasets, we conducted experiments on 
various edge detection methods, ranging from local thresholding to 
more complex techniques. Our analysis corroborated results of a 
previous study on particle detection techniques (Giering et al., 
2020b). For example, using Canny detection alone tends to 
fragment large particles and introduce significant Gibbs ring 
artifacts. The noises around the large particles are likely to be 
amplified by Canny detection as wiggly lines. Under the same 
threshold, Canny detection was found to overestimate particle size, 
while other algorithms, such as Prewitt and Roberts edge detection 
Frontiers in Marine Science 13 
(Roberts, 1963; Prewitt, 1970), struggled to detect faint particles 
(Supplementary Figure 5). Although the Otsu method (Otsu, 1975) 
automatically determines the threshold based on brightness 
variation, it had been proved less effective for detecting small, 
faint particles (Cai et al., 2014; Yuan et al., 2016). In contrast to 
the algorithms above, our MicroDetect Algorithm was derived from 
the Canny edge detection algorithm as described by Nayak et al., 
2015. To tailor the original algorithm for particle analysis, we 
eliminated the morphological opening filter, which tends to 
inflate particle size in our application. Additionally, we removed 
edges detected by the Canny method after filling in holes to 
minimize overestimation Figures 7A–E. Although machine

learning algorithms are known for their effectiveness in image 
edge detection (Arteta et al., 2012; Irisson et al., 2022; Panaïotis 
FIGURE 12 

Vertical profiles of particle data ranging from 24-50 µm, beam attenuation, and relative chlorophyll fluorescence during the OFP October cruise. 
(A–F) represent cast numbers 1, 2, 4, 5, 6, and 7, respectively. Particle data were analyzed at threshold 11. 
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et al., 2022; Yao et al., 2022), we believe that the MicroDetect 
Algorithm can be exceptionally practical for image classification 
following the ROI segmentation, hence decided to set aside the 
computationally expensive techniques. 

The proposed feature-based schlieren detection can be 
programmed with relatively simple functions. Nevertheless, the 
applicability of our schlieren detection algorithm is limited to 
evenly illuminated images. When dealing with image data 
influenced by severely uneven illumination, the algorithm may fail. 
Another drawback is attributed to the area filter used to exclude 
schlieren, which may falsely eliminate large particles with high-aspect 
ratio, e.g., large medusae, some elongated marine snow particles, 
diatom chain or marine snow debris (Bochdansky et al., 2016). By 
contrast, the deep learning-based schlieren detection outperforms in 
terms of accuracy while the outputs depend largely on data quality 
during training. Since the training image set requires update when it 
is applied to a new camera setting, the manual selection and training 
greatly increase the complexity of the process. 

Several studies made intercomparisons of particle parameters 
measured by different optical instruments. The study of 
Behrenfeld and Boss (2006) showed a high correlation at upper 
200 m North Pacific of Coulter Counter-based particle (~1.5
40mm) data and cp (r

2 = 0.77) which compares well with the results 
presented in the current study (Supplementary Table 2). The 
spikes in the cp were not seen in the FoSI data (Figure 12), 
because they are rare large particles that pass through the light 
beam of the transmissometer (Briggs et al., 2013; Giering et al., 
Frontiers in Marine Science 14 
2020a). Our results resembled a LISST-100 study suggesting cp is 
less sensitive to the change of particle size and correlates better 
with particle abundance than TPV (Boss et al., 2009). Another 
study inferred particle projected area reflects cp better than TPV 
because the particles are imaged as two-dimensional projections 
(Hill et al., 2011), however, we did not observe this in FoSI data. 
Our results showed that the correlations ranked with cp as particle 
abundance > TPV > particle projected area (Supplementary 
Tables 2, 3). Additionally, the statistical results indicate that 
higher sensitivity levels lead to a stronger correlation between cp 

and particle abundance for particles ranging from 22 to 40 mm, 
with the r2 peaking at thresholds between 13 and 19 (see 
Supplementary Table 1 for the corresponding OD values). 

We selected marine snow, Rhizaria and Appendicularia to 
represent particles containing transparent features that sometimes 
lead to fragmentation during image analysis. Marine snow particles 
include aggregates greater than 0.5 millimeter that contain 
transparent gel matrices. Previous investigations revealed the 
unique, yet elusive characteristics of marine snow based on 
optical and fluid mechanical observations (Honjo et al., 1984; 
Petrik et al., 2013; Markussen et al., 2020; Chajwa et al., 2024; 
Cael and Guidi, 2024). Chajwa et al. (2024) visualized the mucus 
comet-tails on sinking marine snow particles with high-resolution 
Particle Image Velocimetry (PIV) and further inferred that the 
optically invisible fraction of marine snow visualized via the flow 
field around the particles contributed greatly to the particle size and 
their sinking velocity. While not perfect, our MicroDetect Algorithm 
FIGURE 13 

Number spectra of the FoSI data at various thresholds in comparison to UVP5 data from the same region (Kiko et al., 2022). The different colors 
represent different thresholds (i.e., sensitivities) of particle reconstruction in FoSI while the yellow lines are the particle number spectra of the UVP5. 
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recognized at least a large portion of the mucus matrix 
(Figure 14A). As the particle size increases, one may assume that 
sinking velocity of these particles increases according to Stoke’s law. 
However, it appeared that this is not universally true (Iversen and 
Lampitt, 2020). Since the gels are neutrally or even positively 
Frontiers in Marine Science 15 
buoyant (Azetsu-Scott and Passow, 2004; Engel, 2009; Mari et al., 
2017; Romanelli et al., 2023), they reduce the particle sinking 
velocities as clearly demonstrated by Chajwa et al. (2024). This 
indicates that for the same image data, the improved object 
detection algorithm will extract more information on the 
FIGURE 14 

The ROI segmentation results comparing the traditionally used global thresholding with our new edge detection algorithm. (A) marine snow, (B) 
Rhizaria, (C) Appendicularia. The global thresholding method only identifies a fraction of the particles, underscoring the advantage of our edge 
detection technique. Unlike simple thresholding, our method can discern fainter portions of a particle even at the same threshold level. Note the 
particle images in the figures are not to scale. 
frontiersin.org 

https://doi.org/10.3389/fmars.2025.1539828
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Huang and Bochdansky 10.3389/fmars.2025.1539828 
potential sinking velocity of particles. Rhizaria are a group of 
protists abundant in the mesopelagic zone. Studying them has 
been challenging owing to their fragile structure and easily being 
dissolved in fixatives (Matsuzaki et al., 2015; Nakamura et al., 2015; 
Biard et al., 2015, 2018; Biard and Ohman, 2020; Mars Brisbin et al., 
2020). Consequently, researchers use in situ optical devices (Biard 
et al., 2016, 2018; Nakamura et al., 2017; Biard et al., 2020; Mars 
Brisbin et al., 2020). The MicroDetect Algorithm detects the 
endoplasm and spicules of Radiolaria as well as the much more 
transparent ectoplasm that harbors algae and food vacuoles and is 
difficult to detect by most photographic systems (Ohtsuka et al., 
2015) (Figure 14B). 

Similarly, Appendicularia and Cnidaria, both broadly distributed 
zooplankton worldwide (Cairns, 1992; Båmstedt et al., 2005; 
Capitanio et al., 2008; Kodama et al., 2018; Williams, 2011) exhibit  
transparent features in their bodies that are not rendered well with 
conventional image analysis tools but are better outlined using the 
MicroDetect Algorithm (Figure 14C). However, FoSI cannot visualize 
the entire transparent structures on Appendicularian houses even at 
higher sensitivities (Bochdansky et al., 2022). While the MicroDetect 
Algorithm more accurately recovered their actual sizes, the loss of 
image details will hinder the taxonomic identification of these 
plankter. In fact, the ROIs extracted from the original gray scale 
images will be a better fit than the binary images in terms of 
identification using machine learning algorithms. 

In conclusion, this paper provides a detailed step-by-step 
workflow for the analysis of oceanographic images from a 
shadowgraph system. The primary advancement of our method 
involved the development of the MicroDetect Algorithm to better 
reconstruct the ocean particles from 24 to 500 mm. Additionally, the 
novel protocol significantly improved the recognition of gel-like 
structures in the water column and transparent parts of plankton 
organisms. This highlights potential new approaches for studies of 
the oceanic gel phase independent of traditional Alcian Blue 
staining methods. Finally, we addressed the most vexing problems 
in image analysis and hope that by the application of neutral density 
filters as presented here, a standardization of different shadowgraph 
cameras can be achieved in the future. 
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