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The Yellow River is the largest inflow into the Bohai Sea, and its inflow changes

directly affect the ecological environment and marine health of the Bohai Sea.

Therefore, accurate prediction of the inflow of the Yellow River is crucial for

maintaining the ecological balance of the Bohai Sea and protecting marine

resources. Time decomposition algorithms, combined with machine learning,

are effective tools to enhance the capabilities of inflow prediction models.

However future data leakage from decomposition items was ignored in many

studies. It is necessary to develop the right method to operate time

decomposition to avoid future data leakage. In this study, the inflow from the

Yellow River into the sea was predicted based on a machine learning model (light

gradient boosting machine, LightGBM) and a time decomposition algorithm

(seasonal and trend decomposition using loess, STL), and the future data

leakage in different ways of using STL were evaluated. The results showed that

the overall performance of the STL–LightGBM model was better than that of the

LightGBM model. The STL–LightGBM took the historical inflow for 8 days as the

input, and predicted that the average NSE of the next 1–7 days would reach

0.720. Even when the forecast period was 7 days, the STL–LightGBM (NSE: 0.549

for 7-day lead time) was 0.105 higher than the LightGBM (NSE: 0.444 for 7-day

lead time). We found that STL pretreatment of the entire test set overestimated

the true performance of STL–LightGBM. It is recommended that the STL

preprocesses each sample of the test set to avoid future data leakage. The

study can provide help for water resources management and offshore

environmental management.
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1 Introduction

The Bohai Sea, located in the western Pacific Ocean, is a

shallow, semi-enclosed marginal sea and China’s only inland sea

(Cheng et al., 2023). The Yellow River is the second longest river in

China, accounting for more than 75% of the total freshwater input

into the Bohai Sea (Liu et al., 2022). The Yellow River Estuary (YRE)

has the broadest and most complete wetland ecosystem in China’s

temperate zone (Bai et al., 2012; Li et al., 2009). The river’s inflow

not only influences the ecology of the YRE but also transports a

large amount of nutrients to the Bohai Sea, affecting the health of

the marine ecological environment (Liu et al., 2021; Yang F. X. et al.,

2024). Predicting the flow of the Yellow River into the sea can

prepare decision-makers and avoid or minimize potential losses and

disasters (Liu et al., 2024; Xu et al., 2016).

Inflow forecasting models are generally divided into process-

driven models and data-driven models (Jiang et al., 2020, 2024;

Kratzert et al., 2019; Xie et al., 2023). Data-based inflow prediction

methods mostly involve machine learning (Reichstein et al., 2019).

Compared with traditional process-driven models, machine

learning methods can accurately capture the nonlinear

characteristics between input and output data without

understanding the physical mechanism, and accurately predict

and analyze the target variables using a simple modeling process

(Shen, 2018; Wu J. H. et al., 2023). In recent years, many studies

have used machine learning methods to establish the relationship

between hydrological variables in different watersheds and have

achieved satisfactory results (Althoff and Destouni, 2023; Huang

et al., 2024; Singh et al., 2023; Wang S, et al., 2022; Zhi et al., 2021).

However, hydrological time series data are composed of trend,

seasonality, periodic motion, and error components, and irregular

random motion leads to inherently nonlinear, complex, and non-

stationary time series (Apaydin et al., 2021; Jehanzaib et al., 2023).

The complexity of the inflow process makes it difficult for machine

learning models to distinguish and identify these characteristics,

which is challenging for the accurate long-term prediction of inflow.

Therefore, different data preprocessing methods, such as

decomposition techniques, are needed to improve the prediction

accuracy of the models (Apaydin et al., 2021; He et al., 2024;

Parisouj et al., 2023; Zuo et al., 2020).

The most competitive machine learning models need at least

three elements: preprocessing methods, machine learning models,

and appropriate training algorithms (He et al., 2021). Signal

processing is a frequently used time series processing method,

which can weaken the redundant content of the signal, filter out

the mixed noise and interference, and transform the signal into a

form that is easy to process, transmit, and analyze for subsequent

processing (Zuo et al., 2020). The commonly used signal processing

methods include wavelet analysis, Fourier transform, ensemble

empirical mode decomposition (EEMD), variational mode

decomposition (VMD), singular spectrum analysis (SSA), and

seasonal and trend decomposition using loess (STL). In addition

to this signal processing, an ensemble model is another method to

improve the accuracy of the modeling. Ensemble models aim to give

full play to the advantages of various prediction models by properly
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combining different prediction models, thus making comprehensive

use of all the information (Abbasi et al., 2021). An ensemble model

can effectively make use of the information decomposed by an

algorithm and improve the prediction accuracy of the system. Some

studies have also confirmed this view, such as artificial neural

network (ANN) based on SSA (Apaydin et al., 2021) and support

vector machine (SVM) based on EEMD and VMD (Chen S,

et al., 2021).

Despite the growing popularity of signal processing-based time

series forecasts in hydrology and water resources, the correct design

and interpretation of this integrated signal processing model has

not always been scrutinized, which often leads to invalid prediction

design and cannot be used in real-world scenarios (Du et al., 2017;

Quilty and Adamowski, 2018). The impact of test data feature

leakage (i.e., the “future data” issue) in ensemble model

decomposition algorithms is often overlooked, representing a

critical blind spot in current research. Test data feature leakage

can lead to premature exposure of target variable information,

giving the model an unrealistically advantageous performance

during the testing phase. This results in an overestimation of the

model’s predictive capabilities, ultimately undermining its practical

applicability. Therefore, a thorough investigation of this issue is

crucial for enhancing the scientific rigor and reliability of machine

learning-based hydrological prediction models.

The development of a machine learning model requires training

data and test sets. The test set does not participate in the training,

and it is mainly used to test the accuracy of the training model. It

cannot be used as the basis for the selection of algorithms such as

parameter adjustment and feature selection. Before the ensemble

model testing of certain decomposition methods, some

preprocessing methods must be used to deal with the test set. He

et al. (2024) proposed a seasonal decomposition-based gated

recurrent unit (SD-GRU) method for daily inflow prediction.

Chen S, et al. (2021) employed EEMD and VMD for signal

decomposition, introducing a hybrid model based on a two-stage

decomposition, SVM, and ensemble methods for annual inflow

prediction. In addition, the STL decomposition method effectively

extracts trend and seasonal components, demonstrating strong

adaptability and interpretability in hydrological time series

analysis and forecasting (Cleveland and Cleveland, 1990).

Compared to other signal decomposition methods, STL offers

significant advantages in handling non-stationarity and enhancing

model generalization (Hyndman and Athanasopoulos, 2018).

However, these methods of preprocessing test set data in time

series may lead to future data leakage (the decomposed feature

contains the information from the target variable). The input

features of the test set must not contain information from the

target variables, otherwise, the data features will be leaked, and the

credibility of the test set will be decreased.

This study thus aimed to develop an ensemble model based on

STL decomposition, a machine learning model, and an ensemble

method to improve prediction of the Yellow River inflow into the

sea under different pre-processing scenarios. This is important for

improving the habitat conditions and maintaining the biodiversity

of the YRE. Specifically, the study: (1) used autocorrelation analysis
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and STL to select time-lag features and identify flow time series

features, respectively; (2) identified the characteristics of time lags

and the influence of lead time on the model by developing inflow

forecasting models with different time windows and different lead

times; and (3) considered the rigor of the test set by setting different

STL pretreatment scenarios to compare the combined effects of STL

and member models in different scenarios.
2 Methodology

2.1 Autocorrelation analysis and partial
correlation analysis

Autocorrelation analysis (ACF) and partial correlation analysis

(PACF) can quantitatively represent the inherent correlation of

multi-feature time series, and the methods are usually used to

calculate the time dependence on the past (Chen et al., 2020). ACF

can quantitatively measure the correlation between the observations

of time t and the previous k periods, whereas PACF can measure the

correlation between two specific and discontinuous periods. The

autocorrelation coefficient of ACF can be calculated as follows

(Equation 1):

rk = o
n
t=1(Ot − O)(Ot−k − O)

on
t=1(Ot − O)2

(1)

where Ot time t observation, Ot−k is time t − k observation, �O is the

average value of all observed value, and k is the lag time (days). The

PACF can be calculated as follows (Equations 2, 3):

fkk & =
rk −ok−1

j=1 fk−1,jrk−j
1 −ok−1

j=1 fk−1,jrj
(2)

fk,j & = fk−1,j − fkkfk−1,k−j (3)

Through the above equations, the correlation of different time

delays can be calculated.
2.2 Sliding window

The original time series was transformed into input and output

marker subseries for better model training. The sliding window

(SW) method was used to construct the input and output of training

samples based on continuous time series observations (Ramkumar

and Jothiprakash, 2024; Zhang et al., 2019). The time series training

samples generated by the SW method can be represented as follows

(Equation 4):

Input : Qt−md−1,Qt−md ,  ⋯,Qt−3,Qt−2,Qt−1f g

→ ouptut : Qt+mp

� �
(4)

where Q = ½Q1,Q2,Q3 ⋯Q� is the complete sequence, Input

represents an input at the time t −md  −1 to t − 1 day, output

represents the output at time t +  mp. The operational mode of the
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SW is shown in Figure 1. The size of the SW not only makes the

number of training samples of time series significantly different but

also influences the input subsequence and output sequence

associated with each training sample. Compared with a large SW

size, a small SW size will provide more training samples, but the

samples may not contain enough input information; a larger SW

size will result in fewer training samples, and irrelevant interference

information will be included in the model input set. Therefore, the

appropriate sliding window size should be chosen. No other

additional features (such as precipitation and temperature) were

used in this study, which aimed to predict future inflow from

historical flow data and its terms of STL decomposition.
2.3 Seasonal and trend decomposition
using loess

STL is a widely used and robust method for decomposing time

series, in which loess (locally weighted regression) is a method for

estimating nonlinear relations. The STL decomposition method was

proposed by Cleveland and Cleveland (1990), and has several

advantages: STL can handle any type of seasonality, not just

monthly and quarterly data; seasonal items can change over

times; and the rate of change can be easily controlled. STL was

used to decompose the time series of Yellow River inflow into three

items: trend term, seasonal term, and residual term (Equation 5).

Yt = St + Tt + Rt (5)

where the original time series data, seasonal components, trend

components and residual components are expressed as Yt , St , Tt ,

and Rt . They range from 1 to N (sequence length). The key of the

STL algorithm is locally weighted regression, which combines the

simplicity of traditional linear regression and the flexibility of

nonlinear regression to fit a smooth two-dimensional scatter map.

The process of the decomposition algorithm is shown in Figure 2.
2.4 Light gradient boosting machine

Light gradient boosting machine (LightGBM) was originally

developed jointly by Microsoft and Peking University to solve the

problems of efficiency and scalability of the gradient boosting

decision tree (GBDT) when applied to high-dimensional input

characteristics and large amounts of data (Ke et al., 2017).

LightGBM does not use information gain to segment the internal

nodes of each tree as traditional GBDT does. LightGBM combines

two innovative techniques: gradient-based one-side sampling

(GOSS) and exclusive feature bundling (EFB) to segment internal

nodes. For the GOSS algorithm, a is the proportion of larger

gradient samples, and b ∈ (0, 1 − a) is the proportion of

randomly selected smaller gradient samples, and the distribution

is divided into data sets A and B. When calculating the information

gain, it is necessary to ensure that discarding some samples with

smaller gradients will not affect the model training, thus the

coefficient 1−a
b will be multiplied by the reserved smaller gradient
frontiersin.org
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samples. After the last iteration, the sample data are sorted in

descending order of gradient. The final calculated gain is as follows

(Equation 6):

Vj(d) =
1
n

(oxi∈A1
gi +

1 − a
b oxi∈B1

gi)
2

nj1(d)
+
(oxi∈Ar

gi +
1 − a
b oxi∈Br

gi)
2

njr(d)

2
64

3
75
(6)

w h e r e A1 = xi ∈ A : xij ≤ d
� �

, Ar = xi ∈ A : xij > d
� �

, Bl =

xi ∈ B : xij ≤ d
� �

, Br = xi ∈ B : xij > d
� �

  and gi denotes the

negative gradients of the loss function for the LightGBM outputs

in each iteration.

In addition to using GOSS for sampling, LightGBM uses EFB to

speed up the training process without losing accuracy. Many

applications have high and sparse input features that are mutually

exclusive at the same time (i.e., these features cannot be non-zero at

the same time). However, the EFB algorithm can bind mutually

exclusive features in data sets to form a low-dimensional feature set,

which can effectively avoid the calculation of zero-value features. In

the algorithm, a table recording non-zero features can be established

for each feature. By scanning the data in the table, the time

complexity of creating a histogram can be effectively reduced.

These two algorithms solve the problem of the number of data and

the number of data features, respectively. Compared to other tree-

based models such as XGBoost and Random Forest, LightGBM offers
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faster training speed and superior processing capability for large-scale

time series data. Previous studies have demonstrated its strong

performance in hydrological forecasting, particularly in inflow

prediction, where it effectively captures nonlinear relationships and

temporal dependencies (Ke et al., 2017). In the current study, the

input and output variables of the LightGBM models were historical

flow and future flow, respectively, while the input and output

variables of the STL–LightGBM models were historical flow and its

terms of STL decomposition and future flow, respectively. A training-

testing set division ratio of 6:4 was used, and the data were divided

multiple times during model training by the K-Fold (K=5) cross-

validation method to alleviate the model’s dependence on specific

samples. To improve the model performance, hyperparameter tuning

was performed using Python’s Hyperopt library. The Tree-structured

Parzen Estimator (TPE) algorithm was used to efficiently search the

hyperparameter space for the best combination to enhance the

generalization ability and prediction accuracy of the model.
3 Case study

3.1 Study area and data

Here, a case study was conducted for the Lijin hydrological

station (Figure 3). Lijin Station (37°31′37.2″ N, 118°18′29.52″ E),
FIGURE 1

The operation mode of the sliding window and scenario settings. Window size of 6 is used as an example.
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located in Dongying, Shandong Province, China, 104 km from the

estuary of the Yellow River, is the last hydrological station before the

Yellow River enters the Bohai Sea. We collected the inflow as raw

experimental dataset records (data source: http://www.yrcc.gov.cn/)

obtained every day (from January 2009 to December 2021). The

Yellow River has the largest amount of sediment in the world (Qiu

et al., 2024), and part of the land in Dongying is formed from

deposition from the Yellow River (Wang and Sun, 2021). The

Yellow River has historically flooded from time to time. The river

outflow also transports many nutrients into the Bohai Sea, affecting

the health of the marine ecological environment (Yang F. X. et al.,

2024). Hypoxia often occurs in the Bohai Bay, mainly because of the

considerable pollution burden (Wang et al., 2023; Wei et al., 2019;

Wu et al., 2022). If some flow data can be predicted in advance,

decision-makers can be prepared to avoid and reduce some

unnecessary losses and disasters. Because the YRE is fed from a

wide range of river basins, the temporal and spatial characteristics

of the variables affecting the inflow are difficult to identify. This

study aims to explore the potential of the STL–LightGBM approach

by using only inflow time series data, allowing for a clearer

evaluation of the STL algorithm and LightGBM model without

interference from external variables. This approach helps isolate the

model’s core mechanisms, reduces complexity, enhances
Frontiers in Marine Science 05
generalization. Therefore, to predict the inflow efficiently and

succinctly, no additional features (such as precipitation and

temperature) were used in this study. The aim of the study was to

predict future inflow through historical inflow data and its terms of

STL decomposition.
3.2 Open-source software and
performance metrics

This study relied on Python 3.7 open-source libraries, including

Numpy, Math, and Pandas. Statsmodels was used to compute the

ACF, PACF and STL. The LightGBM and Sklearn packages were

used to implement LightGBM and SW. Matplotlib and Seaborn

were used to draw figures. The packages were installed using

Anaconda on the Windows 10 system. All the experiments were

conducted on a workstation equipped with an Intel i5-10600KF

CPU, a 16 GB RAM, and an NVIDIA GTX Geforce 3060

(12GB) GPU.

In this study, the Nash-Sutcliffe efficiency (NSE) and root mean

square error (RMSE) were used to evaluate the performance of the

LightGBM and STL–LightGBM models. These measures were

defined by the following formulas (Equations 7, 8):
FIGURE 2

The process of the STL algorithm.
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NSE = 1 −o
n
i=1(Qi − Pi)

2

on
i=1(Qi − �Q)2

(7)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(Qi − Pi)
2

n

s
(8)

where Qi represents the observed data, Pi is the value of prediction,

and �Q and �P denote the mean observed and predicted

values, respectively.
3.3 Predicting variable selection

The selection of input variables is very important for time series

prediction (Tran et al., 2015). In this study, ACF was used to

calculate the time lag of inflow. Figure 4 showed the

autocorrelation functions and partial autocorrelation functions for

various lag numbers at the Lijin Station. There was significant

autocorrelation in the flow into the sea at different times. The ACF

thresholds of ≥0.7, ≥0.6, and ≥0.5 represent different levels of

autocorrelation in time series, commonly used to assess the

temporal dependence of data in time series modeling. The PACF

further validates the lag windows determined by the ACF, ensuring

that the selected lags effectively capture the most significant historical

information in the time series. Considering PACF and ACF

comprehensively, we used different time delays (input variables)

and different lead times (output variables) to train the machine

learning model, as detailed in Table 1.
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3.4 STL pre-processing methods

The time-series flow data were divided into a 60% training set

and a 40% test set. The effects of different STL application scenarios

on the performance of the machine learning model were compared.

The following scenarios were set (Figures 1, 5).

Scenario 1: The original data set was divided into a training set

and test set, and the training set and test set were processed into

input and output subsequence through the time SW. The training

set and test set were decomposed by STL. The historical flow

(t −md  −1   to t − 1) and decomposition terms (trend term,

seasonal term, and residual term) were used as input variables of

the model, and the future flow (t +  mp) was used as the output

variable to train and test the model (abbreviated as S1).

Scenario 2: The original data set was divided into a training set and

test set, and the training set and test set were processed into input and

output subsequence through the time sliding window. For the training

set and test set, each sample pair was decomposed by STL. Its historical

flow (t −md  −1   to t − 1) and its decomposition term were taken as

input variables of the model, and its future flow (t +  mp) was used as

output variable to train and test the model (abbreviated as S2). As

shown in Figure 1, during the training process, the model can only use

historical data from the training set and does not access any information

from the test set. In the testing phase, the trained model is used

exclusively for prediction without refitting or adjusting parameters

based on the test data, thereby preventing information leakage.

Another scenario decomposed the original data set into new data

by STL. The data generated by STL were divided into a training set

and a test set. The model was trained and tested by using the time SW
FIGURE 3

Map of the YRE and the location of Lijin Station.
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as the input and output subsequence. The results of this scheme and

scenario 1 were similar and will not be repeated in this study.
4 Results

4.1 Results of time autocorrelation

For a time series, whether the data series has time

autocorrelation or not should be determined (Apaydin et al.,

2021). Figure 4A shows the autocorrelation diagram of the inflow,

wherein the horizontal axis represents the number of delay periods

(days), and the longitudinal axis represents the autocorrelation

coefficient. This is located on one side of the zero axis for a long

time, which is a typical characteristic of a monotone trend series. At

the same time, there is an obvious fluctuation pattern, which is

typical of strong autocorrelation of a time series with periodic

variation. The time series is also a non-stationary series that

contained a trend, seasonal, or periodic series. We used the STL

decomposition algorithm to extract the time characteristics in

preparation for the establishment of the machine learning model.
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4.2 STL analysis

In this study, STL was used to improve the prediction potential

of the model. Figure 6 shows the decomposition results using the

STL method of the data series of the Yellow River flow data. As

shown in Figure 6, the seasonal component exhibits a clear and

regular annual cycle, with runoff peaks typically occurring between

June and September each year. This seasonal pattern is highly

consistent with the hydrological cycle of the Yellow River Basin and

is closely related to the annual water and sediment regulation

measures (Jia and Yi, 2023; Zhang et al., 2021). Notably, the

seasonal component remains relatively stable across different

years and was hardly affected by extreme events, indicating that

the STL method demonstrates high accuracy and robustness in

extracting seasonality from time series data. From 2015 to 2017, the

trend component shows a significant downward trend. This change

in trend corresponds to fluctuations in the residual component,

suggesting that the fundamental pattern of runoff in the Yellow

River may have undergone changes during this period. The residual

component captures abnormal variations beyond the trend and

seasonality. During extreme runoff events, the residuals exhibit

marked deviations, especially from June to September each year,

showing sharp fluctuations.
4.3 Model cross-validation

Cross-validation algorithm was employed, by dividing the

whole dataset to 5-sub classes, to check the accuracy and

robustness of the models. The cross-validation process was
TABLE 1 Sliding window size based on ACF value.

Sliding
windows (days)

Leading
time (days)

ACF Model

6 1-7 >=0.7 LightGBM6

8 1-7 >=0.6 LightGBM8

12 1-7 >=0.5 LightGBM12
FIGURE 4

ACF (A) and PACF (B) of the runoff of Lijin Station. The shaded area in the figures indicates the ± 95% confidence level.
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consistent across different models, and the results were similar.

Therefore, the analysis was focused solely on the S2-LightGBM8

model. Figure 7A illustrates the 5-fold cross-validation process of

the TPE algorithm for searching the optimal structure of the S2–

LightGBM8model. The lowest RMSE value was recorded in the first

fold. Among different lead times, the RMSE values of L1 were the

lowest, indicating the best performance in short-term prediction.

The RMSE values of L4 were moderate, while L7 exhibited high

RMSE values, suggesting that prediction accuracy decreased as the

lead time increased. Figure 7B shows the variation of RMSE values

with iteration under different lead times. After the Fifteenth

iteration, a significantly decrease in RMSE was observed, followed

by a stable trend with further iterations. The decline in RMSE values

indicated the high efficiency of the TPE algorithm in optimizing

parameters and tuning the structure of the S2–LightGBM8 model.
4.4 Model performance under different SW

The prediction performance of the original model (LightGBM)

and the STL–LightGBM model under different SW (LightGBM6,

STL–LightGBM6, LightGBM8, STL–LightGBM8, LightGBM12,

STL–LightGBM12) were compared, and the best SW of the model

was determined based on the NSE and RMSE. The results showed

that the prediction performance of the LightGBM model and STL–

LightGBM varied with the size of SW (Tables 2, 3). When the lead

time of S1–STL–LightGBM was less than 2 days, the S1–STL–

LightGBM8 performed better. For example, when the lead time
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was 2 days, the NSE (RMSE) of S1–STL–LightGBM8 was 0.954

(211.342), which was better than that of the other SWmodels. When

the lead time was 3–5 days, S1–STL–LightGBM6 had the best

performance, with the best values of NSE (0.941, 0.908, and 0.845)

and RMSE (239.763, 299.538, and 389.868). The overall performance

of the model was reflected by the mean value. S1–STL–LightGBM6

had the highest average NSE (0.869) and the lowest average RMSE

(334.883). S2–STL–LightGBM was similar to S1–STL–LightGBM.

When the SW was 8 days, the performance was slightly better when

predicting short-term flow (lead time: 1–4 days), but the

performance decreased with the increase in the lead time. It is

observed that the overall effect of STL–LightGBM8 was better than

the other SW models in S2 (Figure 8), and the model was more

robust. In addition, according to the results of the autocorrelation

analysis (Figure 4), when the prediction factor (input) was closer to

the target variable (output), the contribution of the model was

greater, and there was a higher autocorrelation. This result was

similar to that of Chen et al. (2020). The results also showed that the

flow of the Yellow River into the sea could be predicted by time

autoregressive machine learning based on a single variable.
4.5 Comparison of prediction results at
different lead times

To compare the effects of different lead times on the prediction

performance of models, Figure 9 shows the prediction results of the

model with a window size of 8 and the lead time of 1, 4, and 7 days,
FIGURE 5

Structure of the technique used in this study.
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respectively. When the lead time was 1 day (Figure 9A), the

predicted values of the three models fitted well with the observed

values, and the overall fitting effect was satisfactory. The results

showed that the three models were able to use the historical flow for

8 days as an input variable to predict the flow into the sea in the next

1-day period. Figure 9B shows the fit of the predicted value of the

model with the real value with a lead time of 4 days. The prediction

results were worse than those with a forecast period of 1 day, and

the original model (LightGBM) was also the worst of all the models.

The prediction with low inflow was better than that with high

inflow. Compared with other forecast periods, the prediction effect
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of the 7-day lead time was the worst, especially the prediction near

the peak, where most of the sample forecasts underestimated the

observed value (Figure 9C). The results showed that the

performance of all the models decreased in varying degrees with

an increase in the lead time. In other words, the accuracy of models

in predicting the inflow of the Yellow River into the sea in the

coming 7 days was lower than that for the next 1-day period.

Taylor diagrams of three models were drawn to measure the

changes in model performance with different lead times (Figure 10).

Taylor diagrams are often used to evaluate the accuracy of models,

and the commonly used accuracy indicators are the correlation
FIGURE 7

Cross-validation results of the S2-LightGBM8 model: (A) RMSE by number of folds; (B) RMSE variation with iterations. L1, L4, and L7 respectively
represent 1-day lead time, 4-day lead time, and 7-day lead time.
FIGURE 6

Decomposed daily runoff using the STL method.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1540912
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Wang et al. 10.3389/fmars.2025.1540912
coefficient, standard deviation, and RMSE. As shown in Figure 10A,

the distance on the diagram of the three models was relatively close,

the results were good, and the correlation coefficients all reached more

than 0.95. For the predicted value, the standard deviation was close to

1, indicating that the performance was relatively stable. Figure 10A

shows that all threemodels could well predict the inflow into the sea in

the next 1-day period. However, with the extension of the lead time,

the scatter points of the three models become dispersed, indicating a

decline in their predictive performance (Figures 10B, C). Especially

when the lead time was 7 days, the correlation coefficient of the

original model (LightGBM) was less than 0.75, indicating that the

original model could not predict the sea flow on the seventh day.
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4.6 Comparison of prediction performance
between STL–LightGBM and LightGBM

From the above analysis and discussion, STL technology was

observed to have significantly improved the prediction ability of the

LightGBM model. In this section, we discuss the improvement of

the original model in different scenarios and the reasons for it. We

found that the performance of the model decreased with the growth

of the lead time, but the decline in the S1–STL–LightGBM

performance was less than that of the original model. From the

radar diagram (Figure 11), we can observe that with the extension of

the lead time, the improvement of the LightGBM model by S1–STL
TABLE 2 Performance statistics using LightGBM and S1-STL–LightGBM for predicting flow at 1 to 7 days ahead during the testing period.

Metric Model
Lead time (days)

1 2 3 4 5 6 7

NSE

LightGBM6 0.931 0.855 0.766 0.685 0.608 0.545 0.460

STL-LightGBM6 0.966 0.953 0.941 0.908 0.845 0.772 0.696

LightGBM8 0.930 0.837 0.743 0.675 0.585 0.524 0.444

STL-LightGBM8 0.967 0.954 0.924 0.894 0.837 0.771 0.717

LightGBM12 0.922 0.845 0.718 0.665 0.606 0.485 0.422

STL-LightGBM12 0.963 0.950 0.929 0.896 0.830 0.755 0.660

RMSE

LightGBM6 260.377 376.581 478.825 555.302 619.537 667.800 727.755

STL-LightGBM6 181.516 214.669 239.763 299.538 389.868 472.955 545.873

LightGBM8 261.633 399.182 502.262 564.332 637.923 683.061 738.251

STL-LightGBM8 179.635 211.342 273.444 322.232 399.969 473.608 526.772

LightGBM12 276.437 389.842 525.924 572.863 621.572 710.940 752.975

STL-LightGBM12 190.956 221.322 264.687 318.871 408.116 490.345 577.543
TABLE 3 Performance statistics using LightGBM and S2-STL–LightGBM for predicting flow at 1 to 7 days ahead during the testing period.

Metric Model
Lead time (days)

1 2 3 4 5 6 7

NSE

LightGBM6 0.931 0.855 0.766 0.685 0.608 0.545 0.460

STL-LightGBM6 0.898 0.774 0.724 0.693 0.675 0.638 0.554

LightGBM8 0.930 0.837 0.743 0.675 0.585 0.524 0.444

STL-LightGBM8 0.906 0.834 0.776 0.710 0.653 0.614 0.549

LightGBM12 0.922 0.845 0.718 0.665 0.606 0.485 0.422

STL-LightGBM12 0.868 0.728 0.676 0.584 0.614 0.603 0.586

RMSE

LightGBM6 260.377 376.581 478.825 555.302 619.537 667.800 727.755

STL-LightGBM6 316.467 470.386 519.787 548.182 564.132 596.041 661.442

LightGBM8 261.633 399.182 502.262 564.332 637.923 683.061 738.251

STL-LightGBM8 304.129 403.531 469.065 533.411 583.064 615.244 664.881

LightGBM12 276.437 389.842 525.924 572.863 621.572 710.940 752.975

STL-LightGBM12 360.064 516.345 564.006 638.719 615.624 624.365 637.180
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increased gradually. At the lead time reached seven days, the NSE of

S1–STL was approximately 0.3 higher than that of the LightGBM

model. In addition, we can observe that when the lead time was 4

days and 7 days, the S1–STL–LightGBM was much better than the

original model (Figures 8, 9). This also confirms that the S1–STL

scheme can effectively improve the long-term prediction ability of

the original model.

The promotion ability of S2–STL was, however, different from

that of S1–STL. Through Figure 11, we can clearly observe that S2–

STL did not improve the prediction ability of the original model 3

days before the lead time and it reduced the accuracy. When the lead

time reached the fourth day, the prediction ability of S2–STL was

greater than that of the original model. For example, when the

forecast period was 7 days, the S2–STL–LightGBM8 increased by

0.105 compared with the NSE of the LightGBM8 model (Table 3),

and the result was satisfactory. From the above results, we can also

conclude that both S1–STL and S2–STL improved the long-term

prediction ability of the original model. In other words, STL can help

address the problem that the performance of the model decreases as

the lead time increases.
5 Discussion

5.1 Effect of different lead times on model
performance

In general, the prediction performance of inflow models

decreases as the lead time increases, which is also the case in our

study. Figures 8, 9 clearly show that all models could predict flow for
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1-day lead time. However, with the increase of the lead time, the

prediction ability of models declined. This was because when the

lead time was short, there was a simple linear relationship between t

day and t − 1: t −md  −1 flow into the sea, and thus all the models

could predict the 1-day flow (t day). Therefore, there was no

significant difference in the prediction effect of different models

with a 1-day lead time.

However, with the extension of the lead time, the

autocorrelation of time flow series weakened rapidly, the

correlation between Qt−md : Qt−1 and Qt−mp became complex and

nonlinear, and the performance of the model decreased. The inflow

of the Yellow River into the sea is affected by the climate of the

mainstream of the Yellow River every year, and the annual rainfall is

different as is the inflow into the sea (Wang et al., 2024; Wang and

Sun, 2021). The flow of the Yellow River into the sea is also

influenced by human activities (Shi et al., 2019), such as reservoir

regulation, urbanization, agricultural practice, soil and water

conservation measures, and mining (Dou et al., 2023; Wang and

Cheng, 2022; Wu X, et al., 2023; Xin and Liu, 2022; Yu et al., 2021).

We assumed that obtaining more data through various techniques,

such as upstream reservoir operation, precipitation, may improve

the predictive performance of the model.
5.2 Data leakage in time series
preprocessing

STL decomposition, as a classical time series preprocessing

method, relies on global trend fitting and seasonal smoothing.

Studies have pointed out that any smoothing operation applied to
FIGURE 8

Performance of the projected LightGBM and STL–LightGBM models. X-axis (6, 8, and 12) represents the size of the sliding window.
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the entire test set may introduce data leakage during the testing

phase (Yang X. Y. et al., 2024). Therefore, if STL decomposition is

performed on the entire test set at once during testing, the

decomposition result of a given sample may be influenced by

future observations. This essentially introduces future information

into the model, which is equivalent to the model “seeing the future”

during training or testing. Such a practice violates the fundamental

assumption of causality in time series forecasting, which requires

models to be trained solely on historical data, and may thus result in

misleading evaluations of model performance (Qian et al., 2019).

However, many existing studies have not fully recognized the

potential data leakage issues arising from using decomposition

methods such as STL on the entire test set, which may lead to

overestimation of the improvements these methods bring to

machine learning models (Apaydin et al., 2021; Chen Z, et al.,

2021; Zuo et al., 2020).
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To address this issue, we proposed a stepwise decomposition

strategy (S2–STL), which ensured that, at each time point, STL

decomposition only utilized the current and past observations to

extract trend and seasonal components. This guaranteed that the

generated features did not contain any future information and

strictly adhered to the causality constraints required for time

series modeling (see Figure 1). Theoretically, S2–STL could be

regarded as a recursive adaptation of STL’s local smoothing

philosophy, where the sliding window moved forward with time,

relying solely on historical observations to simulate the real

information boundaries in forecasting tasks. Compared with

global decomposition approaches, stepwise decomposition

offered distinct advantages in model generalization and stability.

This strategy has already been validated in meteorological time

series (Wang and Wu, 2016) and hydrological runoff forecasting

(Quilty and Adamowski, 2018).
FIGURE 9

Predicted and observed runoff time series with prediction lead times ranging from 1 to 7 days using LightGBM and STL–LightGBM during the testing
period: (A) 1-day lead time; (B) 4-day lead time; and (C) 7-day lead time.
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Results demonstrated significant differences in model

performance between S1–STL and S2–STL. In S1–STL, STL was

first applied to the entire test set before generating input-output pairs

through a sliding window, which meant that each input variable’s

trend, seasonal, and residual components may implicitly contain

future information from the target variable. This process provided the

model with prior signals that were unavailable in actual forecasting

scenarios, resulting in systematically underestimated test errors and

overestimated generalization capabilities. Similarly, seasonality

patterns extracted from the full dataset reduce the learning burden

for the model, thereby exaggerating the performance gains attributed

to STL decomposition. In contrast, S2–STL performed recursive

decomposition based solely on historical data, effectively preventing

future information leakage and providing an accurate representation
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of the decomposition strategy’s true utility in real-world

forecasting tasks.

In conclusion, S2–STL not only adhered strictly to the causality

principle inherent in time series forecasting but also effectively

mitigated the risks of information leakage due to improper

preprocessing, making it a rigorous and reliable strategy for time

series decomposition.
5.3 The role of STL in predicting inflow into
the sea

This study used the STL method for time series decomposition.

Although methods like empirical mode decomposition (EMD),
FIGURE 10

Taylor diagram of the model performance: (A) 1-day lead time; (B) 4-day lead time; and (C) 7-day lead time. The scatter in the Taylor diagram
represents the model, the radiation represents the correlation coefficient, the horizontal and vertical axes represent the standard deviation, and the
dotted line represents the root mean square error.
FIGURE 11

Radar diagram of the model performance for Scenarios 1 (A) and Scenarios 2 (B). The dotted line represents the NSE difference between the STL–
LightGBM model and the LightGBM model.
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SSA, and wavelet transform (WT) are also widely applied, they

differ significantly from STL in terms of decomposition logic and

applicability. EMD often produces unstable decomposition results

when handling time series with strong trends and is not suitable for

extracting long-term trends (Yang X. Y. et al., 2024). SSA is

computationally intensive, primarily used for signal denoising

rather than specifically designed for seasonal decomposition, and

requires complex hyperparameter adjustments. While WT is

suitable for non-stationary data, the choice of wavelet basis

significantly impacts the decomposition results (Quilty and

Adamowski, 2018), adding complexity to its application. In

contrast, STL provides a clear mathematical formulation, does not

rely on parameter selection, is applicable to data of different time

scales, and can reliably decompose trend and seasonal components.

Regarding data leakage, this study specifically investigated the

potential data leakage when time series decomposition methods

were combined with machine learning models. Our research found

that unreasonable decomposition strategies may lead to data

leakage. S2–STL avoided data leakage through stepwise

decomposition, offering a rigorous and practically applicable

decomposition strategy for forecasting tasks. While other

decomposition methods follow different mechanisms that may

lead to different data leakage patterns and require further research.

Through the pre-processing of the time series (Apaydin et al.,

2021), we observed that the inflow data of the Yellow River into the

sea was a non-stationary time series, which contained trend,

seasonality, or periodicity. STL decomposed the original dataset

into trend items, seasonal terms, and residual terms based on loess.

These data combined with historical observation data made the

characteristics of the input samples more abundant. STL was very

resilient to outliers in the inflow data, resulting in a robust

component subseries. The robustness of components could be

translated into enhanced prediction accuracy for these subseries

of prediction methods. The newly generated series reflected the
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seasonality and trend characteristics of the original data, and then

improved the prediction ability of the model (He et al., 2021).

Inflow exhibits distinct periodic variations, and extracting the

seasonal component helps the model better capture cyclic patterns,

reducing prediction errors caused by periodic changes in the data.

The trend component reflects the long-term variations in inflow,

providing LightGBM with smooth and stable input features. In

long-term forecasting tasks with extended lead times, the original

time series may exhibit significant fluctuations. Extracting the trend

component helps mitigate short-term disturbances, enhancing the

model’s robustness in long-term predictions. This explains why

both S1–STL and S2–STL outperform the original LightGBMmodel

in long-term forecasting. The residual component contains non-

periodic, random fluctuations. If not properly handled, these

residuals may introduce noise and affect the model ’s

generalization ability. However, STL decomposition effectively

separates trend and seasonal signals, allowing LightGBM to focus

on learning more representative residual information. This reduces

the impact of random fluctuations on the model and enhances its

accuracy in long-term predictions.

The difference in the STL decomposition term between S1 and

S2 was analyzed from the point of view of the test set value. As

shown in Figure 12, we observed that when the input variable of the

original test set (test set of LightGBM) was close to the target

variable, the correlation was strong, which was consistent with the

previous ACF results (Figure 4). The correlation between the

seasonal items of S1–STL and the target variable (output) in each

lag time was greater than that of historical observation data. It is

obviously unreasonable that the characteristics of the data in the

sample are leaked owing to the overall STL decomposition of the

test set. However, we observed that the correlation between the

three STL decomposition items of S2–STL and the target variable

increased with the increase of leading time, and the correlation

between the seasonal term and the target variable was less than the
FIGURE 12

Correlation diagram between decomposition term of STL and the target variable.
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historical observation data, which may be due to the trend of STL

degradation of the sample by loess. Although the improvement of

S2–STL was not as strong as that of S1–STL, S2–STL was more in

line with the practical application of the model. To sum up, the

forecasting ability of STL–LightGBM was better than that of

LightGBM, especially the forecast ability (NSE) over 7 days was

improved by 0.1. Because STL can improve the problem that the

performance of the model decreases with the increase of the lead

time, STL can improve the machine learning ability of prediction of

the Yellow River’s inflow into the sea.
5.4 Advantages of STL–LightGBM in
predicting coastal inflow

The inflow of the Yellow River plays a crucial role in shaping the

offshore ecosystem’s health of the Bohai Sea. As shown in Figure 6, due

to the short-term interruption of Water-Sediment Regulation Scheme

(WSRS) from 2015 to 2017, the discharge into the sea showed a

declining trend during this period (Wang J. J. et al., 2022). This further

highlights the significant regulatory role of WSRS in the hydrological

processes of the LYR. These changes also had a notable impact on the

seasonal pattern of the Yellow River, altering its natural flow regime

and affecting the timing andmagnitude of inflow variations. During the

WSRS, the Yellow River transported over 20% of the annual discharge

and 60% of the annual sediment load to the YRE (Liu et al., 2012; Li

and Sheng, 2011). This sudden large input has significantly altered the

physical and chemical characteristics of the estuary, affecting the

ecological balance of the Bohai Sea (Yang F. X. et al., 2024). These

ecological changes not only have a profound impact on the Bohai Sea’s

ecosystem but also directly affect the sustainable development of

fisheries and regional environmental health.

Predicting river inflow into the sea is a key aspect of offshore

environmental management (Vinayachandran et al., 2015). The

volume of water and sediment discharged during WSRS greatly

exceeds that of natural flood seasons (Ji et al., 2020), significantly

affecting the spatiotemporal distribution of suspended sediment

concentrations (Liu, 2015). The Bohai Sea faces several major

ecological issues, such as eutrophication, hypoxia, and sediment

pollution, all of which are closely related to river inflows.

Additionally, river inflows can impact fish habitats and breeding

conditions, and accurately predicting inflow variations can help

adjust fishery harvesting plans to prevent overfishing. The STL–

LightGBM framework proposed in this study combines STL with

the LightGBM model to extract key seasonal and trend patterns

from time series data, significantly improving prediction accuracy.

The model proposed in this study used streamflow time series

and its decomposition components as input variables, without

relying on external factors such as regional meteorology,

topography, soil, or human activities. This enhances the model’s

transferability across different regions. The results showed that the

inflow data itself exhibits significant temporal autocorrelation

(Figure 4), meaning that future streamflow can be effectively

predicted based solely on past streamflow data. For example, in

short-term flow forecasting for the Yellow River Basin, accurate
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predictions can be made using only the past 7–14 days of

streamflow data (Wang et al., 2025). Moreover, previous studies

have also confirmed the feasibility of forecasting future runoff based

solely on historical streamflow data (Parsaie et al., 2024; Shi et al.,

2025; Xu et al., 2024). Therefore, as long as other regions or rivers

have sufficient historical streamflow data, the method holds

potential for other basins, but further validation is required.

This framework enables early prediction of ecological changes

and provides scientific guidance for addressing issues such as

hypoxia and eutrophication. Additionally, this prediction

technology holds significant potential for offshore environmental

monitoring and early warning systems, supporting the management

of fisheries resources, water quality maintenance, and ecological

protection. It provides a solid foundation for ensuring the long-

term health and stability of the Bohai Sea’s ecological environment.
6 Conclusion

In this study, on the basis of the historical single variable of the

sea inflow of the Yellow River, STL was used to improve the

prediction effect of the machine learning model on future inflow.

The main results were as follows:
1. The LightGBM model could predict the recent flow based

on the historical inflow of the Yellow River into the sea, and

the prediction performance of LightGBM model decreased

rapidly with the increase of the lead time. Taking

LightGBM8 as an example, the NSEs of 1-, 4-, and 7-day

(lead time) were 0.930, 0.675 and 0.444, respectively.

2. STL can improve the prediction ability of traditional

machine learning models. In Scenario 2, when the lead

time was 6 days and 7 days, the NSEs of STL–LightGBM8

were 0.614 and 0.549, respectively, which are better than

that of LightGBM. It is recommended that the STL

preprocesses each sample of the test set because this is

practical. STL pretreatment of the entire test set

overestimated the true performance of the STL–LightGBM.
This study conducted hydrological time series prediction based

on data from the Lijin Hydrological Station and obtained several

important conclusions. However, some limitations and areas for

improvement remain: (1) Choice of decomposition methods: STL

was used for time series decomposition, but it is not the only option.

Future studies could explore alternatives such as EMD, SSA, or WT

to assess their effectiveness in hydrological prediction. (2) Method

generalizability: Although the method performed well on data from

the Lijin Station, it should be tested on other stations to evaluate its

adaptability under different hydrological conditions. (3)

Optimization strategies: More advanced techniques, such as

Bayesian optimization, could be used to fine-tune key parameters

like window size and improve overall model performance. (4)

Model extension: Future work could also explore deep learning

models like LSTM and Transformer to further enhance

predictive capability.
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