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Synechococcus elongatus is a model cyanobacterium with remarkable

adaptability to diverse environmental stresses, making it a promising candidate

for the photoautotrophic conversion of carbon dioxide into valuable chemicals.

This review explores the adaptive mechanisms that allow S. elongatus to survive

under various abiotic stresses, such as changes in CO2 levels, heavy metals, and

light conditions. We also highlight recent advancements in synthetic biology that

have enabled the engineering of S. elongatus to produce biofuels and other

value-added compounds, including fatty acids, alcohols, and carotenoids.

Additionally, we discuss the applications of modern omics techniques to

elucidate the genetic basis of stress tolerance and metabolic regulation.

Despite the promising potential of S. elongatus for industrial applications,

challenges remain in scaling up production, enhancing genetic stability, and

optimizing bioreactor systems. Finally, we provide insights into future directions,

including the integration of genome engineering, system-level modeling, and

co-culture strategies, to improve the efficiency of cyanobacterial cell factories

for sustainable biotechnology applications.
KEYWORDS
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1 Introduction

Cyanobacteria, also known as blue-green algae, are gram-negative

bacteria. Synechococcus elongatus, a model species of cyanobacteria,

has been widely studied for its fast photoautotrophic growth (Zouni

et al., 2001). Bibliometrics analysis indicates a rising trend of global

research interest in S. elongatus as relevant publications have increased

significantly over the last three decades (Supplementary Figure 1).

The cyanobacterium S. elongatus possessed strong adaptability,

endowing their outstanding survival ability in ocean and freshwater

environments (Lai et al., 2024). It has an efficient photosynthesis

system, rapid reproduction (Table 1), strong carbon sequestration

capacity, and good tolerance to extreme environments. Moreover, S.

elongatus has a smaller genome (Table 1), with efficient molecular

biology tools for gene editing and genetic engineering (Yu et al., 2015).

Physiological studies could provide a theoretical basis for cultivating

different stress-resistant varieties, and several subspecies of S. elongatus

have been used as model strains for various applications (Ungerer

et al., 2018a). However, the subspecies’ growth characteristics vary, so

it is essential to make selections before conducting specific

experiments (Yu et al., 2015; Jaiswal et al., 2020). Compared with

other typical microbial cell factories, the growth rate of S. elongatus is

slower than that of Escherichia coli (Table 2). However, S. elongatus

has a significant advantage among photosynthetic autotrophic cells,

with its fastest doubling time being only 1.9 hours (Table 2). Towards

a sustainable society, S. elongatus can produce renewable products

such as biochemicals and fuels (Table 2).

Metabolic engineering, developed in the late 20th century,

employs genetic modifications (e.g., gene knockout, promoter

engineering) to optimize metabolic networks for enhanced product

synthesis (Hong and Nielsen, 2012; Keasling, 2012). Emerging in the

21st century, synthetic biology utilizes standardized biological parts

(e.g., gene circuits, clustered regularly interspaced short palindromic

repeats (CRISPR) technology) to construct novel biological systems

(Stephanopoulos, 2012; Baltes and Voytas, 2015). These disciplines

synergistically advance microbial cell factories: synthetic biology

designs new pathways while metabolic engineering refines their

efficiency (Lin et al., 2015; Jarboe et al., 2010).

In this review, we delve into the intricate physiological and

biochemical responses exhibited by S. elongatus when subjected to
Frontiers in Marine Science 02
diverse environmental stresses. The aim is to provide a nuanced

understanding of the adaptive mechanisms employed by this model

cyanobacterium to cope with adverse conditions. To this end, we review

the latest research on how S. elongatus responds to various stressors

such as CO2 levels, pollutants, and high-light conditions (Figure 1).
TABLE 1 Physiological characteristics of different subspecies of
S. elongatus.

Subspecies
Genome

information
Doubling

time
Characteristics

PCC 7942
2.7 Mb

(Holtman
et al., 2005).

7–10 h (Yu
et al., 2013)

The first cyanobacterial
strain to be reliably
transformed by
exogenous DNA

(Shestakov and Khyen,
1970); a model

organism for studying
the circadian rhythm
of cyanobacteria

(Holtman et al., 2005).

PCC 6301

The homology
to PCC 7942
was 99.86%
(Sugita

et al., 2007).

3.4 h (Binder
and

Chisholm,
1990)

The genes for two-
component signal

transduction systems
are only 37 genes
(Sugita et al., 2007).

PCC 11801

The homology
to PCC 7942

was 83% (Jaiswal
et al., 2018).

2.3 h (Jaiswal
et al., 2018)

A high growth rate
(Jaiswal et al., 2018).

PCC 11802

The homology
to PCC 11801

was 97% (Jaiswal
et al., 2020).

2.8 h (Jaiswal
et al., 2020)

Key enzymes of the
Calvin cycle are not
repressed under

elevated CO2 (Jaiswal
et al., 2020).

UTEX 2973

There is a
difference of 53
SNPs, a 7.5-kb
deletion, and a
188-kb inversion
compared with
PCC 7942 (Yu
et al., 2015).

1.9 h (Yu
et al., 2015)

With high light
resistance and

photosynthetic rate,
the biomass

productivity was three
times that of PCC
7942 (Ungerer
et al., 2018b).

BDU 130911 Not available Not available
High efficacy of

uranium adsorption
(Rashmi et al., 2013).
TABLE 2 Comparison of microbial cell factories.

Species Doubling time (h) Common medium
Cell

size (µm)
Representative product

Escherichia coli
0.3 ~1 (Cooper and
Helmstetter, 1968)

Luria-Bertani (LB) 0.5 ~ 3 Insulin (Baeshen et al., 2014)

Saccharomyces cerevisiae 1.5 (Kaeberlein et al., 2005)
Yeast extract

peptone dextrose
3 ~ 6

Fuels, chemicals, pharmaceuticals (Hong and
Nielsen, 2012)

Chlamydomonas
reinhardtii

2.5 (Lien and Knutsen, 1979)
Tris-acetate-

phosphate (TAP)
7 ~ 10

High quality mammalian proteins (León-Bañares
et al., 2004)

Synechocystis PCC6803 4.3 (Van et al., 2018) BG-11 NA Renewable biofuels and chemicals (Liu et al., 2012)

Synechococcus elongatus 1.9 (Yu et al., 2015) BG-11 2 Renewable chemicals and fuels (Vayenos et al., 2020)
NA, not available.
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Furthermore, we explore the biosynthetic capabilities of S.

elongatus, focusing on both naturally occurring and heterologous

bioactive compounds. We summarize the potential applications of

S. elongatus in synthetic biology, discussing how its unique

characteristics can be harnessed to design novel cell factories to

produce high-value chemicals and materials. A timeline of the

progress in physiological adaptations and synthetic biology of S.

elongatus is shown in Figure 2. We also acknowledge the challenges

encountered during the industrialization of S. elongatus, such as

scalability, stability, and economic feasibility. By discussing the

bottlenecks in algal engineering development, we aim to provide

insights that can inform the design of photosynthetic cell factories

and promote the practical applications of cyanobacteria.
2 Different environmental factors,
related abiotic stresses, and adaptive
strategies for S. elongatus survival

Advances in omics technologies such as genomics,

transcriptomics, and proteomics enable scientists to conduct in-

depth research on the molecular mechanisms and genetic basis of

environmental resistance in S. elongatus. It is possible to discover a

series of genes and proteins related to environmental resistance with

crucial roles in cellular stress response, metabolic regulation, and

cell repair. Systematic analysis of S. elongatus’ transcriptional

regulatory network (TRN) was conducted through machine

learning methods, revealing its gene regulatory mechanisms in
Frontiers in Marine Science 03
key biological processes such as photosynthesis, carbon fixation,

and nitrogen metabolism (Yuan et al., 2024). Studies on the

environmental resistance of S. elongatus have deepened the

understanding of the survival strategies of aquatic organisms and

also provided novel insights into bioengineering and biotechnology

development of microalgae, which could pave the way to produce

valuable bioproducts under harsh conditions.
2.1 CO2 levels

CO2, the greatest greenhouse gas, is a critical environmental

factor and also the major carbon source that affects microalgal

growth. It was reported that S. elongatus PCC 7942 achieved

optimal growth when supplied with 5% CO2 (Kuan et al., 2015).

However, an excessively elevated CO2 concentration reduced the

pH value dramatically and inhibited the growth of cyanobacteria

(Mortezaeikia et al., 2016). For S. elongatus, the CO2 concentration

influences biomass productivity and reduces its ability to absorb

CO2 (Hashemi et al., 2020). The CO2 response mainly depended on

the autoregulation of the cmpR gene (encoding the DNA-binding

transcription factor) in S. elongatus PCC 7942, as the transcription

factor CmpR activates the cmpABCD operon under low CO2

conditions while repressing its promoter (Pan et al., 2016). The

cmpABCD operon encodes subunits of an ABC-type high-affinity

HCO3
- transporter, which is activated under low CO2 conditions

and repressed under high CO2 conditions (Pan et al., 2016). Since

atmospheric CO2 levels are insufficient to saturate Rubisco
FIGURE 1

A diagram showing the concepts and applications of cyanobacterial cell factories.
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(ribulose-1,5-bisphosphate carboxylase/oxygenase), O2 competes as

an alternative substrate for Rubisco, impairing carboxylation

reaction. Cyanobacteria mitigate this issue through CO2

concentrating mechanisms (CCMs), with the cmpABCD operon

playing a key role in enhancing photosynthetic efficiency and

environmental adaptation (Pan et al., 2016). Proteomic data

revealed that elevated CO2 conditions in S. elongatus PCC 11801

led to the downregulation of photoprotection and redox-related

genes while shifting from TCA cycle-dependence to a

photosynthesis-dominated NADPH/ATP supply mode (Mehta

et al., 2019). These studies suggest that the CO2 stress response in

S. elongatus is a complex physiological process.
2.2 Pollutants

Pollutants such as nitrogen and phosphorus are major factors

that cause frequent algal blooms. Under eutrophication conditions,

S. elongatus has shown potential in water treatment, with its

phosphorus and nitrogen removal rates reaching 85.1% and

87.4% respectively (Pishbin et al., 2020). S. elongatus has been

used to treat wastewater from dairy and other industries (Ruiz-

Güereca and Sánchez-Saavedra, 2016; Samiotis et al., 2021; Usai

et al., 2024). In addition, S. elongatus PCC 7492 showed the
Frontiers in Marine Science 04
capability to remove nitrogen from wastewater under different

salinities (Samiotis et al., 2022).

Sulfur is a common pollutant in the environment and also an

essential element for algae growth, and the use of S. elongatus to treat

sulfur-containing wastewater is widely studied (Yang et al., 2015).

Recently, the pollution of heavy metals is becoming a serious

environmental issue. The survival of cyanobacteria could be

affected by heavy metal stress. The heavy metal stress of Cd2+ or

Ni2+ prevented S. elongatus PCC 7942 cells from properly entering

the chlorosis process under nitrogen starvation (Selim and Haffner,

2020). As a potential carcinogenic pollutant, 2,4-dinitrotoluene is

classified as “possibly carcinogenic to humans” (Group 2B) by the

International Agency for Research on Cancer with environmental

persistence and health risks (Oh et al., 2011). Compared to physical

adsorption and chemical oxidation, bioremediation shows potential

in degrading 2,4-dinitrotoluene. For example, S. elongatus PCC 7942

could degrade the nitro groups of 2,4-dinitrotoluene, demonstrating

its application potential in biological treatment (Fedeson et al., 2020).
2.3 High-light stress

Light is the primary energy to support cyanobacterial growth

and development, which affects the physiology of cyanobacteria
FIGURE 2

Advances in physiological adaptation and synthetic biology of S. elongatus. References cited: Atsumi et al. (2009), Behrenfeld and Bale (1996), Ito et al.
(2009), Schmitz (2000), Schubert et al. (1997), Song et al. (2016), Takahama et al. (2003), Zhang et al. (2024), Fraser et al. (2013) and Cui et al. (2020).
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through light intensity and composition. High-density culture could

be achieved through high-light conditions (Moronta-Barrios et al.,

2012). S. elongatus UTEX 2973, the fastest-growing cyanobacterial

strain, was studied under high-light conditions, and comparative

genomics analysis revealed that hltA is a key factor for high-light

tolerance as HltA senses environmental signals under high-light

conditions and activates stress pathways, thereby helping

cyanobacteria avoid photoinhibition and oxidative damage

(Walker and Pakrasi, 2022). High-light stress can rapidly decrease

the ratio of phosphorylated RpaB to non-phosphorylated RpaB,

indicating that RpaB plays a crucial role in high-light signal

transduction (Moronta-Barrios et al., 2012). Furthermore, high-

light conditions mitigate the growth inhibition caused by salt stress

in S. elongatus, which is more severe under low-light conditions.

This alleviation likely occurs because high light counteracts the salt-

induced suppression of photosynthetic pigment accumulation

(Kumar et al., 2021).
2.4 Other environmental factors

There are a large number of emerging environmental pollutants

due to human activities. In recent years, there have been many

studies on the effects of other emerging environmental stresses on S.

elongatus. For example, the discharge of aquaculture wastewater is

an essential cause of the anti-growth surge in the water

environment. Low-concentration kanamycin enhances the biofilm

formation of S. elongatus by upregulating photosynthesis and

carbonic anhydrase genes (Tan et al., 2016). The toxic effects of

Micro- and nano-sized polystyrene particles on S. elongatus have

been demonstrated, resulting in damage to the integrity of the cell

membrane (Feng et al., 2019). The zinc oxide used in sunscreen

enters domestic wastewater through washing, and improper

treatment may lead to water pollution. Zinc oxide could induce

oxidative stress, leading to lipid peroxidation and DNA damage in

S. elongatus, and genes involved in the photosynthetic system,

oxidative phosphorylation, and transcription/translation were

down-regulated (Vicente et al., 2019). Due to improper

agricultural application, glyphosate can accumulate significantly

in soil. Through surface runoff and rainwater erosion, it can enter

water bodies, easily causing water pollution. Glyphosate may exert

an inhibitory effect on S. elongatus, leading to a notable reduction in

its growth rate (Moraes et al., 2021). In summary, emerging

environmental pollutants markedly influence the physiology of S.

elongatus, which demonstrates strong potential as a candidate for

industrial wastewater treatment.
3 Synthetic biology and biotechnology
applications

As a photosynthetic microbial cell factory, S. elongatus exhibits

remarkable competitiveness in the fields of synthetic biology and

biomanufacturing. Beyond its rapid growth rate (Table 2), S.
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elongatus holds promise for sustainable bioeconomies due to its

photoautotrophic metabolism, genetic tractability, and robust

metabolic plasticity. Moreover, its inherent capacity to synthesize

diverse natural products—such as glycogen, pigments, and lipids—

provides essential precursors for metabolic engineering. These

attributes have facilitated numerous successful heterologous

expression cases (Figure 3), underscoring its potential for high-

value compound production.
3.1 Synthetic biology for improved biomass
production and carbon fixation

Biomass as a renewable resource, has huge potential for developing

sustainable feedstock. Due to the increase in global population and the

shortage of resource supply, increasing biomass production has become

a challenge that needs to be addressed. Knocking out two glucokinase

genes caused glucose accumulation and a spontaneous mutation in the

genome of S. elongatus PCC 7942, which resulted in direct glucose

secretion (Zhang et al., 2023). Genetically engineering S. elongatus PCC

7942 for expressing heterologous hexose transporter gene to perform

mixotrophy under natural light is also a scheme to increase biomass

yield and productivity (Sarnaik et al., 2017). In addition, heterotrophic

partners have a significant growth promotion effect on cyanobacteria,

resulting in an 80% increase in growth rate and enhanced

photosynthetic capacity (Kratzl et al., 2024). These findings could

provide new insights into improving biomass production and carbon

sequestration in the future.
3.2 Synthetic biology for value-added
products in S. elongatus

3.2.1 Bioenergy sources
Bioenergy is fuel derived from biological sources, also known as

biofuels (Voshol, 2015). Currently, there are still some limitations in

bioenergy development and applications, such as higher

manufacturing costs and lower energy content than fossil fuels.

However, bioenergy does have distinct advantages, such as being

the only alternative energy source that could replace vehicle fuel

without major modifications to vehicle engines and being renewable

and relatively simple to process (Kaygusuz, 2009). Different types of

bioenergy are summarized below.

3.2.1.1 Fatty acids

Cyanobacteria obtain energy from sunlight and convert carbon

dioxide into free fatty acids (FFAs) through photosynthesis. FFAs

can be utilized as feedstock and precursors for renewable biodiesel

production, and therefore, the production of FFA has attracted

much attention (Wijffels et al., 2013). There is rapid progress in the

biosynthesis of FFA. For instance, S. elongatus PCC 7942 was

engineered to produce free FFAs via gene knockout of the FFA-

recycling acyl-ACP synthetase gene and expression of a thioesterase

for FFA release, which provided the basis for large-scale FFA

production (Ruffing A et al., 2012). However, the final FFA
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concentration in S. elongatus PCC 7942 was lower compared with

other algal strains (Liu et al., 2011). To address this issue, an

engineered S. elongatus strain achieved similar FFA secretion

rates as other productive cyanobacterial species by modulating

the expression level of the acyl-acyl carrier protein thioesterase

and increasing the light intensity during cultivation (Kato et al.,

2016). To remove FFAs from the medium during cultivation, an

aqueous-organic two-phase culture system was developed that

provides a basis for S. elongatus to produce FFA industrially

(Kato et al., 2017). By covering the aqueous medium with

isopropyl myristate (IM), FFA is effectively extracted from the

medium into the organic phase, thereby reducing the

accumulation of intracellular FFA and avoiding cell death due to

FFA toxicity (Kato et al., 2017).

3.2.1.2 Alcohols

Alcohols produced from cyanobacteria have great potential as

sustainable biofuels. Recently, a high-yielding strain of 1-butanol

was constructed through metabolomics-assisted strain engineering

(Fathima et al., 2020). 1-Butanol has the advantage of high energy

density, with a heat value close to that of gasoline and superior to

ethanol. The development of genetic modifications has increased

the production of ethanol and butanediol from S. elongatus
Frontiers in Marine Science 06
(Velmurugan and Incharoensakdi, 2020; Oliver et al., 2013). The

synthesis of isopropanol has been the focus of research on biofuels,

and S. elongatus has also shown great potential in this direction.

Through the construction of synthetic pathways, genetic

modification (Hirokawa et al., 2017), and growth optimization

(Chandra and Mallick, 2022), it is feasible to increase productivity

with reduced costs.

3.2.1.3 Other energy materials

Sugar represents a promising renewable feedstock for biofuel

production, with sucrose being the most commonly utilized substrate.

S. elongatus has demonstrated efficacy in sucrose synthesis (Ducat

et al., 2012). Notably, genetic modifications in S. elongatus PCC 7942

enhanced intracellular sucrose accumulation, significantly improving

yield (Vayenos et al., 2020). To further reduce production costs, co-

culture fermentation systems have been employed. For instance, a

synthetic microbial consortium comprising E. coli and S. elongatus

UTEX 2973 was developed to directly convert CO2 into sucrose

(Zhang et al., 2020). Additionally, the introduction of the L-arabinose

metabolic pathway into S. elongatus boosted biomass productivity

under phototrophic conditions (Cao et al., 2017).

In addition to sugars, cyanobacteria can synthesize energy-

dense hydrocarbons such as alkanes. For example, the CRISPR-
FIGURE 3

Cell factories of S. elongatus to produce biochemicals such as fatty acids and ethyl alcohol.
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Cpf1 system (derived from Prevotella and Francisella 1) was

employed to engineer S. elongatus PCC 11801, enabling regulated

expression of ethylene-forming enzyme and high-efficiency

ethylene production (Sengupta et al., 2020). Heterologous

expression of cyanobacterial genes in fungal hosts has also

facilitated the production of pentacene and heptadecane alkenes

(Sinha et al., 2017). Moreover, pathway engineering and synthase

optimization in S. elongatus UTEX 2973 achieved the highest

reported b-caryophyllene yield in a cyanobacterial chassis (Li

et al., 2020).

3.2.2 Feed additive
Carotenoids are industrially significant fine chemicals

commonly used in the food, pharmaceutical, and healthcare

industries (Maoka, 2011). Common carotenoids in the market

include b-carotene, astaxanthin, and zeaxanthin, among others

(Saini et al., 2018). The CrtR (b-carotene oxygenase) gene was

cloned from S. elongatus PCC 7002 by homologous recombination,

and then PCC 7942 was genetically modified to enhance b-carotene
flux towards zeaxanthin synthesis (Sarnaik et al., 2018).

Cyanobacteria can also synthesize key amino acids for

bioplastic production. For instance, engineered S. elongatus UTEX

2973 overproduces lysine, enabling concurrent cadaverine and

glutamate biosynthesis for bioplastic production (Dookeran and

Nielsen, 2021). Specifically, cadaverine can be used to synthesize

biopolyamides (such as polynylon-5,10), while glutamate can be

used to synthesize polyesters and other biobased plastics.

3.2.3 Other value-added products
3-Hydroxypropionic acid (3-HP) is a valuable chemical product

used to synthesize polymers and other chemicals such as acrylic

acid. However, cyanobacteria do not have a native pathway to

synthesize 3-HP. By constructing an alternative pathway in S.

elongatus PCC 7942, 3-HP could be synthesized (Lan et al., 2015).

However, the yield remains insufficient for industrial production

purposes. A microbial complex composed of S. elongatus UTEX

2973 and E. coli was constructed to convert CO2 into sucrose from

S. elongatus UTEX 2973, and then sucrose was used as raw material

for the production of 3-HP by E. coli (Zhang et al., 2020). The

artificial co-culture system could significantly increase the yield of

3-HP and does not require foreign carbon sources (Matson and

Atsumi, 2018). Further, the xylose utilization pathway from E. coli

was introduced into S. elongatus UTEX 2973 through genetic

engineering, which reconstituted the natural glycolytic pathway to

transfer more carbon flux from xylose to acetyl-CoA, thereby

increasing 3-HP biosynthesis by approximately 4.1-fold (Yao

et al., 2022). The genetic engineering method also has great

potential for the production of other value-added chemicals that

require acetyl-CoA as a precursor.
3.3 Biophotovoltaic platforms

Cyanobacteria have been studied for biopower generation. In

photosynthesis, only a small part of the absorbed solar energy is
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converted into chemical energy, while the rest of the energy is wasted

as heat and fluorescence (Yagishita et al., 1997). Therefore, it is doable

to harvest solar energy through a biophotovoltaic (BPV) platform to

generate electricity. Cyanobacteria exhibit light-dependent

electrogenic characteristics in photo-bioelectrochemical cells that

generate substantial photocurrents, but the current densities are

lower than their photovoltaic counterparts (Logan, 2009). However,

by studying the algal biofilms formed on indium tin oxide anodes that

were used in the algal biophotovoltaic platforms, it was found that

several strains of cyanobacteria had high photosynthetic performance,

and their biofilm and power generation capacity had application

potential in the BPV platform (Ng et al., 2014). In a

cyanobacterium called Nostoc sp. (NOS), it was found that the

power generation capacity of NOS could be significantly increased

by adding 1, 4-benzoquinone as a redox medium (Sekar et al., 2014).

Inspired by the study on NOS, S. elongatus PCC 7942 was genetically

modified to express a non-natural redox protein, which significantly

improved the bioelectricity production capacity of the cyanobacterium

(Sekar et al., 2016). Reduced graphene oxide-based BPV devices were

found to produce reduced bioelectricity under dark conditions (Ng

et al., 2018). An initial cross-comparison of S. elongatus PCC 7942

with other exoelectrogenic cultures showed a hindered exoelectrogenic

capacity (McCormick et al., 2011).
3.4 Other applications

S. elongatus has been studied for medical purposes such as the

photosynthetic therapies that protect ischemic tissues and ensure the

aerobic metabolism of tissue cells (Williams et al., 2020; Zhu andWoo,

2022). S. elongatus PCC 7942 has shown potential as a new treatment

for burn wounds (Yin et al., 2019). However, these applications are

still in their experimental stage before clinical practice.
4 Concluding remarks and future
perspectives

In this review, we explored the physiological and biochemical

responses of S. elongatus to various environmental stresses and its

potential applications in synthetic biology and biotechnology. S.

elongatus is a highly adaptable organism that can thrive under diverse

conditions, making it a promising candidate for industrial-scale

applications in renewable energy, wastewater treatment, and bio-based

manufacturing. Its rapid growth rate andmetabolic versatility position it

as an ideal model for advancing cyanobacterial biotechnology.

However, several challenges still impede the industrial

application of S. elongatus. Although S. elongatus has good

genetic operability, its gene editing tools and expression systems

are not as mature as model organisms such as E. coli. Furthermore,

light availability remains a critical bottleneck for high-density

cultures, and scalability issues make it difficult to translate

laboratory success into large-scale production. To address these

challenges, advancements in genome editing tools, such as CRISPR-

Cas systems specifically tailored for S. elongatus, will enable more
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precise genetic modifications. Additionally, genome-scale

reconstruction and modeling through collaborative research could

accelerate metabolic pathway optimization.

On the bioprocess front, optimizing photobioreactor designs is

crucial to enhancing light utilization. Strategies such as incorporating

light-harvesting technologies, like optical fibers or adjustable light

emission strategies, could increase the efficiency of photosynthesis and

boost biomass productivity. Furthermore, engineering S. elongatus to

enhance carbon fixation, for example, by introducing high-affinity

Rubisco variants or optimizing bicarbonate transport, could improve

CO2 utilization, especially under suboptimal conditions.

Co-culture systems, where S. elongatus is paired with

heterotrophic microorganisms, may also provide solutions for

improving overall productivity. These systems can facilitate

nutrient recycling and create stable growth environments, helping

to reduce costs and improve efficiency in large-scale applications.

For instance, it was demonstrated that co-culturing S. elongatus

with E. coli can enhance the production of biofuels by leveraging

complementary metabolic pathways. However, due to the metabolic

byproducts generated during co-cultivation, the complexity of

downstream processing is increased.

Downstream processing, including cell harvesting and product

extraction, also presents a significant barrier. Current methods are

often energy-intensive and costly, particularly for low-value

products like biofuels. Advances in cell lysis techniques, such as

enzymatic or mechanical disruption, and improved separation

technologies, such as membrane filtration or chromatography, are

needed to enhance efficiency and reduce costs.

Looking ahead, the integration of genetic engineering, bioreactor

optimization, and system-level modeling will be essential to

overcoming current challenges. For example, the use of artificial

intelligence and machine learning to predict optimal metabolic

pathways and cultivation conditions could significantly accelerate

the transition from lab-scale to industrial-scale production.

Furthermore, policy support, such as government subsidies or tax

incentives for sustainable biotechnologies, will play a crucial role in

fostering commercialization.

In conclusion, while S. elongatus holds immense potential for

industrial applications, realizing this potential will require

interdisciplinary innovations and collaborative efforts across

academia, industry, and government. By addressing the technical,

economic, and policy-related challenges, S. elongatus can be

positioned as a key player in sustainable biotechnology, contributing

to global efforts to address environmental and energy challenges.
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