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Small object detection in
side-scan sonar images
based on SOCA-YOLO
and image restoration
Xiaodong Cui, Jiale Zhang, Lingling Zhang, Qunfei Zhang
and Jing Han*

School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an, China
Although side-scan sonar can provide wide and high-resolution views of

submarine terrain and objects, it suffers from severe interference due to

complex environmental noise, variations in sonar configuration (such as

frequency, beam pattern, etc.), and the small scale of targets, leading to a high

misdetection rate. These challenges highlight the need for advanced detection

models that can effectively address these limitations. Here, this paper introduces

an enhanced YOLOv9(You Only Look Once v9) model named SOCA-YOLO,

which integrates a Small Object focused Convolution module and an Attention

mechanism to improve detection performance to tackle the challenges. The

SOCA-YOLO framework first constructs a high-resolution SSS (sidescan sonar

image) enhancement pipeline through image restoration techniques to extract

fine-grained features of micro-scale targets. Subsequently, the SPDConv (Space-

to-Depth Convolution) module is incorporated to optimize the feature

extraction network, effectively preserving discriminative characteristics of small

targets. Furthermore, the model integrates the standardized CBAM

(Convolutional Block Attention Module) attention mechanism, enabling

adaptive focus on salient regions of small targets in sonar images, thereby

significantly improving detection robustness in complex underwater

environments. Finally, the model is verified on a public side-scan sonar image

dataset Cylinder2. Experiment results indicate that SOCA-YOLO achieves

Precision and Recall at 71.8% and 72.7%, with an mAP50 of 74.3%. It

outperforms the current state-of-the-art object detection method, YOLO11, as

well as the original YOLOv9. Specifically, our model surpasses YOLO11 and

YOLOv9 by 2.3% and 6.5% in terms of mAP50, respectively. Therefore, the

SOCA-YOLO model provides a new and effective approach for small

underwater object detection in side-scan sonar images.
KEYWORDS

side-scan sonar, image restoration, YOLOv9, attention mechanism, Space-to-
Depth Convolution
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1 Introduction

Side-scan sonar (何勇光, 2020) is an extensively utilized

underwater sensing technology, mainly applied in underwater

terrain mapping, object detection, and exploration tasks. In

contrast to conventional downward-looking sonar, side-scan

sonar transmits acoustic waves at horizontal or inclined angles,

thereby covering a larger area of seabed features and improving

detection performance. As a result, side-scan sonar is widely utilized

in areas such as maritime archaeology, submerged pipeline

monitoring, and wreck exploration (Gomes et al., 2020; Tian

et al., 2007; Fengchun et al., 2002; Sun et al., 2021; Jinhua et al.,

2016). Nevertheless, the intricate underwater environment often

introduces multiple sources of noise and blurring in side-scan sonar

images, including scattering noise, multipath artifacts, noise streaks,

and acoustic shadow distortions. Furthermore, instrumental noise

arises from the sensor’s inherent electronic noise and the

transducer’s non-ideal properties, potentially leading to image

signal degradation. The interaction of these noise factors results

in considerable difficulties in processing side-scan sonar images for

real-world applications.

The unique properties of side-scan sonar images introduce

significant difficulties in target detection. Firstly, sonar imagery

often exhibits considerable background noise and spurious objects,

including natural seabed formations and acoustic backscatter from

sediment particles, which frequently resemble real targets and result

in an elevated false alarm rate in detection models. Secondly, targets

in sonar images generally manifest as small, diffuse high-intensity

reflections with vague edges and uneven signals, making them

indistinguishable from surrounding textures and increasing the

difficulty of segmentation from the background. Furthermore,

side-scan sonar image data exhibit substantial distribution

discrepancies across different scenarios. Given the high cost and

inefficiency of underwater data acquisition, labeled datasets are

often scarce. This non-uniformity and data insufficiency severely

hinder the generalization capability of algorithms, posing a

formidable challenge for achieving accurate target detection in

complex underwater settings. The rapid progress in artificial
Frontiers in Marine Science 02
intelligence and machine learning has facilitated the fusion of

advanced image processing techniques with target detection

models, substantially enhancing side-scan sonar image quality

and improving the precision of seabed target detection (Yasir

et al., 2024; Cheng et al., 2023; Wen et al., 2024; Fan et al., 2022;

Yu et al., 2021; Fayaz et al., 2022).

Among existing underwater target detection methods for side-

scan sonar images, some object detection models have become

relatively outdated and struggle to meet the current diversified

underwater application requirements. Although some studies have

improved traditional deep learning models, these enhancements often

fail to adequately consider the inherent structural characteristics of

side-scan sonar images. This neglect of sonar image characteristics

makes targeted model optimization challenging, resulting in subpar

detection performance in practical applications. Furthermore, while

some modified models have enhanced detection capabilities to some

extent, their parameter counts have also increased substantially,

leading to higher computational costs. Therefore, developing an

effective underwater target detection method tailored to the specific

requirements of side-scan sonar images is particularly crucial. As

shown in Figure 1, by improving existing object detection models with

greater emphasis on the structure and characteristics of side-scan

sonar images, we can significantly enhance detection performance

while effectively controlling model parameters and computational

complexity, thereby providing more reliable metrics for underwater

detection tasks.

This paper is structured into four main sections: The first section

provides a literature review, systematically summarizing the current

research status in underwater side-scan sonar image target detection.

The second section focuses on methodology, providing a detailed

explanation of the proposed detection model and its theoretical

framework. The third section presents experimental validation,

where multiple comparative and ablation experiments empirically

analyze the performance advantages of the proposed model. The

fourth section provides conclusions and future perspectives,

discussing in depth the future research directions and trends in

underwater side-scan sonar image processing based on an evaluation

of the model’s practical performance.
FIGURE 1

SSS object detection architecture.
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The main contributions of this paper are as follows:
Fron
1. SwinIR-based sonar image enhancement method: To

address the issues of low quality and high noise

interference in traditional sonar images, the SwinIR

super-resolution reconstruction network is introduced

into the field of sonar image preprocessing. This method

can more effectively enhance image quality, providing

clearer input features for subsequent target detection.

2. Optimal model selection for small target detection in

images: In the task of small target detection in side-scan

sonar images, a comparison of existing object detection

network models reveals that YOLOv9, through its auxiliary

reversible branch, retains critical feature information,

significantly enhancing the model’s ability to detect small

targets, particularly improving target recognition accuracy

in complex backgrounds.

3. CBAM-enhanced detection model: Building upon the

standard YOLOv9 network, the convolutional block

attention module (CBAM) is innovatively incorporated.

Unlike the original model’s reliance solely on convolutional

feature extraction, this method adaptively focuses on key

target features, significantly improving target detection

accuracy in complex underwater environments.

4. SPDConv replacement for ADown downsampling scheme:

To address the challenges of small target detection in sonar

images, the original ADown module in YOLOv9 is replaced

with the SPDConv (Space-to-Depth Convolution) module.

Compared to traditional downsampling methods, this

improvement effectively mitigates the issue of small target

feature loss.

5. Sonar image dataset reconstruction and evaluation:

Existing public sonar datasets are systematically

restructured, and a data partitioning standard more

aligned with practical application scenarios is proposed.

Experimental results demonstrate that the proposed

improvements outperform traditional methods across

all metrics.
2 Related work

As deep learning technology advances, various effective approaches

have been introduced in image enhancement. The goal of image

enhancement is to enhance image visual quality and interpretability

using different algorithms, spanning from basic filtering to

sophisticated color adjustment and detail refinement. Methods based

on Convolutional Neural Networks (CNNs), such as Du (Du et al.,

2023), employ four conventional CNN models for training and

predicting on the same submarine SSS dataset. A comparative

analysis was conducted on the predictive accuracy and

computational efficiency of the four CNN models. Generative

Adversarial Networks (GANs) employ adversarial learning between a

generator and a discriminator to produce highly detailed images. Jiang
tiers in Marine Science 03
(Jiang et al., 2020), for example, introduced a GAN-based semantic

image synthesis model that can efficiently generate high-quality SSS

images with reduced computational cost and time. Swin Transformer

(Liu et al., 2021) serves as a versatile vision model designed mainly for

image classification, object detection, and semantic segmentation (Lin

et al., 2022; Gao et al., 2022; He et al., 2022; Jannat and Willis, 2022),

with potential applications in image enhancement and video

processing. It is specifically designed for efficient high-resolution

image processing and has demonstrated superior performance in

multiple visual tasks. SwinIR (Liang et al., 2021), built upon Swin

Transformer, is a deep learning framework tailored for image

restoration, encompassing super-resolution, noise reduction, and

deblurring, among other tasks. Retaining the strengths of Swin

Transformer, it integrates task-specific optimizations for image

restoration, leading to improved processing efficiency and output

quality. SwinIR has demonstrated significant performance

improvements across various fields. For instance, in medical imaging,

its application in low-dose PET/MRI restoration achieves a mean SSIM

of 0.91 at a 6.25% dose level, substantially enhancing image quality

(Wang et al., 2023b). In the domain of remote sensing, experiments on

benchmark datasets show that SwinIR can enhance the resolution of

satellite and aerial images—at a 2× scaling factor, its PSNR reaches

35.367dB and its SSIM increases to 0.9449, thereby facilitating more

accurate topographic monitoring and mapping (Ali et al., 2023).

Moreover, in video enhancement and facial recognition (Zheng et al.,

2022; Lin, 2023), SwinIR’s robust feature extraction and reconstruction

capabilities significantly improve detail recovery and overall

performance, as evidenced by its competitive results in multiple top-

tier challenges. These advancements in deep learning have propelled

significant innovations in image enhancement techniques.

In the field of computer vision, object detection and image

enhancement are two complementary and important research

directions. Image enhancement techniques aim to improve image

quality, providing more accurate inputs for object detection, while

object detection techniques focus on identifying and localizing

objects of interest within images. Deep learning-based object

detection methods are primarily divided into two categories: one-

stage methods and two-stage methods. One-stage detection models

directly predict target locations and categories through a single

network forward pass, offering faster speed but potentially slightly

lower accuracy. Representative works include the SSD (Single Shot

Detector) series (Liu et al., 2016) and the YOLO (You Only Look

Once) family (Redmon, 2016; Redmon and Farhadi, 2017; Redmon,

2018; Bochkovskiy et al., 2020; Li et al., 2022; Wang et al., 2023a,

2025, 2024). Two-stage detection models first generate candidate

regions and then classify and regress these regions, achieving higher

accuracy but at a relatively slower speed. Representative works

include the R-CNN family (Girshick et al., 2014; Ren et al., 2016; He

et al., 2017). Currently, these methods have been widely applied in

underwater object detection tasks using sonar images and have

achieved significant results (Heng et al., 2024; Yang et al., 2025; Ma

et al., 2024; Yulin et al., 2020; Polap et al., 2022).

Deep learning-based side-scan sonar image enhancement and

object detection technologies have achieved significant progress in

both theoretical research and practical applications. Burguera et al
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(Burguera and Oliver, 2016) employed a probability model-based

high-resolution seabed mapping method, correcting sonar data

using physical models to generate high-precision images

surpassing the device’s resolution, laying the foundation for

scientific applications. Tang et al. (2023) proposed a deep

learning-based real-time object detection method, incorporating

lightweight network design to address the challenges of detection

efficiency and accuracy in complex underwater terrains. Li et al.

(2024) designed an image generation algorithm for zero-shot and

few-shot scenarios by combining UA-CycleGAN and StyleGAN3,

significantly enhancing the generalization performance of deep

learning-based object detection models. Yang et al. (2023)

employed diffusion models to generate high-fidelity sonar images

and validated the effectiveness of these enhanced data in practical

object detection tasks. Zhu et al. (2024) significantly improved the

stability and global information extraction capabilities of generative

models by introducing CC-WGAN and CBAM modules, while also

enhancing the accuracy of object detection. Yang et al. (2024)

generated full-category sonar image samples using diffusion

models combined with transfer learning, and trained object

detection and semantic segmentation models with these samples,

significantly improving model performance and data diversity.

Aubard et al. (2024) proposed the YOLOX-ViT model, effectively

compressing the model size using knowledge distillation while

maintaining high detection performance, particularly reducing

false alarm rates in underwater environments. Peng et al. (2024)

designed a single-image enhancement method based on the CBL-

sinGAN network, incorporating CBAM modules and L1 loss

functions to enhance the construction capability of small-sample

object detection models while preserving sonar image style.
3 Method

This section introduces the proposed SOCA-YOLO model,

which integrates the image restoration model SwinIR, the CBAM

(Woo et al., 2018) attention mechanism, the SPDConv (Sunkara

and Luo, 2022) convolution module, and the YOLOv9 object

detection model.
3.1 SwinIR

Image restoration is the process of transforming low-quality

images into high-quality versions. SwinIR, a model based on the

Swin Transformer, is primarily used for image super-resolution,

denoising, and JPEG compression artifact reduction.

SwinIR combines the strengths of both Transformers and

CNNs, outperforming traditional CNNs in handling large images

due to its local attention mechanism. SwinIR employs a sliding

window approach, dividing the input image into multiple small

windows and processing each window separately, while retaining

the Transformer’s ability to manage long-range pixel relationships

within the image. As illustrated in Figure 2, SwinIR is designed

based on the Swin Transformer and comprises three modules:
Frontiers in Marine Science 04
Shallow Feature Extraction, Deep Feature Extraction, and High-

Quality Image Reconstruction.

The Shallow Feature Extraction module extracts initial features

through convolutional layers, preserving lowfrequency information

and passing it to the reconstruction module. The Deep Feature

Extraction module incorporates Residual Swin Transformer Blocks

(RSTB), which achieve local attention and cross-window

interactions through multiple Swin Transformer layers. Residual

connections provide a shortcut for feature aggregation, and

convolutional layers further enhance the features. Finally, the

High-Quality Image Reconstruction module combines shallow

and deep features to produce high-quality images. Each module is

detailed below.

Shallow Feature Extraction Module: This module uses a 3×3

convolution to extract shallow features. The main purpose of this

process is to retain low-frequency information, leading to better and

more stable results. A low-quality imageis ILinput at the input stage,

and after passing through the shallow feature extraction moduleHS,

the shallow feature F0 is obtained as shown in Equation 1:

F0 = HS(IL) (1)

Deep Feature Extraction Module: This module consists of

several RSTBs (Residual Swin Transformer Blocks) and a 3×3

convolution. Each RST is composed of an even number of Swin

Transformer Layers (STL) and a convolution layer. This module

further processes the shallow features, resulting in its deep feature

FD, as shown in Equation 2.

FD = HD(F0) (2)

Here, HD represents the deep feature extraction module.

High-Quality Image Reconstruction: The shallow and deep

features are aggregated, transferring both the lowfrequency and

high-frequency information of the image to the reconstruction

layer. The high-quality image reconstruction module uses a sub-

pixel convolution layer to upsample the feature map, resulting in

the reconstructed high-quality image IH , as shown in Equation 3:

IH = HRE(F0 + FD) (3)

Here, HRE represents the high-quality image reconstruction

module.
3.2 CBAM

The Convolutional Block Attention Module (CBAM) is an

efficient attention module for feedforward convolutional neural

networks, proposed by Sanghyun Woo et al, as illustrated in

Figure 3a. CBAM enhances the model’s perceptive capability by

incorporating a Channel Attention Module (CAM) (Figure 3b) and

a Spatial Attention Module (SAM) (Figure 3c) into CNNs, thereby

improving performance without adding significant network

complexity. As a lightweight and versatile module, CBAM can be

seamlessly integrated into any CNN architecture, adding minimal

parameters and enabling end-to-end training with YOLOv9 models.
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FIGURE 3

(a) Convolutional Block Attention Module (CBAM) architecture, (b) Channel Attention Module (CAM) architecture, (c) Spatial Attention Module
(SAM) architecture.
FIGURE 2

SwinIR transformer architecture.
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The input feature map F first passes through the CAM, where

the channel weights are multiplied with the input feature map to

produce F0. Then, F0 is fed into the SAM, where the normalized

spatial weights are multiplied with the input feature map of the

spatial attention mechanism, resulting in the final weighted feature

map F00.
3.3 Space-to-Depth Convolution

The fundamental principle of SPDConv (Space-to-Depth

Convolution) is to enhance the performance of convolutional

neural networks (CNNs) when processing low-resolution images

and small objects, as illustrated in Figure 4. This improvement is

achieved through the following key steps:
Fron
1. Replacing Strided Convolutions and Pooling Layers:

SPDConv is designed to replace traditional strided

convolution and pooling layers, which often cause the

loss of fine-grained information when dealing with low-

resolution images or small objects.

2. Space-to-Depth (SPD) Layer: This transformation layer

converts the spatial dimensions of the input image into the

depth dimension, increasing the feature map depth without

information loss. The SPD layer is critical for retaining spatial

information, especially when processing low-resolution

images and small objects. By converting spatial information

into the depth dimension, the SPD layer mitigates the
tiers in Marine Science 06
information loss typically associated with traditional strided

convolutions and pooling operations.

3. Non-strided Convolution Layer: A convolutional layer with

a stride of 1, applied after the SPD transformation,

preserves fine-grained information by avoiding size

reduction of the feature map. This non-strided

convolution enables feature extraction while maintaining

the full resolution of the feature map, which is essential for

enhancing recognition performance on low-resolution

images and small objects.
SPDConv effectively processes low-resolution images and small

objects by combining space-to-depth transformations with non-

strided convolutions. This method addresses the fine-grained

information loss commonly caused by traditional strided

convolutions and pooling layers during downsampling. By

preserving spatial information through the SPD layer and

converting it into depth features, combined with non-strided

convolutions to capture finer details, SPDConv excels in small

object detection tasks. It significantly enhances detection accuracy

and adaptability to low-resolution images, offering a novel solution

for small object detection and related tasks.
3.4 YOLOv9

Proposed in 2024, YOLOv9 is an object detection network that

excels in both detection accuracy and processing speed. The model
FIGURE 4

SPDConv architecture.
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introduces Programmable Gradient Information (PGI), as

illustrated in Figure 5. Through auxiliary reversible branches, PGI

allows deep features to retain essential object characteristics,

enabling the network to preserve crucial visual features of the

target without sacrificing important information. This approach

enhances YOLOv9’s ability to maintain high performance even in

complex detection scenarios.

PGI consists of three components: the main branch, multi-level

auxiliary information, and the auxiliary reversible branch. Each

component is detailed below:

Main Branch: The main branch includes the backbone network,

neck network, and head network, which are common components

in the YOLO series. The backbone network primarily uses Conv

and RepNCSPELAN4 layers for feature extraction. The neck

network comprises Upsample, Conv, and RepNCSPELAN4 layers,

utilizing an FPN+PAN structure for multi-scale target detection.

The head network processes features from the neck network to

predict and classify large, medium, and small objects.

Auxiliary Reversible Branch: This branch addresses information

loss that occurs as network depth increases, leading to information

bottlenecks that hinder reliable gradient generation from the loss

function. It introduces an additional network between the feature

pyramid layers and the main branch to integrate gradient

information from multiple prediction heads.

Multi-level Auxiliary Information: Multi-level auxiliary

information involves inserting an integrated network between the

feature pyramid’s sub-layers and the main branch under auxiliary

supervision. This network aggregates gradient information from
Frontiers in Marine Science 07
various prediction heads and passes it to the main branch for

parameter updates. Consequently, the feature pyramid in the main

branch is not dominated by specific objects, enabling the main

branch to retain comprehensive information necessary for learning

target features.
3.5 SOCA-YOLO

In this study, we have improved upon the YOLOv9 object

detection framework to address challenges such as noise

interference, small target size, and edge blurring in side-scan

sonar images. Due to the unique imaging mechanism of side-scan

sonar, the images often exhibit high noise and low contrast, which

can hinder traditional detection models from effectively extracting

fine-grained features. Although YOLOv9 demonstrates notable

advantages in real-time performance and multi-scale feature

fusion, its standard convolutional layers and global feature

extraction strategies still exhibit certain limitations when handling

such specialized scenarios. Therefore, we propose two main

improvements: the introduction of the CBAM attention

mechanism into the model and the replacement of some standard

convolutional layers with SPDConv modules, thereby achieving

more precise feature extraction and fusion for small targets. The

modified network model is illustrated in Figure 6.

In our improved model, the overall architecture still adheres to

the core design principles of YOLOv9, divided into three

components: Backbone, Neck, and Head. However, novel
FIGURE 5

YOLOv9 architecture.
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modules have been strategically incorporated at each stage to adapt

to the characteristics of side-scan sonar images. First, the Backbone

section integrates SPDConv modules alongside traditional

convolutional layers to enhance multi-scale representation

capabilities in feature extraction. Specifically, the SPDConv

module performs spatial reorganization of input feature maps.

This operation can be formally described as follows: let the input

feature map be defined in Equation 4.

x ∈ RC�H�W (4)

Initially, SPDConv samples x to derive four sub-regions, as

shown in Equation Equation 5.

x1 = x½…, : : 2, : : 2�, x2 = x½…, 1 : : 2, : : 2�, 
x3 = x½…, : : 2, 1 : : 2�, x4 = x½…, 1 : : 2, 1 : : 2�

(5)

The four sub-features are concatenated in the channel

dimension, resulting in a new feature map, as shown in Equation 6.
Frontiers in Marine Science 08
xSPD = Concat x1, x2, x3, x4f g ∈ R4C�H
2�W

2 , (6)

Subsequently, a 3� 3 convolutional layer (denoted as Conv3�3)

is employed for fusion, producing the output features, as shown in

Equation 7:

y = Conv3�3(xSPD) : (7)

This spatial reorganization and downsampling strategy not only

reduces the size of the feature maps and computational load but also

effectively captures fine-grained information through channel

expansion, offering significant advantages for detecting small,

blurry targets in side-scan sonar images.

In the Backbone and some Head modules, we also embed the

CBAM to apply dual attention weighting to the features.

Specifically, let the input feature be F ∈ RC�H�W , and first,

channel statistics are computed through global average pooling

and max pooling along the channel dimension, as shown in

Equation 8:
FIGURE 6

SOCA-YOLO architecture.
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favg(c) =
1

H �Wo
H

i=1
o
W

j=1
 F (c, i, j), fmax(c) = max

i,j
 F (c, i, j) : (8)

These two sets of statistics are processed through a shared

multi-layer perceptron (MLP) and a Sigmoid activation to generate

the channel attention vector Mc ∈ RC , which is then multiplied

with the original features on a per-channel basis to obtain the

intermediate feature F0 = Mc ⊗ F. Next, average and max pooling

are applied along the channel dimension of F0, followed by

concatenation, a 7� 7 convolution, and Sigmoid activation to

generate the spatial attention map Ms ∈ RH�W , which is then

used to output the spatially weighted feature, as shown in

Euqation 9:

Fatt = Ms ⊗ F0 : (9)

This process allows the network to automatically focus on the

target regions, effectively suppress background noise, and further

enhance the discriminative ability for small target features.

In the overall architecture, the multi-scale features extracted by

the Backbone are strengthened by the SPDConv and CBAM

modules and then passed to the Neck section. The Neck employs

an FPN and PAN-style multi-scale feature fusion strategy, merging

features from different levels in an abstract formulation, as shown in

Euqation 10:

Fneck =o
N

i=1
wi · fi(Fatt), (10)

Here, fi(·) denotes the feature transformation function for each

scale branch, and wi represents the corresponding weight. This

fusion not only retains fine-grained information from each layer but

also enriches the global semantics, making it particularly suitable

for detecting small targets in side-scan sonar images.

In the Head section, the improved features are processed

through a series of modules such as SPPELAN, RepNCSPELAN4,

and CBAM, and then further integrated using upsampling and

cross-layer concatenation (Concat) to merge multi-scale

information. It is worth mentioning that in the subsequent design

of the Head, we also introduce multi-level reversible auxiliary

branches (through CBLinear and CBFuse modules), which re-fuse

features from different levels of the Backbone, providing stronger

discriminative signals for final target detection. Finally, after passing

through the DualDDetect module, the network outputs detection

results containing target categories, bounding box coordinates, and

confidence scores, as shown in Equation 11:

Ŷ = fhead(Fneck), (11)

The network is then trained end-to-end using a multi-task loss

function, composed of localization loss, classification loss, and

confidence loss, as shown in Equation 12:

L = llocLloc + lclsLcls + lconfLconf : (12)

This improvement strategy fully integrates the advantages of

SPDConv for spatial reorganization and downsampling, CBAM’s

dual attention weighting ability for features, and the overall design of

multi-scale fusion. It significantly enhances the model’s detection
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performance for small targets in side-scan sonar images, while

balancing real-time processing and efficiency, providing a solid

theoretical and technical foundation for future practical deployment.

During model training, the original images are first uniformly

resized to a standard dimension of 640×640×3. This standardization

ensures consistency in input data. Subsequently, the images undergo

a series of convolution and pooling operations, through which the

network generates feature maps of varying scales. Shallow feature

maps retain finer details for detecting small targets, while deep feature

maps capture global information for large target detection. This

multi-scale feature extraction mechanism effectively enhances the

network’s capability to detect targets of varying sizes.
4 Experiments and analysis

To validate that our SOCA-YOLO network achieves superior

results on public side-scan sonar images compared to other

methods, we designed the following experiments. First, we

applied SwinIR to preprocess the original dataset, generating a

high-resolution dataset. We then compared various object detection

models, demonstrating that our network exhibits a certain level of

superiority. Additionally, we conducted comparative experiments

using different convolution modules and attention mechanisms to

verify the effectiveness of the SPDConv module and the CBAM

attention mechanism. Finally, ablation experiments confirmed that

each of our proposed improvements contributes positively to the

overall performance.
4.1 Environment and dataset

To comprehensively assess the effectiveness of the proposed

method, we conduct experiments in a high-performance computing

environment and evaluate the model on a publicly available side-

scan sonar image dataset. This section provides a detailed

description of the experimental setup and dataset used in our study.
4.1.1 Environment
To ensure the reproducibility of experiments and the efficiency

of computational performance, the experimental environment in

this study is built on the mainstream deep learning framework

PyTorch, fully meeting the computational requirements for model

training and inference. Detailed configuration information is

presented in Table 1.
4.1.2 Dataset
The experimental dataset used in this paper is the publicly

available Cylinder2 ([Dataset] yeesonmin@naver.com, 2022),

utilized to evaluate the model’s performance. Released in 2022,

this dataset contains 478 side-scan sonar images categorized into

two classes: cylinders and manta rays, with each image containing

exactly one object. Each object occupies a relatively small pixel area

compared to the full image, making this dataset suitable for
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underwater small object detection tasks. We excluded the portion

containing manta rays (140 images), retaining only the 338 cylinder

images. The dataset was subsequently split into training, validation,

and test sets in an 8:1:1 ratio, which was then used to train the

network. The basic configuration of the dataset is shown in Table 2.
4.2 Evaluation metrics

During the image restoration stage using SwinIR, the image

quality was evaluated using standard metrics, including Peak

Signal-to-Noise Ratio (PSNR) and Structural Similarity (SSIM).

PSNR: Given a clean image and a noisy image of size m×n, the

Mean Squared Error (MSE) is defined, as shown in Equation 13:

MSE =
1
mn o

m−1

i=0
o
n−1

j=0
½I(i, j) − K(i, j)�2 (13)

At this point, PSNR is defined as shown in Equation 14:

PSNR = 10 · log10
MAX2

I

MSE

� �
(14)

Here, MAX2
I represents the maximum possible pixel value in

the image. If each pixel is represented by 8-bit binary, then the

maximum value is 255. Typically, if the pixel value is represented in

B-bit binary, then MAXI = 2B − 1.

SSIM: The SSIM formula is based on three comparison

measures between samples x and y: luminance (Equation 15),

contrast (Equation 16), and structure (Equation 17).

l(x, y) =
2mxmy + c1
m2
x + m2

y + c1
(15)

c(x, y) =
2sxsy + c2
s 2
x + s 2

y + c2
(16)
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s(x, y) =
sxy + c3
sxsy + c3

(17)

Typically, c3 =
c2
2 , where mx represents the mean of x, my

represents the mean of y, s 2
x is the variance of x, s 2

y is the

variance of y, and sxy is the covariance between x and y. Thus

SSIM can be expressed, as shown in Equation 18:

SSIM(x, y) = ½l(x, y)a · c(x, y)b · s(x, y)g � (18)

Setting, a = b = g = 1 we obtain Equation 19:

SSIM(x, y) =
(2mxmy + c1)(2sxy + c2)

(m2
x + m2

y + c1)(s 2
x + s 2

y + c2)
(19)

During the training and testing phases, the model’s performance

is evaluated according to the PASCAL VOC 2010 standard, which

includes Precision (P), Recall (R), and Mean Average Precision

(mAP). P represents the proportion of samples correctly predicted

as positive out of all samples predicted as positive by the model. R

represents the proportion of correctly predicted positive samples out

of all true positive samples. mAP is used to comprehensively assess

the model’s performance across all categories by calculating the

average precision at various recall thresholds. Since this paper

focuses on detecting a single target type, the AP value is equivalent

to the mAP value. Ideally, a higher mAP value indicates better model

performance. The formulas for calculating P, R, and mAP are

provided in equations Equations 20–23.

P =
TP

TP + FP
(20)

R =
TP

TP + FN
(21)

AP =
Z 1

0
P(R) dR (22)

mAP = o
N
i=1APi
N

(23)

Here, TP represents true positives, where positive samples are

correctly predicted as positive; FP represents false positives, where

negative samples are incorrectly predicted as positive; and FN

represents false negatives, where positive samples are incorrectly

predicted as negative.
4.3 Experimental results

To validate the effectiveness of the proposed method, we conduct a

series of comparative experiments. First, we apply SwinIR for image

restoration and analyze its impact on the quality of side-scan sonar

images. Then, we perform multiple comparative studies, including

object detection model comparison, attention mechanism comparison,

and convolution module comparison. These experiments provide a

comprehensive evaluation of the contributions of different

components to the overall detection performance.
TABLE 2 Dataset split settings.

Dataset Images

Train 270

Val 34

Test 34
TABLE 1 System configuration.

Name Configuration

Python 3.9.18

PyTorch 1.12.0

CUDA 11.3

CPU Intel(R) Core(TM) i5-13600KF@3.50GHz

GPU NVIDIA GeForce RTX 4070Ti (12GB)
frontiersin.org

https://doi.org/10.3389/fmars.2025.1542832
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Cui et al. 10.3389/fmars.2025.1542832
4.3.1 Using SwinIR for image processing
In this paper, we employ the SwinIR model as a preprocessing

step to enhance the quality of original side-scan sonar images. The

enhanced images are subsequently used to train and validate the

SOCA-YOLO model, which is designed for small object detection.

Pretrained weights from the official SwinIR GitHub repository

(Liang et al., 2021) are utilized to leverage the architecture’s

robust super-resolution capabilities. The application of SwinIR

results in processed side-scan sonar images with sharper edges,

reduced noise, and improved fine details—key factors for accurate

detection. Figure 7 presents comparative examples of the original

and enhanced images, illustrating the effectiveness of this

preprocessing step.

To intuitively assess the effectiveness of SwinIR in enhancing image

clarity, we used PSNR and SSIM to compare the experimental results.

The findings indicate that, compared to the original images, the

processed images achieved average PSNR and SSIM values of 36.14

and 0.9807, respectively. These results demonstrate that SwinIR not

only improves the visual quality and resolution of the images but also

yields higher PSNR and SSIM values. Consequently, this enhancement

facilitates more accurate detection of small objects, with notable

improvements across various detection metrics.
4.3.2 Comparative experiment
1. Comparison of SOCA-YOLO with mainstream object

detection networks.

To verify the performance of this method, we conducted

comparative experiments with several mainstream object

detection models, including SSD, Faster R-CNN, and various
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YOLO series models. Table 3 presents the experimental results of

each model on the side-scan sonar dataset.

As shown in Table 3, the proposed method outperforms the

original YOLOv9 and other object detection algorithms across

multiple metrics. Specifically, compared to the original YOLOv9,

P increases by 4.2%, R by 7.2%, and mAP50 by 6.5%. In comparison

with SSD, Faster R-CNN, and the latest YOLO models, the

proposed algorithm demonstrates superior performance in

metrics such as P, R, and mAP. Although YOLO11 achieves a

higher P of 75.8% compared to SOCA-YOLO’s 71.8%, SOCA-

YOLO surpasses YOLO11 in both recall and mAP50, highlighting

its balanced and robust detection capabilities.

These results indicate that the algorithm significantly enhances

the detection capability for small underwater targets. Figure 8

displays sample results of SOCA-YOLO target detection,

illustrating noticeable improvements in both detection metrics

and practical detection outcomes. However, some instances of

missed and false detections remain in the detection process.

Furthermore, to provide a more comprehensive comparison of

our model’s superiority, we also compared the P-R curves. Figure 9

presents the P-R curve of the original YOLOv9 and the P-R curve of

SOCA-YOLO.

In summary, for small object detection in underwater side-scan

sonar images, the proposed method significantly outperforms

mainstream object detection algorithms. Figure 10 compares the

detection results of SOCA-YOLO with other models for the same

target. As shown in the Figure 10, while other models produce false

positives and missed detections, SOCA-YOLO accurately identifies

the target, demonstrating its robustness and precision.

2. Comparison of SPDConv with other convolutional methods.
FIGURE 7

Partial results of SwinIR preprocessing, with the first row showing the original images, the second row showing the restored images, and the red
boxes indicating a zoomed-in view of the target region.
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To verify the contribution of the introduced convolution

module SPDConv to our model’s improvements, we replaced the

original YOLOv9 convolution module ADown with AConv,

AKConv, and SPDConv, respectively. ADown is the default

convolution module in YOLOv9; AConv is a standard

convolution module consisting of a pooling layer and a

convolution layer; AKConv (Zhang et al., 2023) is a variable

kernel convolution module that allows the kernel to dynamically

adjust its shape and size based on target characteristics; SPDConv is

the proposed convolution module in our SOCA-YOLO network,

designed for superior detection capability on low-resolution images

and small objects. We tested each module replacement on side-scan

sonar images without SwinIR preprocessing. The experimental

results are shown in Table 4.

As show in Table 4, SPDConv demonstrates significant

advantages in object detection tasks, outperforming other
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convolutional modules across all key metrics. Specifically,

SPDConv achieves a P of 70.4%, a R of 71%, and a mAP50 of

72.6%. These results represent improvements of 2.8%, 5.5%, and

4.8%, respectively, compared to those obtained using the original

YOLOv9 convolution module, ADown. Compared to traditional

convolutional modules, these improvements are particularly

important for enhancing the overall performance of the YOLOv9

network. SPDConv not only improves precision but also

significantly enhances the network’s detection consistency (i.e.,

the balanced performance of P and R), making it especially

suitable for small object detection in side-scan sonar images.

3. Comparison of CBAM with other attention mechanisms.

To validate the effectiveness of the attention mechanism in our

network model, we conducted comparative experiments

incorporating various popular attention modules, including the

SE module (Hu et al., 2018), CA module (Hou et al., 2021), ECA

module (Wang et al., 2020), CBAM module, and the baseline

YOLOv9 network without any attention mechanism. Each

attention module was integrated into the same position within the

YOLOv9 network to ensure the comparability of results. Consistent

training and validation datasets were used throughout the

experiments to maintain fairness. The experimental results are

presented in Table 5.

The results demonstrate that the performance improvements

provided by attention mechanisms depend on the specific module

design. Among these, CBAM achieved the best performance,

significantly enhancing both detection P and R. This outcome

highlights the effectiveness of CBAM’s dual-branch design in

capturing feature correlations at multiple levels, thereby
FIGURE 8

Partial results of SOCA-YOLO detection, with red boxes representing correctly detected targets, yellow boxes representing false detections, and
green boxes representing missed detections.
TABLE 3 Comparison of SOCA-YOLO with mainstream object
detection networks.

Methods Precision / % Recall / % mAP50 / %

SSD 48.6 51.5 44.8

Faster-RCNN 42.4 52.9 45.5

YOLOv9 42.4 52.9 45.5

YOLOv10 70.6 65.3 71.4

YOLO11 75.8 66.7 72.0

SOCA-YOLO 71.8 72.7 74.3
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improving the model’s ability to locate and classify targets. In

comparison, the SE module, which focuses on channel attention,

shows notable classification improvements in specific scenarios

but offers relatively limited gains in complex environments. The

CA module, by incorporating coordinate information, improves
Frontiers in Marine Science 13
the locality of feature representations and performs well in

scenarios with targets of varying aspect ratios. The ECA

module strikes a balance by reducing the computational cost of

attention but delivers l imited improvements in small

object detection.
FIGURE 10

Detection results from different object detection models for four targets, with each image containing exactly one target: (a) Original image, (b)
Faster-RCNN, (c) YOLOv9, (d) YOLOv10, (e) SOCA-YOLO. Red boxes indicate correctly detected targets, yellow boxes indicate false detections, and
green boxes indicate missed detections.
FIGURE 9

P-R curves. (A) shows the P-R curve of the original YOLOv9. (B) shows the P-R curve of SOCA-YOLO.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1542832
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Cui et al. 10.3389/fmars.2025.1542832
Table 5 shows that the CBAM module achieved the best

performance, with a P of 69.9%, R of 72.2%, and mAP50 of

73.3%. These values represent improvements of 2%, 6.7%, and

5.5%, respectively, compared to the baseline YOLOv9 network.

However, the results also indicate that while certain attention

modules provide performance enhancements, not all attention

mechanisms positively impact object detection tasks. The

selection and design of attention modules should be carefully

adjusted and optimized to align with the specific characteristics of

the task.
4.4 Ablation study

To evaluate the impact of each proposed innovation on network

performance, we conducted ablation experiments on different

modules. This study primarily examines the effects of using

SwinIR for preprocessing the original images, replacing the

original YOLOv9 convolution module with SPDConv, and adding

the CBAM attention mechanism. These three enhancements were

gradually incorporated into the YOLOv9 network. The experiments

were conducted on the side-scan sonar image dataset, and the

experimental outcomes are presented in Table 6.
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As shown in Table 6, preprocessing the original dataset using

SwinIR and applying the resulting high-quality images for SOCA-

YOLO training and testing increased the mAP50 by 0.3%. Replacing

the convolution module in the original YOLOv9 network resulted

in a 5.6% increase in mAP50 compared to the original YOLOv9

results. Finally, adding the CBAM module to the YOLOv9 network

with the replaced convolution module further increased the mAP50

by 0.6%. These experimental results demonstrate that each

improvement is meaningful. Compared to the original network,

the cumulative mAP50 increase of 6.5% significantly reduces

missed detections and false detections of small objects in the

original YOLOv9 network.
4.5 Generalization experiment

To validate the generalization capability of the object detection

method proposed in this paper under different data distributions,

we selected another publicly available side-scan sonar image dataset

as the test platform (Santos et al., 2024). This dataset differs

significantly from the data used during training, with marked

variations in the capture environment, target types, and noise

interference, thereby thoroughly assessing the model’s adaptability

and robustness in new scenarios. The dataset primarily comprises

1170 high-resolution side-scan sonar images and includes two types

of targets—NOn-Mine-like BOttom Objects (NOMBO) and MIne-

Like COntacts (MILCO)—with varying sizes and shapes. The

experimental results are presented in Table 7. It can be seen that

the method proposed in this paper outperforms traditional

detection approaches across evaluation metrics, demonstrating

strong generalization ability.

Additionally, to further analyze the detection performance

across different target categories, the P-R curves for each category

were plotted, as shown in Figure 11.

From the above experimental results, it is evident that the

proposed method effectively adapts to noise and interference

issues in public side-scan sonar image data across different

marine environments, achieving high detection accuracy and recall.
5 Conclusions

In this paper, we introduced the object detection algorithm

YOLOv9 with several modifications. The specific improvements are

as follows: (1) Using the SwinIR model to preprocess the original
TABLE 5 Comparison of CBAM with other attention mechanisms.

Model Precision / % Recall / % mAP50 / %

YOLOv9 67.6 65.5 67.8

YOLOv9+SE 65.6 67.4 67.2

YOLOv9+CA 66.4 70.7 68.8

YOLOv9+ECA 69.5 70.3 66.3

YOLOv9+CBAM 69.9 72.2 73.3
TABLE 6 Ablation study.

YOLOv9 SwinIR SPDConv CBAM Precision / % Recall / % mAP50 / %

✓ × × × 67.6 65.5 67.8

✓ ✓ × × 73.5 63.4 68.1

✓ ✓ ✓ × 69.6 71.6 73.7

✓ ✓ ✓ ✓ 71.8 72.7 74.3
The symbol "✓" indicates that the condition was included in the experiment, while "×" signifies that the condition was not incorporated into the experimental setup.
TABLE 4 Comparison of SPDConv with other convolutional methods.

Model Precision / % Recall / % mAP50 / %

ADwon 67.6 65.5 67.8

AConv 66.7 65.7 67.8

AKConv 68.1 69.4 69.1

SPDConv 70.4 71.0 72.6
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dataset and generate a re-divided high-resolution image dataset. (2)

Adding the CBAM attention mechanism to the original YOLOv9

model to enhance focus on regions of interest. (3) Replacing the

original ADown module with the SPDConv convolution module,

which is more effective for small object detection. The resulting

SOCA-YOLO model was applied for small object detection in

underwater side-scan sonar images, achieving a Precision of

71.8%, Recall of 72.7%, and mAP50 of 74.3% on the enhanced

dataset. These results indicate that the method significantly

improves target detection performance in side-scan sonar images.

In future work, expanding the dataset is a crucial research

direction. Although the current dataset has demonstrated the

feasibility of our method, its limited scope may constrain the

model’s robustness and generalization ability. By incorporating

additional datasets from different environments, operational

conditions, and various sonar devices, we can capture a broader

range of image features and noise characteristics. Such dataset

expansion not only enables more comprehensive model training

but also allows fine-tuning and validation of the model across

various real-world scenarios. Furthermore, given the inherent

unique noise characteristics of side-scan sonar images, developing

specialized image processing techniques is particularly crucial. Future

research can focus on designing denoising and image enhancement

algorithms tailored to issues such as speckle noise and signal

interference in sonar data. Exploring the integration of multimodal

data is also a highly promising direction. For example, combining

side-scan sonar data with optical or hyperspectral imaging data can

provide complementary information, thereby improving the overall

performance of detection and classification tasks. Such data fusion is
Frontiers in Marine Science 15
expected to lead to the development of more robust and accurate

models, ultimately driving new methodologies and applications in

underwater imaging and analysis.
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FIGURE 11

Performance of different target categories.
TABLE 7 Performance of YOLO9 and SOCA-YOLO.

Method Precision / % Recall / % mAP50 / %

YOLO9 82.1 65.3 74.3

SOCA-YOLO 93.7 76.2 83.7
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