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Extraction of beta-carotene from
the microalga Dunaliella salina
using bacterial lipase enzyme
and organic solvent under
varying stress conditions
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Mamdoh T. Jamal3, Nada M. Nass1,4, Wessam F. Felemban1,4,
Samyah D. Jastaniah1 and Sathianeson Satheesh3

1Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia,
2Marine Natural Products Research Unit, King Fahad Medical Research Centre, King Abdulaziz University,
Jeddah, Saudi Arabia, 3Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz
University, Jeddah, Saudi Arabia, 4Immunology Unit, King Fahd Medical Research Centre, King Abdulaziz
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Nowadays there is a growing trend towards carotenoids obtained from natural

sources such as microalgae. Dunaliella salina is among the most significant

natural sources of beta-carotene for commercial scale, which is used in many

food industries. Enzymatic extraction of beta-carotene is one of the safe

methods that ensure that the food product is not contaminated compared to

ex-traction using solvents. In this study, beta-carotene was extracted using two

methods: the organic solvent method by tetrahydrofuran and the enzymatic

extraction using a bacterial lipase enzyme. The alga was exposed to different

stress conditions (salinity/nitrogen) for increasing the beta-carotene production.

The highest value of beta-carotene content was recorded in the extraction

method using tetrahydrofuran (109.008 µg/mL at 2.5M NaCl/0.5 g/L KNO3),

compared to the extraction method using lipase enzyme (19.13 µg/mL at 1 mg/

mL at 24 h exposure time). However, the beta-carotene yield slightly increased

(21.4 µg/mL) in lipase enzyme extraction method for the algal samples exposed

to more than 24 h under different conditions (3M NaCl/1g/L KNO3). The results

show that the enzymatic extraction method is less efficient in extracting beta-

carotene compared to the tetrahydrofuran solvent extraction method, with the

latter showing a higher content of extracted beta-carotene.
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1 Introduction

Microalgae constitute a diverse category of tiny organisms that

have the ability to carry out photosynthesis, they include unicellular

prokaryotic and eukaryotic organisms (Khan et al., 2018;

Bonnefond et al., 2024). They are vastly distributed on land and

in the sea and various environments, in addition to being an

important source rich in nutrients (Barsanti et al., 2008; Weinrich

et al., 2019; Yuan et al., 2023). In recent decades there has been an

increasing interest in obtaining products from natural sources,

including carotenoids. Carotenoids are one of the bioactive

products used for the purpose of producing functional foods and

these compounds can be acquired from microalgae (Dhandwal

et al., 2024; Sousa et al., 2023). Beta-carotene is among the most

significant carotenoid compounds, it is also considered an excellent

additive for many food and cosmetic manufacturing processes due

to its attractive color and its possession of many functional

properties (Zarandi-Miandoab et al., 2019). On a commercial

scale, the microalgae Dunaliella salina is one of the most

important sources of beta-carotene, in addition to some other

microalgae species (Monte et al., 2020; Ntzouvaras, 2021; Sousa

et al., 2023). In addition, natural sources of beta-carotene extracted

from microalgae have many distinctive properties compared to

chemically manufactured beta-carotene (Sousa et al., 2024). Natural

beta-carotene is characterized by its mixture of all-trans and 9 cis

isomers, which makes it more accessible and has antioxidant

properties compared to synthetic beta-carotene, which contains

only all-trans isomers (Monte et al., 2020). Naturally produced

beta-carotene has many properties such as antioxidants, anti-cancer

(Balaji and Roy, 2020), and anti-aging properties (Honda, 2023), it

also helps control cholesterol levels and thus reduces the risk of

cardiovascular disease (Amengual et al., 2020), it is also better

absorbed than the synthetic beta-carotene product. Despite the

benefits provided by the natural beta-carotene, there is a need for

more efforts to make it commercially, and this in turn has attracted

the attention of researchers to conduct more approaches including

the use of enzymes such as bacterial lipase to extract this compound

with great efficiency (Ribeiro et al., 2011; Sangkharak et al., 2011).

Many factors affect carotenoid production in microalgae, such as

light, salinity, temperature, nutrients, and other environmental

factors (Chen et al., 2024).

D. salina is a single-celled green microalgae commonly found in

saline environments and used in many biotechnological

applications such as health, pharmaceutical, energy, and food

industries (El-Baz et al., 2019; Pereira et al., 2024). D. salina is a

eukaryotic organism that tolerates elevated salinity conditions and

can thrive in salt concentrations varying from 0.05 to 5.5M NaCl

(Borowitzka, 2013b). Among the biotechnological applications, the

microalga D. salina is used in foods as a nutritional supplement

(human and animals) with valuable benefits (Yücel et al., 2021;

Alghamdi et al., 2024; Williamson et al., 2023). D. salina has also

been used as an ingredient in animal feed, including farmed aquatic

species such as fish and shrimp, and has also been used as feed for

poultry and livestock such as sheep and goats (Ritu et al., 2023; de

Moraes et al., 2022; Valente et al., 2021).
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Recently, many D. salina products have been incorporated into

human food products and entered bakery foods (biscuits and cakes)

and dairy products in order to obtain added nutritional values (da

Silva et al., 2021; Bhatnagar et al., 2024). The use of compounds of

this alga has also been applied in the manufacture of cosmetics, and

skin care products such as anti-aging creams, sunscreen creams,

facial lotions, body soaps, and hair care products such as shampoo.

It has also been used in makeup products such as eye shadow and

lipstick (Stolz and Obermayer, 2005; Havas et al., 2022; Çelebi

et al., 2021).

In the years 2010 - 2018, global demand reached a high level,

with the market value of beta-carotene reaching about $261-$334

million annually (Zarandi-Miandoab et al., 2019). The production

of beta-carotene derived from microalgae has received significant

attention due to its potential as a sustainable and economical

alternative to many synthetic sources (Khan et al., 2018). D.

salina contains about 14% of the dry weight of beta-carotene, and

this percentage can increase to greater than that when optimal

nutritional conditions and other growth requirements are created

(Young and Lowe, 2018; Çalıs ̧lar, 2019; Monte et al., 2020).

Furthermore, D. salina has emerged as one of the most important

species of microalgae for the bioproduction of beta-carotene, as it is

expected to provide the production of more than 95% of the overall

requirement for this compound (Becker, 2007; Zarandi-Miandoab

et al., 2019).The ability to produce beta-carotene frommicroalgae of

the genus Dunaliella has been estimated at approximately 1,200

tons annually (Grima et al., 2003; Borowitzka, 2013a).

Beta-carotene in green algae is usually stored in lipid droplets and

chloroplasts. InD. salina, it is stored in lipid droplets surrounded by a

phospholipid monolayer (Dixon and Wilken, 2018). D. salina is

distinguished by the presence of a wall-free cell structure. Therefore,

the absence of a rigid cell wall in D. salina facilitates the extraction

process of the beta-carotene compound, as enzymes are used directly

to extract carotenoid compounds efficiently (Asevedo et al., 2023).

The use of a lipase approach is particularly effective in D. salina,

which selectively digests the enveloping membrane of lipid droplets,

which in turn extracts beta-carotene molecules. This approach

highlights the necessity of adapting extraction techniques to the

morphological characteristics and structural composition of the

studied species (Dixon and Wilken, 2018). The present study aims

to extract beta-carotene using bacterial lipase enzyme from D. salina

which was isolated from the local aquatic environment in Jeddah on

the Red Sea coast of Saudi Arabia and grown under different salinity

and nitrogen levels in the laboratory. Also, the efficiency of the

extraction of carotenoid by bacterial lipase enzyme was compared

with the traditional method using the organic solvent

tetrahydrofuran (THF).
2 Materials and methods

2.1 Samples collection

D. salina samples were collected from two stations on the Al-

Shuaibah coast, Red Sea, Saudi Arabia. The coordinates of station 1
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and station 2 were 20°42’56”N 39°30’42” E and 20°42’38”N 39°

30’34” E respectively.
2.2 Microalgae culture

After the initial isolation of D. salina, it was cultured with F/2

medium according to the recipe of Guillard (1975). The cultured D.

salina was transferred to a synthetic Johnson (J/1) medium

according to Johnson et al. (1968), in order to improve beta-

carotene production. The Johnson medium consists of the

following components (g/L): 1.5g MgCl2-6H2o, 0.5g MgSo4.7H2o,

0.2g KCI, 0.2g CaCI2, 1.0g KNO3, 0.043g NaHCO3, 2.45g tris

(hydroxymethyl) aminomethane (Tris), 0.035g KH2PO4, 1.89 mg

ethylenediaminetetraacetate, 2.44mg FeC13.6H2O, 0.041mg, ZnCl2,

0.61mg H3BO3, 0.041mg VOC12, 0.015mg CoCl2.6H2O, 0.38mg

(NH4)6Mo7O24.4H2O, 0.041mg CuC12.2H2O), and 0.41mg

MnCI2.4H2O. The final pH was adjusted to 7.5. The medium was

autoclaved at 121°C for 20 min. D. salina was cultured in 1 L flask in

J/1 medium, under autotrophic conditions, with the flasks supplied

with an airflow of 600 ml/min with a constant white light intensity

of 2000 lux with a CO2 flow of 4 ml/min and a salinity of 1M NaCl.

After 15 days of enrichment, the algae underwent various beta-

carotene extraction experiments.
2.3 Experimental design

The experimental framework of this study was set up in two

stages as follow; In the first stage, the optimum conditions to

produce beta-carotene from D. salina algae at different

concentrations of salinity (2.5, 3, 4, and 5M NaCl) and nitrogen

(0.25, 0.5, and 1 g/L KNO3) were determined as reported previously

(Sathasivam et al., 2018). In the second stage, an organic solvent

(tetrahydrofuran) and lipase enzyme were used for extracting beta-

carotene from the alga.
2.4 Biomass measurements

2.4.1 Cell volume
The cell volume of the algal cells was measured at the time of

harvesting based on measurements of the cell length and width, and

the spheroid object equation was used because it is the most

appropriate for the shape of the algae cells. The CV was

calculated according to the following equation:

Cell volume (CV)mm3 =
4
3 *

p (
W
2
)2*L=2

Where (p) = 3.14, (W) denotes the cell’s width, and (L) is the

length of the cell.

Measurements were performed on approximately 40 active cells

randomly withdrawn from growth flasks during the later stage of

exponential growth during which the cells were observed and

measured with an inverted microscope (Olympus IX-71).
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2.4.2 Growth rate
The growth rate of D. salina was measured by determining the

abundance of the algae using a Beckman Coulter Counter

Multisizer™3. All measurements were made in triplicate and then

the GR was calculated according to the following equation:

Growth   rate   (GR) =
D(In  N)

Dt

Where N is the number of cells, D(In N) is the change in the

natural logarithm of the number of cells and Dt is the change in

time (d).

2.4.3 Dry weight
The DW of alga cultures was determined according to Chi et al.

(2016). This measurement was performed in the late exponential

stage of algal growth in three replicates of the experiment. The

culture broth (30 ml) was filtered using a glass microfiber filter

(Dorsan FV-130, 47 mm). After filtration, it was washed three times

with 0.5M ammonium bicarbonate to remove any remaining media

or salts after filtration. The samples were dried at 60°C for 16 h until

the weight was constant. The DW of algae was determined based on

the difference between the final weight of the filtered sample and the

initial weight of the filter paper. The DW of the samples was

determined using the following equation:

Dry  Weight(g=l) =  W   –  W1

Where (W) is the weight of the final filter with samples and

(W1) is the weight of the initial filter.

2.4.4 Productions
The production efficiency of D. salina culture was determined

by calculating the production per dry weight, where the calculation

relies on the growth rate and the average DW of the algae cultures.

The production was calculated using the following equation:

Production   per  DW   (  mg=ml   d−1) = p*DWmg=ml

Where (m) represents the microalgae growth rate cultures,

expressed in divisions per day (d-¹). DW mg/mL average number

of DW.
2.5 Beta-carotene extraction

2.5.1 Extraction of beta-carotene by organic
solvent THF

Beta-carotene was determined and extracted from D. salina

culture using the organic solvent THF according to Hejazi and

Wijffels (2003). Algal culture broth (2 ml) was taken and mixed

well. The samples were centrifuged at 4000 rpm for 5 min, then the

upper phase was carefully poured off, and 2 ml of THF was added to

the biomass. The samples were mixed well using a vortex for 2–3

minutes to achieve complete extraction of beta-carotene. The

samples were centrifuged again at 4000 rpm for 5 min to separate

the colorless D. salina and the solvent phase containing the
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extracted pigments. The quantity of beta-carotene extracted from

the algae was determined by UV/Visible spectrophotometer at 450

nm according to the following equation:

Beta − carotene   ( μ g=ml)   =   25:2  �  A450

Where A450 is the value of absorbance measured at wavelength

450 nm.

2.5.2 Extraction of beta-carotene by lipase
enzyme

Commercially available lipase enzyme was purchased from

Sigma-Aldrich®. The lipase enzyme was from the bacteria

Pseudomonas cepacia according to manufacturer’s product data.

This enzyme was chosen because of its known efficiency in lipid

hydrolysis. The enzyme was stored at a temperature ranging from 2-

8°C in order to maintain the activity and stability of the enzyme.

Lipase enzyme was used at different concentrations (0.5,1, and 1.5

mg/mL) for beta-carotene extraction experiments. The enzyme was

dissolved in distilled water to prepare the different concentrations.

Beta-carotene extraction was carried out using lipase enzyme.

The culture broth (2 ml) was taken and then centrifuged at 4000

rpm for 5 min. The upper phase was carefully separated and then

the organic phase of the algae biomass was suspended in 3.25 ml of

the previously prepared enzyme solution at different concentrations

(0.5, 1, and 1.5 mg/mL). Then, 7.5 ml of a phosphate buffer solution

(0.1M, pH 7.0) was added to the suspension to facilitate the

enzymatic lysis of the cells. The mixture was incubated in a

shaking water bath at 37°C and 100 rpm for different periods (6,

12, 24 h). After incubation, the biomass was separated by centrifuge

at 4000 rpm for 5 min, and then beta-carotene concentrations were

determined using the spectrophotometric method as described in

the previous section.
2.6 Statistical analysis

Data statistical analysis was conducted using SPSS (v. 27)

software. Data were evaluated by one-way analysis of variance

(ANOVA) test, followed by Tukey’s HSD test for all biomass

characteristics such as growth rate, cell size, dry weight,

production per dry weight, and b-carotene content yield across

different salinity levels and nitrogen concentrations. Also, Two-way

ANOVA (concentrations and exposure times with beta-carotene

content) was also performed for the beta-carotene extraction

method using lipase enzyme. For statistical tests, P ≤ 0.05 was

considered significant. All experiments were performed in

three repetitions.
3 Results and discussion

3.1 Cell volume

Two growth phases of the D. salina algae were determined, where

the experiments for the first phase focused on growth under optimal
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conditions such as light intensity 2000 lux at 25°C, salinity 1M, and pH

7.5 in J/1 medium. Under optimal conditions, the local D. salina

isolates maintained its characteristics such as the typical oval shape,

green color, and other characteristics such as the presence of one

chloroplast, two flagella, and red stigma. This in turn was consistent

with a previous study by Yaiche-Achour et al. (2018), who observed

that the shape of microalgal cells changes according to different culture

conditions. Figure 1 shows the CV of D. salina under different

conditions. The CV of the of D. salina was about 879.24 μm³ under

optimal growth conditions. In the second stage of experiments under

stress conditions of salinity and nitrogen, which included salinity levels

of (2.5, 3M) and different concentrations of nitrogen (0.25, 0.5, 1 g/l

KNO3), the cells transitioned in color from green to brown, and their

shape changed to circular, with the disappearance of the flagella, and

also a change in the color of the culture broth to orange. Highfield et al.

(2021) documented the ability of D. salina to change cell volume in

response to changes in growth conditions such as light intensity,

salinity, and nutrient levels. Osmotic stress also causes rapid cell

shape changes in D. salina due to its flexible cell membrane and lack

of a rigid cell wall (Oliveira et al., 1980; Xu et al., 2016). The restricted

capacity to alter cell size and shape depends on dissolved organic

matter such as proline and glycerol for osmoregulation (Lauritano

et al., 2020). Under stress conditions of salinity levels/nitrogen

concentration (KNO3), the results of this study recorded the cell

volume of D. salina alga to be about 396.59, 458.76, and 462.41 μm³

at different conditions of salinity levels/nitrogen concentrations 2.5M/

0.25, 2.5M/0.5 and 2.5M/1 g/L KNO3 respectively. When the salinity

levels increased to 3M, the values of cell volume were 289.58, 314.75,

and 383.97 μm³ at 3M/0.25, 3M/0.5, and 3M/1 g/L KNO3, respectively.

The highest value of cell volume (462.41 μm³) was recorded at the

salinity and nitrogen concentration level of 2.5M/1 g/L KNO3. In

contrast, a smaller cell volume was observed at the salinity level of 3M.

A significant decrease in cell volume was recorded when the salinity

level increased to 3M and the nitrogen concentration decreased to 0.25

g/L KNO3, which reached about 289.58 μm³ (Supplementary Table S1).

Gallego-Cartagena et al. (2019) reported changes in the cell volume of

D. salina alga at different salinity concentrations and exposure to

osmotic changes. At salinity concentrations of 4 and 5 M the culture

turned colorless within two days of incubation. Sathasivam et al. (2018)

reported the growth of D. salina at salinity concentrations (3.5, 4, 5 M)

where it turned colorless. In another study by Ravi et al. (2012) the

growth of D. salina cells at concentrations higher than 3 M resulted in

the occurrence of cell bleaching.
3.2 Growth rate

Figure 2 shows the GR of local D. salina under different

conditions. The growth rate value of D. salina was calculated to be

about 0.30 d-¹ under optimum conditions during the first stage of

growth. When D. salina was exposed to stress conditions (salinity

levels/nitrogen concentration), a decline in growth rates was

observed, where the highest value was about 0.23 d-¹ at a salinity

level of 2.5M NaCl and an optimum nitrogen concentration of 1 g/L

KNO3, while the rest of the growth rate values were low at this level of
frontiersin.org

https://doi.org/10.3389/fmars.2025.1543147
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Sayegh et al. 10.3389/fmars.2025.1543147
salinity and different conditions of nitrogen concentration. At 2.5M

salinity level, growth rates were recorded as 0.17, 0.22, and 0.23 d-¹ at

different nitrogen concentrations of 0.25, 0.5, and 1 g/L KNO3,

respectively. At 3M salinity level, a decrease in growth rate values

was observed, reaching about 0.13, 0.15, and 0.15 d-¹ at different

nitrogen concentrations 0.25, 0.5, and 1 g/L KNO3, respectively, with

a close convergence between the growth rate value at nitrogen

concentrations 0.5 and 1 g/L KNO3 (Supplementary Table S1).
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Both Arun and Singh (2013) and Sui et al. (2019) reported growth

rates ofD. salina of about 0.12 and 0.44 ± 0.02 d-¹, respectively, which

confirms that our results are consistent with the value ranges reported

in these studies.

The values were significantly affected by the salinity and

nitrogen concentration variations, as confirmed by the one-way

ANOVA, which showed a P-value of ≤ 0.05. Additionally, the

Tukey’s HSD test ranked the cell volume under various salinity
FIGURE 2

Growth rate of D. salina under different conditions (salinity/nitrogen). Bars are standard error of mean.
FIGURE 1

Cell volume values of D. salina under different conditions (salinity/nitrogen). Bars are standard error of mean.
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conditions, highlighting that salinity levels of 2.5M and 3M

produced statistically significant differences in growth rates and

cell volumes compared to lower salinity levels (supplementary

Table S2).
3.3 Dry weight

In this study, the dry weight of D. salina was measured under

optimum growth conditions and was about 0.27 g/L, while when the

alga was exposed to different conditions of salinity and nitrogen, the

dry weight values at 2.5M NaCl were recorded at about 0.10, 0.12

and 0.14 g/L at 0.25, 0.5 and 1 g/L KNO3, respectively. When the

salinity concentration was increased to 3M NaCl with exposure to

different concentrations of nitrogen, the dry weight values of the

algae were recorded at about 0.07, 0.08, and 0.08 g/L at 0.25, 0.5 and

1 g/L KNO3, respectively. Several previous studies have indicated

that the dry weight value of D. salina ranged between 0.14 ± 0.02 to

0.29 ± 0.04 (Wu et al., 2017), and 2.25 ± 0.07 g/l (Wu et al., 2015)

which aligns with the findings of this study. The results show a

decrease in dry weight values with the rise in salinity concentration

from 2.5M to 3M NaCl. On the other hand, the highest DW value

was recorded at about 0.14 g/L at a salinity concentration of 2.5M

NaCl and an optimum nitrogen concentration of 1 g/L KNO3

(Figure 3) (Supplementary Table S1).

Almutairi (2020) reported a decrease in dry weight and oil

content in algae cells because of limiting nitrogen levels. This in

turn is consistent with the results of this study due to the decrease in

dry weight values with increasing salinity and nitrogen

concentration. The dry weight of D. salina under the optimal

conditions of 2.5M NaCl and 0.5 g/L KNO3 was measured at 0.12
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g/L, with a productivity rate of 8.46 mg/mL/day. The one-way

ANOVA test confirmed that dry weight and productivity varied

significantly across different salinity and nitrogen levels, with a P-

value of ≤ 0.05. The Tukey’s HSD test provided a detailed

comparison, indicating that higher salinity levels contributed to a

significant increase in dry weight and productivity compared to

lower salinity levels (Supplementary Table S3).
3.4 Productions per dry weight

The production per dry weight of D. salina was studied under

different conditions of salinity and nitrogen. The results of the study

indicate that the production values per dry weight under optimum

growth conditions reached 24.69 mg/mL d-¹, while when the D.

salina was exposed to different growth conditions of salinity and

nitrogen concentrations, varying values were recorded. At a salinity

concentration of 2.5M NaCl and nitrogen concentrations of 0.25,

0.5, and 1 g/L KNO3, the production values per dry weight reached

about 5.44, 8.46, and 10.25 mg/mL d-¹ respectively, noting that the

increase in the production values per dry weight was consistent with

the increase in nitrogen values and reached the highest value at the

optimum nitrogen concentration of 1 g/L KNO3.

When the salinity concentration was increased to 3M NaCl, the

production values per dry weight were recorded to be about 3.30,

3.21, and 4.11 mg/mL d-¹ at nitrogen concentrations (0.25, 0.5, and

1 g/L KNO3) respectively. When the salinity concentration

increased to 3M NaCl, the production values per dry weight were

recorded to be about 3.30, 3.21, and 4.11 mg/mL d-¹ at nitrogen

concentrations (0.25, 0.5, and 1 g/L KNO3), respectively (Figure 4)

(Supplementary Table S1). In the literature, a significant difference
FIGURE 3

Dry weight values of D. salina under different conditions (salinity/nitrogen). Bars are standard error of mean.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1543147
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Sayegh et al. 10.3389/fmars.2025.1543147
in the production values per dry weight of D. salina was observed,

which ranged from 0.44 ± 0.02 mg/mL d-¹ (Sui et al., 2019) to 25.3 ±

4 mg/mL d-¹ (Wu et al., 2017). It was observed that production

tends to decrease when nitrogen concentrations are limited.

Previously, Chantzistrountsiou et al. (2023) recorded a decrease

in production values of D. salina under nitrogen deficiency

conditions in conjunction with growth rates, which confirms the

results of this study.
3.5 Extraction and determination of beta-
carotene content using tetrahydrofuran

The beta-carotene values were 95.64, 109.00, and 74.78 μg/mL

at 2.5M NaCl under nitrogen conditions of 0.25, 0.5 and 1 g/L

KNO3, respectively. The highest amount of beta-carotene (109.00

μg/mL) was recorded at a moderate nitrogen concentration of 0.5 g/

L KNO3. When the salinity concentration was increased to 3M

NaCl, values of 81.49, 86.20, and 103.05 μg/mL were recorded at

0.25, 0.5, and 1 g/L KNO3, respectively (Figure 5) (Supplementary

Table S4). In other studies, beta-carotene values were reported to

range between 0.18 μg/mL and 115.50 ± 0.40 μg/mL (Celekli and

Dönmez, 2006) (Sathasivam et al., 2018). In Figure 5, an oscillating

pattern was observed in the values of beta-carotene content

extracted with THF at different concentrations of salinity and

nitrogen. Xi et al. (2022) reported that the value of beta-carotene

content was higher under conditions of low nitrate concentration

than under conditions of high nitrate concentration. Many previous

studies have shown that several stress factors such as salinity
Frontiers in Marine Science 07
concentrations, light intensity, pH, nitrate concentration, nutrient

deficiency, and temperature play an important role in the process of

stimulating and accumulating beta-carotene in D. salina, whether

these factors are combined or individually (Gallego-Cartagena et al.,

2019; Chantzistrountsiou et al., 2023; Papapanagiotou et al., 2024;

Al-Mhanna et al., 2023; Yang et al., 2023; Reshma et al., 2021; Wu

et al., 2016; Hamed et al., 2018).
3.6 Extraction and determination of beta-
carotene content using lipase enzyme

The highest value of beta-carotene (21.4 μg/mL) was extracted

from the alga at a concentration of 0.5 mg/mL of lipase enzyme at a

salinity level of 3M NaCl and a nitrogen concentration of 1 g/L KNO3

after 24 h of the experiment (Figure 6) (Supplementary Table S5). On

the other hand, the lowest beta-carotene content was recorded at this

enzyme concentration, reaching about 2.57 μg/mL at 2.5M NaCl/0.25

g/L KNO3 within 6 h exposure. It was observed that the values of beta-

carotene content increased with increasing exposure times and higher

nitrogen concentration, regardless of the available enzyme

concentration. Carvalho et al. (2018) found that the extraction of

total carotenoids from palm oil using lipase enzyme was dependent on

time, temperature, and water/oil ratio. This is consistent with the

results of this study and the importance of increasing exposure time for

the total extraction of beta-carotene from D. salina. The results of this

study indicate that enzyme concentration, exposure duration, and

nitrogen levels play an important role in the effective extraction of

beta-carotene using lipase enzyme, as they affect the efficiency of
FIGURE 4

Production per DW values of D. salina under different conditions (salinity/nitrogen). Bars are standard error of mean.
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FIGURE 6

Beta-carotene extracted from D. salina using the lipase enzyme (0.5 mg/mL) under different cultivation conditions [salinity/nitrogen, and exposure
times (H)], Bars are standard error of mean.
FIGURE 5

Beta-carotene extracted from D. salina using the organic solvent THF under different cultivation conditions (salinity/nitrogen). Bars are standard error
of mean.
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carotenoid extraction from microalgae (Liu et al., 2021; Jo et al., 2020).

When the enzyme concentration was increased to 1 mg/mL, the

highest extraction value of beta-carotene content (19.5 μg/mL), was

recorded, after 24 h of exposure time under 3M NaCl/1 g/L KNO3. A

slight difference in beta-carotene content values was observed at this

concentration, (Figure 7). At 1.5 mg/mL lipase concentration, a

significant variation in the recorded values was observed compared

to the values at enzyme concentrations (0.5 and 1 mg/mL), where the

highest value of beta-carotene content of about 16.2 μg/mL was

recorded after 24 h of exposure time under stress conditions of 3M

NaCl/0.5 g/L KNO, (Figure 8). It was noted that the values of the beta-

carotene content extracted at this concentration were lower compared

to the extraction values at other concentrations. In most beta-carotene

extraction experiments, a slight difference in extraction values was

observed between 12 and 24 hours of exposure. It may seem that 12

hours is sufficient for extraction, but some values increased

significantly. This may explain the importance of time for increasing

extraction efficiency. Therefore, all experiments were conducted at

three exposure times. Two-way ANOVA was performed to examine

the effects of enzyme concentration and exposure time on b-carotene
extraction efficiency, which reveals significant interactions between

these factors (P ≤ 0.05) (Supplementary Table S6).

The analysis demonstrated that both enzyme concentration and

exposure time had substantial effects on the efficiency of b-carotene
extraction. Enzymatic extraction of beta-carotene from D. salina

can improve the efficiency and quality of the extracted product as
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well as maintain the viability of algae cells. The one-way ANOVA

revealed significant differences (P ≤ 0.05) in b-carotene yield

between the organic solvent method using THF and the

enzymatic extraction method using lipase. The Tukey’s HSD test

further confirmed these differences by identifying the conditions

that produced the highest and lowest yields. Hejazi et al. (2002)

observed that the use of biocompatible solvents such as dodecane

selectively extracted beta-carotene while maintaining the survival of

algal cells, thus enhancing the beta-carotene extraction process

further. Enzymatic extraction works selectively, targeting

carotenoids primarily, leaving other cellular components behind.

This in turn enhances the extraction of pure beta-carotene content

free from other impurities compared to other traditional methods

(Kleinegris et al., 2010). Enzymatic extraction helps preserve the

structural composition and biological activity of carotenoids,

enhancing the health benefits of these compounds (Al-naghrani

and Sayegh, 2023). The low efficiency of carotenoid extraction using

enzymes may be due to the cell wall composition, membrane

stability and adaptations of microalgal cells to stress conditions

(Taucher et al., 2016). These factors can hinder the accessibility of

enzymes to their target sites, ultimately affecting the yield and

quality of carotenoids extracted from these organisms (Neagu et al.,

2014). Also, it is necessary to maintain optimum nutritional and

processing conditions for the efficient extraction of beta-carotene

from microalgae (Mussagy et al., 2019; Vernès et al., 2019). Hence,

further studies are needed to analyze these parameters to improve
FIGURE 7

Beta-carotene extracted from D. salina using the lipase enzyme (1 mg/mL) under different cultivation conditions (salinity/nitrogen, and exposure
times (H), Bars are standard error of mean.
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the efficiency of beta-carotene extraction. While the quantification

of beta-carotene using spectrophotometers may overestimate the

concentration in algal cells due to the possible interference of other

carotenoids, selective methods such as HPLC are necessary for

more accurate values. Despite these methodological limitations, this

study showed that lipase enzymes could be used as an alternative to

the organic solvents for beta-carotene extraction from microalgae.
4 Conclusions

The results of this study indicate that both the culture system,

salinity, and nitrogen concentration significantly affect algae growth,

cell size, dry weight, productivity, and beta-carotene content. The beta-

carotene extraction process using THF organic solvent recorded a high

yield of beta-carotene compared with the extraction process using

lipase enzyme. The exposure time factor also plays an important role in

beta-carotene extraction. Therefore, this study recommends future

studies on the extraction of beta-carotene from D. salina using lipase

enzyme at different enzyme concentrations and exposure time which

enhances the optimal extraction of beta-carotene.
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