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Spatiotemporal variation
characteristics and forecasting
of the sea surface temperature
in the North Indian Ocean
Wenwen Huang1, Haoran Liang1, Tonghui Zhang1*

and Zhendao Chen2

1Guangdong Provincial Institute of Land Surveying and Planning, Guangzhou, China, 2CCCC Fourth
Harbor Engineering Investigation and Design Institute, Guangzhou, China
Sea surface temperature (SST) is important for marine environment, and the

variation of SST in the North Indian Ocean (NIO) might influence the climate in

the local and surrounding area significantly. The empirical orthogonal function

(EOF) was used to analyze the spatiotemporal variation characteristics of SST in

the NIO. Simultaneously, seven hydrometeorological elements, including 10-m

zonal wind (U10), 10-m meridional wind (V10), SST, 2-m dew-point temperature

(D2M), 2-m air temperature (T2M), mean sea level pressure (MSLP), and total

cloud cover (TCC), were selected as input factors to construct a daily SST

forecast model based on deep learning method with convolutional neural

networks (CNN). A linear and unsaturated Relu function was used in this model

as activation function, which could overcome vanishing gradients and accelerate

training speed. The results indicate that the annual mean SST in the NIO exhibits

an increasing trend from 1980 to 2021 with a spatial gradual increase from

northwest to southeast. The EOF analysis shows that the first mode contributes

28.4% of the variance, exhibiting a basin-wide uniform warming pattern over the

Indian Ocean. Contribution of the second mode is 10.1%, displaying the

characteristic zonal dipole pattern of the Indian Ocean Dipole (IOD).

Additionally, the SST in the NIO is positively correlated with D2M, T2M, and

TCC, while exhibits a negative correlation with MSLP. The correlations with U10

and V10 exhibit significant spatial variability. The constructed SST forecast model

has a small prediction error, which is basically stable between ±1°C, and does not

exceed 0.5°C in most of the NIO. In spite that the overall prediction error

increases with the increase of prediction days, the increase of error is smooth,

indicating that the forecast model has a good stability. The SST prediction results

preserved the contour and distribution characteristics of the actual images

holistically, and the spatiotemporal variation patterns are identical to those of

the NIO.
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1 Introduction

Sea surface temperature (SST) is an important parameter for

measuring the thermal status of the ocean, which could reflect the

thermal balance and its change of the ocean and might impact the

weather and climate significantly. Based on SST data at multiple

spatiotemporal scales, we could better understand the coupling

characteristics between SST and other environmental factors by

exploring the correlation between SST and other environmental

factors, as well as the patterns of spatiotemporal scale changes.

The Indian Ocean is one of the world’s maritime shipping

centers, with abundant marine resources and important ocean

energy channels, located near the center of the Maritime Silk

Road (Hamza and Priotti, 2020). Variation of SST in the Indian

Ocean might not only impact the climate of neighboring countries

by affecting atmospheric heat sources and seawater evaporation in

the South Asia, Southeast Asia, Australia, and Africa (Ashok et al.,

2003; Izumo et al., 2008; Fang and Yu, 2019), but also influence the

Asian monsoon and summer precipitation of China (Hu et al., 2005;

Yang et al., 2008). The North Indian Ocean (NIO) is one of the most

significant monsoon regions in the global ocean. The northeasterly

monsoon prevails in winter, and its direction is far from the Asian

continent, the southwesterly monsoon prevails in summer, and the

wind stress is larger than that of the northeasterly monsoon. The

transition of monsoon occurs in spring and autumn. Research

indicates that SST in the NIO is significantly influenced by

monsoon activity. In regions with higher monsoon wind speeds,

particularly in the northern and western areas, SST tends to be

lower, exhibiting a distinct meridional distribution of isotherms

(Chen et al., 1985). The seasonal variations of SST in the NIO also

display pronounced monsoon characteristics (Zhou et al., 2001;

Donguy and Meyers, 1996). During the southwesterly monsoon

period, SST reaches its annual minimum, while it is relatively higher

during the northeasterly monsoon period. Additionally, the long-

term trend of SST in the NIO is noteworthy, since the 20th century,

there has been a consistent warming trend, with an overall increase

of approximately 0.6°C (Zhou et al., 2001). On the interannual scale,

the interannual variation of the SST is primarily dominated by the

Indian Ocean Basin Mode (IOBM) in the NIO, this mode is

characterized by synchronous warming or cooling across the

entire NIO basin. During its positive phase, the entire basin

warms up, while during the negative phase, it cools down, which

is closely related to the ENSO (Chakravorty et al., 2013; Tao et al.,

2013). In general, there is a strong link between the interannual

variations of the SST in the Indian Ocean and ENSO, which can

influence the occurrence, development and extinction process of

ENSO episodes. Therefore, the prediction of SST in the NIO can

prevent the occurrence of some extreme events and reduce the

losses caused by them to the greatest extent.

Currently, SST prediction methods can be grouped into three

categories: ocean numerical models, data-driven models, and their

hybrid approaches. Ocean numerical models are used to describe

the variations of sea surface temperature based on physical,

chemical and biological parameters and the sophisticated
Frontiers in Marine Science 02
interact ions among them, and then use kinet ic and

thermodynamic equations to build prediction models. Jiang et al.

(2017) analyzed the effects of temperature, salinity and geographic

location on the thermocline, and proposed an improved

thermocline selection model based on the entropy method, which

can effectively predict temperature changes. By analyzing the

primary influencing factors of SST, including wind field, solar

radiation, precipitation and surface current field, Wang (2003)

developed a two-dimensional mixing layer temperature prediction

model based on the above elements, which was applied to make

short-term forecasts of ocean temperature in the Yellow Sea, Bohai

Sea and the East China Sea, and its forecast results were relatively

good. The above method can predict the ocean or even global Ocean

SST with comparatively coarse resolution, but the calculating work

is enormous and time-consuming, and the parameters of the ocean

numerical model used vary from different regions, which has a large

limitation (Stockdale et al., 2006; Xiao et al., 2019; Noori et al., 2017;

Khan et al., 2018; Aparna et al., 2018). The data-driven model learns

the variability of SST from the data and builds the SST forecast

model based on it. Compared with numerical models, it requires

less knowledge of the marine and atmosphere, and is able to predict

SST at a smaller spatial scale with high resolution (Wu et al., 2006;

Zhang et al., 2017). Recent years, there are more and more

researchers use it to predict SST at different time scales in various

regions (Wu et al., 2006; Zhou et al., 2009). A nonlinear prediction

system for SST in the tropical Pacific based on a multilayer

perceptron neural network gives better results compared to linear

regression models (Wu et al., 2006). At the same time, applying the

artificial neural network (ANN) to the prediction of seasonal and

interannual variability of SST can also obtain a better prediction

results compared to the conventional methods in the western

Mediterranean (Garcia-Gorriz and Garcia-Sanchez, 2007). Long

short term memory (LSTM) is a typical representative of data-

driven models, which is usually applied to the Chinese coastal areas

by researchers to predict the short-term and medium-term SST and

is verified the effectiveness of the model (Xiao et al., 2019; Noori

et al., 2017; Khan et al., 2018; Aparna et al., 2018; Wu et al., 2006;

Zhang et al., 2017). Not limited to LSTM, transformer models have

also demonstrated significant potential in SST prediction (Chen

et al., 2024a; Fu et al., 2024; Yang et al., 2024). In addition, Xu et al.

(2020) proposed a multi-long short-term memory convolution

neural network (M-LCNN) prediction model, which used wavelet

transform to decompose and reconstruct the time series to predict

the series variation of sea surface temperature at multiple time

scales. In the same year, He et al. (2020) constructed a sea surface

temperature prediction (SSTP) model which used local search

strategy and was applicable to the prediction of SST data for long

time series.

In recent years, there has been more successful progress in SST

prediction, but it is challenging to fully capture the nonlinear

relationship of SST sequences without professional theoretical

knowledge as the basis. What’s more, it is not possible to use the

thermal and physical equations to construct a complex model for

SST prediction. As a result, the data-driven model has obvious flaws
frontiersin.org
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in its prediction mechanism and the effect is less than satisfactory,

especially when dealing with large-scale data. Additionally, it is

prone to overfitting for some neural network prediction models

with poor learning capabilities. Ocean numerical models are built

based on professional knowledge and are idealizations of the ocean

motion. The measured data used are typically small, and the

prediction results deviate from the real situation. Therefore, to

obtain a more accurate forecast model after training by a large

amount of historical data, the integration of ocean numerical

models and data-driven models has been gradually considered

based on physical, chemical and biological parameters and their

complex interactions (Dong et al., 2008; Ji and Zhang, 2010). The

SST prediction model has high prediction accuracy by introducing

chaos theory in SST prediction and combining phase space

reconstruction theory with fuzzy neural network. But the

prediction sea area is relatively small and not instructive enough

for prediction (Dong et al., 2008). By combining an auto-regressive

autoregressive model (AR) model and Kalman filtering method, Ji

and Zhang (2010) established an SST prediction model based on

empirical orthogonal decomposition method in 2010. This method

analyzed the sea surface temperature variation pattern and added a

random factor to reconstruct the weekly mean SST. It was fairly

accurate in predicting SST in the equatorial Pacific Ocean, Indian

Ocean and Atlantic Ocean, but its highly dependence on sea area

made it lack wider universality.

The above researches show that even though the modeling

method of the combination of ocean numerical model and data-

driven model has been widely proposed for a long time, it is still a

scientific challenge to overcome the contradiction and combine

them effectively to obtain a prediction model with a wide range of

prediction areas and universality. Based on this, in this paper, we

take the NIO as the study sea area (Figure 1). effectively combine the

advantages of numerical modeling and statistical learning methods
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in SST prediction, and then build the SST prediction model based

on CNN deep learning in the NIO.
2 Datasets and methods

2.1 Datasets

The data used in this paper include seven hydrometeorological

data: 10-m zonal wind, 10-m meridional wind, 2-m dew-point

temperature, 2-m air temperature, mean sea level pressure and total

cloud amount, and sea surface temperature, which are all from

ERA5 with a temporal resolution of 1 hour and 1 month, a spatial

resolution of 0.25° × 0.25° and a time range of 1980 to 2022 (https://

cds.climate.copernicus.eu/cdsapp#!/search?type=dataset). These six

meteorological elements and sea surface temperature data used in

this paper are described as follows.
1. 10-m zonal wind (U10): This parameter is the east-west

component of the 10-meter wind. It is the horizontal velocity

of air moving eastward at the height of ten meters above the

earth’s surface. It takes meters per second (m/s) as a unit.

2. 10-m meridional wind (V10): This parameter is the north-

south component of the 10-meter wind. It is the horizontal

velocity of air moving northward at a height of ten meters

above the earth’s surface. It takes m/s as a unit.

3. 2-m dew-point temperature (D2M): This parameter is the

temperature at which the air at 2 meters above the earth’s

surface must be cooled to reach saturation. It is a measure

of air humidity and takes Kelvin (K) as a unit.

4. 2-m air temperature (T2M): This parameter is the air

temperature at 2 meters above the surface of land, sea or

inland waters. It is measured in Kelvin (K).
FIGURE 1

Topography (shading, m) of the NIO.
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5. Mean sea level pressure (MSLP): This parameter is the

pressure of the earth’s surface atmosphere which is adjusted

according to the mean sea level. It is measured in

pascals (Pa).

6. Total cloud cover (TCC): This parameter is the proportion

of the grid frame covered by clouds. It is a single-layer field

calculated from the clouds occurring through different

model layers of the atmosphere. As the degree of overlap

or ran-domness between clouds of different heights is

assumed, the cloud fraction varies from 0 to 1.

7. Sea surface temperature (SST): This parameter is the

temperature of seawater near the surface. It is measured

in Kelvin (K).
2.2 Methods

The development of artificial intelligence algorithms

contributes the expansion to SST forecasting. With the

advancement of remote sensing technology and various

observation technology instruments, marine data are growing

rapidly recent years while the continuous accumulation of data

has laid the foundation for the application of artificial intelligence

algorithms. Using the rectified linear unit (Relu) as the activation

function, Krizhevsky et al. (2017) introduced the well-known

AlexNet in 2012 and achieved excellent results in the large-scale

picture challenge, which served as a significant inflection point in

the development history of convolutional neural networks.

Convolutional neural network uses sparse connection, which

means that each neuron is only connected with some neurons from

the previous layer, in contrast to the traditional multilayer neural

network, which uses full connection, where each neuron in m-1

layer is interconnected with each neuron in m layer. Sparse

connection greatly reduces the weight parameters that the

network needs to train and then relieves the computational and

memory burden. However, the parameters of the convolutional

kernel are only applied to local regions. The number of parameters

is still large when different weights are used for different regions. To

solve the aforementioned problems, the convolutional neural

network uses weight sharing among local regions in the whole

image, i.e., the convolutional kernel parameters are the same for the

same input image. Since a single convolutional kernel can only

extract one kind of features, multiple convolutional kernels should

be set when it needs to extract different features. Different feature

maps are obtained when different convolutional kernels are

convolved with the image, which will form a layer of

neurons (Figure 2).

Convolutional neural networks usually contain three types of

layers, namely convolutional, pooling and fully connected layers.

The convolutional layer performs the input and the convolutional

operation of convolutional kernel to extract the features of the input

image. The input data of the layer I is denoted by aI−1 and the

output data of the layer I is denoted by aI, where I ∈ 1,…, Lf g.
(Equation 1) gives the convolutional layer formula.
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aIj = f (o
k

aI−1k �wI
jk + bIj ) (1)

In the formula:

wI
jk is the convolutional kernel of the kth feature map in layer

I − 1 to the jth feature map in layer I.

bIj is the bias of the jth feature map in the layer  l.

f ( · ) is the activation function in convolution operation.

The input of the pooling layer is usually the output of the

convolutional layer featured with invariance and dimensionality

reduction. Feature invariance means that the pooling layer will

retain the most dominant features of the image, including rotation,

translation and scale invariance. Dimensionality reduction refers to

removing some redundant information and decreasing parameters

while retaining the key features. In addition to lowering the

dimensionality of data characteristics, the pooling layer also aids

in reducing the network overfitting, which in turn improves the

generalization ability of the model. (Equation 2) gives the formula

for pooling layer.

aIj = downsample aI−1k , m
� �

+ bIj (2)

In the formula:

aI−1k is the input data from the kth feature map of layer I − 1

bIj is the bias of the jth feature map in the layer l

downsample(·, m) is the poling method with the convolutional

kernel of mxm

The fully connected layer integrates the characteristic and

reduces the impact of feature position. It is the same as a normal

neural network that each neuron is connected to every other neuron

in the previous layer. In practice, fully connected layers can be

implemented by convolutional operations, specifically, a

convolutional layer with a convolutional kernel of 1x1 can be

used to substitute the fully connected layer where the front layer

is also fully connected.

The process of convolutional neural network training (Figure 3):

the pre-processed sea surface temperature data are first input into the

constructed network, and the data are then propagated from the

input to the output layer by layer to obtain the prediction result. Next,

the predicted output is compared with the input to get the error.

Finally, the error of each layer is backward inferenced in the process

of back-propagation, and the weights of the convolutional kernel in

the corresponding layer is continuously updated.

The cost function is obtained by comparing the actual output of

the network with the desired output. Assumed that the cost function

selected is the mean square error function as shown in (Equation 3).

C =
1
2o(yL − aL)2 (3)

In this formula, aL refers to the activation value of the layer L

(the output of the activation function) and yL denotes the desired

output of the layer L.

The majority of the convolutional neural network back

propagation error is composed of the output layer error and the

hidden layer error. The error equation of the output layer is shown
frontiersin.org
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in (Equation 4).

d L =
∂C
∂ zL

=
∂C
∂ aL

∂ aL

∂ zL
=

∂C
∂ aL

f 0(zL) = (aL − yL)f 0(zL) (4)

In this formula, zL = wI�aI−1 + bI denotes the weight input of

e a ch l a y e r and f 0(zL) mean s th e d e r i v a t i v e o f t h e

activation function.

The transfer equation of the error is shown in (Equation 5).

d I = ((wI+1)Td I+1)s (zI) (5)

This equation shows that we can calculate the error I of layer I

from the error I + 1 in layer I + 1. Combining (Equations 4, 5), the
Frontiers in Marine Science 05
error can be calculated of any layer in the network by first

calculating I, then I − 1, I − 2,… till the input layer.

The error in the hidden layer includes the error in the known

pooling or convolutional layer. The error of the previous hidden

layer can be obtained by back derivation.

As the error of the pooling layer is known, then the error of the

previous hidden layer can be deduced backwards.

d I−1 = upsample(d I)f 0(zI−1) (6)

In this formula (Equation 6), upsample( · ) is the upsampling

function for the product of Hadamard, which is used for point-to-

point multiplication between matrices.
FIGURE 3

Processing flow of the CNN.
FIGURE 2

Schematic diagram of the multi-convolutional kernel.
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Since the error of the convolutional layer is known, the error of

the previous hidden layer can be deduced backwards.

d I−1 = (
∂ zI

∂ zI−1
)Td I = d I

*rot180(w
I)f 0(zI−1) (7)

In this formula (Equation 7), rot180(wI) indicates that the

convolutional kernel of layer l is rotated by 180 degrees and then

convolved with the error in layer l. * means the convolutional

operation.

∂ J(w, b)
∂wI = aI−1*d

I (8)

Knowing the error of the convolutional layer is shown in

(Equation 8), the gradient of w, b in that layer can be derived. l is

the high-dimensional tensor while b is just a vector, so it usually

sums the terms of each submatrix of l separately to obtain an error

vector, which is the gradient of b, as shown in (Equation 9).

∂ J(w, b)

∂ bI
=o

u,v
(d I)u,v (9)

Meanwhile, three indicators, mean absolute error (MAE),

(Equation 10), root mean square error (RMSE), (Equation 11)

and mean absolute percentage error (MAPE), (Equation 12), were

selected for the validation analysis of the prediction results. The

three indicators were defined as follows.

MAE = o
n
i=1 yreal − ypred

�� ��
n

(10)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(yreal − ypred)
2

n

s
(11)

MAPE =
100%
n on

i=1

yreal − ypred
yreal

����
���� (12)

In these formulae, yreal ata; ypred is the predicted value of SST

data; n is the number of predicted points in the predicted sea area.
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3 Temporal and spatial variability
characteristics of SST in the NIO

3.1 Spatial distribution of SST in the NIO

The NIO serves as a vital conduit connecting the Pacific and

Atlantic shipping routes, and its SST significantly influences global

climate. Figure 4 illustrates the spatial distribution of annual mean

SST in the NIO from 1980 to 2021. The annual mean SST during

this period ranged from 25°C to 30°C. With the exception of the

northwestern Arabian Sea, the majority of the NIO exhibited SSTs

exceeding 28°C. The distribution of SST shows marked spatial

variability, with higher values predominantly located in the

central and eastern waters of 0-5°N, where temperatures range

from approximately 29°C to 29.5°C; and the Red Sea region can

reach temperatures as high as 30°C. In contrast, lower SST values

are primarily found in the Persian Gulf and the western boundary of

the Arabian Sea, varying between 25°C and 27.5°C. Overall, the

annual mean SST displays a trend of increasing values from the

northwest to the southeast.

Figure 5 depicts the seasonal mean SST spatial distribution across

four seasons: winter (DJF, December-January-February), spring

(MAM, March-April-May), summer (JJA, June-July-August), and

autumn (SON, September-October-November). SST values are

generally low during winter, with the Persian Gulf averaging 24°C,

and the northern and northwestern regions of the Arabian Sea and

the northern Bay of Bengal exhibiting temperatures below 26.5°C. In

the other regions of the NIO, temperatures range from 27.5°C to 29°

C. SST in the NIO reaches its peak in spring, with the spatial

distribution characteristics resembling those of winter, but with

significantly higher values. The mean temperature in the Persian

Gulf remains below 25°C, while the northern Bay of Bengal and the

northern and northwestern Arabian Sea range from approximately

26.5°C to 29°C; the mean SST in the central and southern waters of

the NIO exceeds 29.5°C. Following the onset of the southwest

monsoon, summer SST experiences a decline, with the mean
FIGURE 4

Spatial distribution of annual mean SST (°C) in the NIO from 1980 to 2021.
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temperature in the western boundary region of the Arabian Sea

around 26°C, and most areas of the central and eastern NIO ranging

from 28°C to 29°C, not exceeding 29.5°C. In contrast to winter and

spring, the mean SST in summer significantly increases to 30°C in the

Red Sea and the Persian Gulf. The spatial distribution characteristics

of autumnmean SST are similar to those of summer, with the highest

temperatures occurring in the Red Sea and the Persian Gulf, reaching

up to 30°C. Followed by the central and eastern regions of the NIO,

which vary between 27.5°C and 29°C. The lowest values are observed

in the western boundary region of the Arabian Sea, ranging from

approximately 26.5°C to 27°C.
3.2 Low frequency variation and long-term
trend of SST in the NIO

Figure 6 illustrates the variations in SST averaged in the NIO

from 1980 to 2021. During this period, the annual mean SST

exhibited a general upward trend in the NIO. Notably, the

highest SST was recorded in 1998, reaching 28.6°C, while the

lowest SST occurred in 1984, at only 27.7°C. Overall, the SST in

the NIO increased gradually over the 42-year period, with a total

rise of approximately 0.5°C (Figure 6).

The seasonal variations in SST in the NIO from 1980 to 2021

are illustrated in Figure 7. Numerically, the SST is highest in spring,

followed by summer and autumn, with winter exhibiting the lowest

values. An analysis of trends reveals a gradual increase in the mean

SST across all four seasons over the study period. The warming

trends in summer, autumn, and winter are relatively consistent,

while the warming trend in spring is more moderate. The figure also

indicate that the seasonal SST in the NIO reached its peak in 1998,

2010 and 2016 (Figure 7).
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3.3 EOF analysis of SST in the NIO

The variations in SST exhibit distinct spatial distribution

characteristics in the NIO. The application of EOF method allows

for the decomposition of related eigenvectors, which better reflects

the spatial distribution structure and temporal variability of SST

changes. The variance contribution rates of the first three

eigenvalues derived from the EOF analysis are 28.4%, 10.1%, and

7.7% respectively, with a cumulative contribution rate of 46.2%.

Significance testing indicates that the EOF analysis results are

reasonable and effectively explain the primary distribution

characteristics of SST in the NIO from 1980 to 2021. Given the

negligible variance contribution rates of subsequent modes, which

do not significantly influence the overall spatial modal distribution,

this study will concentrate on the first three modes to derive more
FIGURE 6

Temporal variability of annual mean SST (°C) in the NIO from 1980
to 2021.
FIGURE 5

Spatial distribution of seasonal mean SST (°C) in the NIO from 1980 to 2021.
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meaningful research outcomes results. The first EOF mode (EOF-1)

explains 28.4% of the total variance, and exhibits a basin-wide

uniform warming pattern over the Indian Ocean (Figure 8a),

corresponding to the Indian Ocean Basin Mode (IOBM) (Yang

et al., 2007; Du et al., 2009). The first principal component (PC-1)

shows a maximum positive correlation (r = 0.67) with the Nino3.4

index at a 3-4-month lag, which aligns with the typical occurrence

of IOBM in boreal spring following an El Niño event. Furthermore,

this basin-scale warming plays a crucial role in maintaining the

anomalous anticyclonic circulation over the western North Pacific

during post-El Niño years (Xie et al., 2009; Wu et al., 2010).

The second EOF mode (EOF-2), accounting for 10.1% of the

variance, displays the characteristic zonal dipole pattern of the
Frontiers in Marine Science 08
Indian Ocean Dipole (IOD) (Saji et al., 1999; Webster et al., 1999).

This mode features pronounced cold SST anomalies in the eastern

Indian Ocean, particularly along the Java-Sumatra coast,

accompanied by relatively weak warming in the western basin

(Figure 8b). The IOD typically peaks in autumn, with the second

principal component (PC-2) showing maximum positive

correlation when leading the Nino3.4 index by 3-4 months.

The third EOF mode (EOF-3) explains 7.7% of the variance,

and manifests as a tripole pattern, characterized by warming in the

south-central tropical Indian Ocean flanked by cooling anomalies

in both the western and southeastern Indian Ocean. This SST

distribution has been termed the Indian Ocean Tripole (IOT)

(Zhang et al., 2020; Chen et al., 2024b), Southern Tropical Indian

Ocean Dipole (STIOD) (Zhang et al., 2024), or IOD Modoki (Endo

and Tozuka, 2016; Tozuka et al., 2016). This mode has emerged

since the mid-1970s (Du et al., 2013), its occurrence is linked to the

Australian Monsoon variation (Chen et al., 2024b), and could affect

the surface air temperature over the western Tibetan Plateau in

summer (Zhu et al., 2024).
3.4 Results of correlation analysis between
SST and different meteorological factors

Studies indicate that the SST significantly influences the global

climate, and the distribution of substances and momentum in the

ocean by wind, heating, cooling, precipitation, and evaporation

(Wang, 2003). Although the SST variations are relatively small in

magnitude, integrated changes can also significantly affect local
FIGURE 8

The first three EOF modes and the associated principal components of the SST in the NIO.
FIGURE 7

Temporal variability of seasonal mean SST (°C) in the NIO from 1980
to 2021.
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precipitation, atmospheric circulation, and the monsoon (Hu et al.,

2005; Zhang et al., 2015). In this paper, considered the influence of

several hydro-meteorological factors on the SST, we analyzed the

correlation between them in a multidimensional way, selecting six

meteorological data, including 10m zonal wind, 10m meridional

wind, 2m dew-point temperature, 2m air temperature, mean sea

level pressure, and total cloud cover, conducted correlation analysis

between each element and the SST in the north Indian Ocean

(Figure 9). The results show the SST has a high positive correlation

with 2m dew-point temperature and 2m air temperature under the

interaction of heat transfer between sea and air (Figures 9a, b); the

correlation between meridional and zonal wind speed and the SST

reveals significant spatial differences (Figures 9c, d). Without

considering other factors such as dynamics, the higher

temperature, the faster the atmospheric heat expansion rises and

the lower the air pressure, thus, the SST shows a good negative

correlation with MSLP, especially in the northern part of the Bay of
Frontiers in Marine Science 09
Bengal and the Arabian Sea (Figure 9e). As the total cloud cover can

enhance the backward radiation of the atmosphere to the surface

and plays the role of insulation, it shows a positive correlation

distribution with the SST, but the influence is relatively small

compared with other meteorological factors (Figure 9f).
4 Construction of deep learning
model based on SST prediction

4.1 Construction of SST prediction model

The effects of the six meteorological elements mentioned above

on the SST vary from different regions due to influenced by

dynamic oceanography and topographic environment. Thus, in

order to build a more accurate SST prediction model for the NIO,

in this paper, the matrix composed of six day-by-day meteorological
FIGURE 9

Correlation coefficients between T2M and SST (a), D2M and SST (b), U10 and SST (c), V10 and SST (d), MSLP and SST (e), and TCC and SST (f) in the
NIO from 1980 to 2020.
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elements for the next seven days and SST data of the previous day

from 2001 to 2020 is used as the input term of the prediction model.

As for output term, a matrix of SST data for the following seven

days is used as well. After training large number of prediction model

point by point for the whole NIO, a SST forecast model for the next

week can be built based on the current data (Figure 10).

According to Figure 10, the input data is convoluted to produce

the feature map of the second layer, after downsampling, it is pooled

to create the third layer feature map. So as to get the SST data for the

next seven days, the feature map is finally linked into vectors by row

expansion and sent into the fully connected layer. Meanwhile, in

order to increase the nonlinearity of the neural network model, an

activation function is added in order to introduce the nonlinear

factors to the neurons, so that the neural network can freely

approximate any nonlinear function. The biggest issue with deep

learning is the gradient disappearance, which is especially

problematic in the case of using saturated activation functions

such as tanh and sigmoid (when the neural network is

propagating directional errors, each layer is multiplied by the first

order derivative of the activation function, and the gradient decays

with each passing layer. The gradient G keeps decaying until it

disappears when there are more layers in the network), which

makes the training network converge more and more slowly.

Therefore, this paper uses the linear, non-saturated form of the

Relu function as the activation function, which has the following

functional form.

f (x) = max   (0, x) (13)

This function overcomes the problem of gradient disappearance

and accelerate training. The results of sea surface temperature

prediction for the next seven days can be obtained ultimately.
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4.2 Forecast results and analysis

To ensure that there is no overlap or dependency between the

training data and the test data, the data set used in this study is

divided into three categories: the data from 2001 to 2020 as the

training set, the data from 2021 as the validation set, and the data

from January 2022 as the test set. After the training is completed,

which is carried out by using the training data, the model results are

obtained. In order to avoid underfitting or overfitting, the model

must be evaluated by using the validation data. Test data can be

used for prediction after finding the best parameters. At the same

time, using the sample generator for training can better solve the

problem of traditional forecast models that cannot be trained due

Massive data in training. Using the forecast model constructed in

this paper, the SST for the 2nd week of 2022 can be

respectively predicted.

From the prediction results (Figure 11), it can be concluded that

the day-by-day prediction results of SST in the NIO are basically

consistent with the measured results. The sea regions with large SST

prediction errors change with the number of prediction days

(Figure 11c), and the errors get larger as the number of predicted

days rise. Except for some regions, the absolute value of the SST

prediction error in the NIO is basically stable within 1°C, and it does

not exceed 0.5°C in most of the regions (Figure 11c). The graphs of

SST prediction results (Figures 11a, b) preserve the contour

information and distribution characteristics of the actual images

as a whole, and are the same as the real variation pattern of the NIO

in terms of spatial and temporal variation patterns.

From the error analysis of the SST prediction results in the NIO

using three error assessment criteria (Figure 12), it can be observed

that the overall prediction errors in the NIO increase as the number
FIGURE 10

Schematic diagram of SST forecast model structure.
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FIGURE 11

Results of measured data (a), predicted results (b) and prediction errors (°C) (c) for the 2nd week of 2022.
Frontiers in Marine Science frontiersin.org11

https://doi.org/10.3389/fmars.2025.1543177
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Huang et al. 10.3389/fmars.2025.1543177
of prediction days rise and it presents an upward tendency. Besides,

the smooth increase in the three errors indicates that the forecast

model has strong stability.
5 Discussion and conclusion

5.1 Discussion

In this paper, the SST predication model based on CNN deep

learning constructed is an attempt to predict the SST in the NIO.

The advantage of this model over previous SST forecast models is

that it overcomes the traditional thinking of single method

prediction and combines the numerical model of the ocean with

the data-driven model in a clever way. Besides, it takes the

professional marine theoretical knowledge as the basis and uses

the marine meteorological element in space and time to

strengthen the regional distribution information of natural

position and improve its regional and overall applicability effect.

However, the model also has shortcomings. Firstly, the

multivariate model in this paper is constrained by the amount

of data as deep learning has a high requirements of data. The

influence factors used in the forecast model need to be further

analyzed for the intrinsic influence with the SST. Appropriate

additions and deletions need to be made to improve the learning

and prediction capacity of the SST forecast model. Secondly, there

is still room for further optimization of the CNN network built in

this paper to get improved prediction outcomes. In summary, it is

feasible to use the CNN model to predict the sea surface

temperature, and the prediction accuracy is relatively high in

the study regions. It offers a fresh perspective on the prediction of

sea surface temperature in the NIO.
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5.2 Conclusion

SST is a crucial component of the marine environment, serving

as a pivotal variable for understanding the interactions between the

ocean and the atmosphere. It plays a significant role in shaping

climate and marine environments. In this study, we employed

ERA5 data and EOF to analyze the spatiotemporal variations of

SST in the NIO. The results show that the SST in the NIO increases

year by year from 1980 to 2021, with the highest value in spring,

followed by summer and autumn, and the lowest value in winter.

EOF analysis of SST shows that the cumulative contribution rate of

the first three modes reaches 46.2%, EOF-1 explaining 28.4% of the

total variance, exhibits a basin-wide uniform warming pattern over

the Indian Ocean. EOF-2 accounts for 10.1% of the variance and

exhibits the IOD pattern. EOF-3 explaining 7.7% of the variance,

displays a tripole distribution characterized by warming in the

central tropical southern Indian Ocean and cooling in the western

and southeastern Indian Ocean. This SST distribution pattern is

referred to as the IOT, STIOD, or IOD Modoki.

The study further investigated the relationships and impacts of

various meteorological factors on SST, analysis of these six

meteorological variables revealed that air-sea heat exchange and

topographical conditions significantly influence the SST in the NIO.

based on these findings, a CNN-based SST prediction model was

developed. The prediction results indicated that the model

maintained a prediction error generally within 1°C, with errors in

most regions of the NIO not exceeding 0.5°C. The predicted results

preserved the contour information and distribution characteristics

of the actual SST, aligning with the temporal and spatial variation

patterns observed in the NIO. Evaluation of the prediction results

using error assessment standards showed that as the prediction

period increased, the SST prediction error exhibited an overall

upward trend, with a stable rate of increase, indicating the

robustness of the proposed prediction model.
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