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This paper aims to provide insights into the future trends for themarine industries in

China, by forecasting the added value in key sectors and then offering tailored policy

recommendations. Those economic indicators at the industry level are

characterized by small sample sizes, sectoral heterogeneity, and irregular

fluctuations, which require a specialized methodology to handle data features

and provide predictions for each industry. To address these issues, the conformable

fractional grey model (CFGM), which integrates conformable fractional

accumulation with the grey forecasting model, is applied and proven effective

through accuracy and robustness tests. First, the results from multi-step

experiments demonstrate that the CFGM model significantly outperforms

traditional statistical, machine learning models, and grey models in the context of

the sectoral added value predictions, with an average accuracy improvement of

32.14%. Second, the robustness and stability of the predictive values generated by

CFGM are further verified by the Probability Density Analysis (PDA) and multiple

comparisons with the best (MCB) tests, thereby ruling out the possibility that these

accurate predictions are the result of mere chance. Third, the CFGMmodel is used

to estimate the future added values acrossmultiplemarine industries, accompanied

by suggestions to ensure the sustainable development of the marine economy.
KEYWORDS

grey forecasting model, marine economic prediction, marine sustainable development,
marine industry strategic plan, policy analyses
1 Introduction

1.1 Background information

In recent years, the marine economy has rapidly developed, becoming a key driver of

global and national economic growth (Hynes et al., 2024). On the one hand, the global marine

economy is projected to reach 3 trillion USD by 2029, with a compound annual growth rate of

12.2% (QYResearch, 2024). On the other hand, the Chinese government issues the 14th Five-
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Year Plan for Marine Economy Development, which emphasizes

accelerating the establishment of a modern marine industrial system

and enhancing independent innovation in marine technology.

Moreover, the emphasis on the development of the marine

economy and its related technologies is also shown in Figure 1. In

detail, the gross ocean product increases from 4558.04 billion yuan in

2011 to 8952.13 billion yuan in 2021, while R&D expenditure grows

from 10.91 billion yuan to 32.92 billion yuan during the same period.

As the importance of the marine economy continues to rise,

governments worldwide have introduced various policies at the

industry level to foster its development (Ji et al., 2024). For instance,

the Zhejiang Provincial Government has issued the “Measures for

Strengthening Natural Resource Support to Promote High-Quality

Development of the Marine Economy”, which aimed at enhancing

resource allocation and promoting the sustainable development of

key industries like the marine fishery sector. Importantly, these

policies rely heavily on accurate economic data from marine

subsectors to ensure the effectiveness of action implementation

and goal achievement (Zhang et al., 2024). As a result, given the

significance of the marine economy in Chinese overall economic

structure, accurate forecasting of the marine economic data at the

industrial level is crucial, in guiding sustainable development

strategies (Sun et al., 2024).

In the current context, accurate forecasting of the added values

for marine industries is of critical importance for multiple

stakeholders, including policymakers, investors, and researchers.

However, the marine sector faces significant challenges, such as the

economic datasets are often sparse and irregular. Furthermore, the

added value of the marine economy in different sectors often exhibits

substantial variation in development patterns. Besides, those

economic indicators of the marine sector fluctuate vastly because of

the inconsistent policy frameworks (Li J et al., 2024). These issues

complicate the task of accurately predicting the future performance of

marine industries while accounting for sectoral differences.

To address the such challenges arising from the volatility,

scarcity, and heterogeneity of datasets, the grey forecasting model
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has been extensively utilized and demonstrated its utility in a

multitude of fields, including the prediction of economic

performance, carbon emissions, energy consumption, and power

generation (Li et al., 2019). Moreover, Scholars have dedicated

considerable effort to enhancing grey models from various angles,

such as refining the background value (Huang et al., 2024),

optimizing parameter estimation techniques (Li J. et al., 2024),

restructuring the model architecture (Bilgil, 2021), and innovating

accumulation methods (Erdinç and Bilgil, 2024). Among them,

advancements in data processing methods, including damping

accumulation, fractional order accumulation, and inverse

accumulation, have been identified as pivotal improvements

(Öztürk et al., 2022). These data accumulation methods can

enhance the predicted performance of grey model by handling

time series with different trends.

In this paper, the CFGM model, which integrates the

Conformable Fractional Accumulation (CFA) method with the

traditional grey forecasting model, is used for forecasting, due to its

particular suitability for handling small sample sizes and irregularities

commonly found in added values of marine economy. Notably, this

model is applied to forecast the added value of five key marine

industries, including marine fisheries, coastal tourism, marine

biomedicine, marine transport, and marine power industries. These

predictions are validated through accuracy and robustness tests.

Furthermore, based on the specific predicted values and their

characteristics, policy recommendations are provided to guide

sustainable development strategies for the marine economy.
1.2 Motivations and contributions

The core innovations of this study mainly refer to the

following aspects:

1. To meet the requirements of precise forecasting in the marine

economy at the industry level, this paper applies the CFGM model,

which combines CFA and grey forecasting techniques, addressing
FIGURE 1

Trends in Chinese gross ocean product and R&D expenditure from 2011 to 2021.
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the industry heterogeneity and small sample sizes in marine

economic predictions.

2. To verify the applicability of the CFGM model in marine

economic forecasting, this study conducts empirical experiments,

which demonstrates that this model consistently achieves higher

predictive accuracy across most industries compared to a range of

competitive models.

3. To foster sustainable development of the marine economy,

this paper formulates customized policy suggestions based on the

forecast results. The CFGM model provides future projections for

the added value of the Chinese marine economy from 2024 to 2026

at the industry level, further analyzing data characteristics from

both value changes and growth rate perspectives. Based on these

projections, tailored policy recommendations are offered,

emphasizing the need for differentiated development strategies for

various sectors.

The structure of this paper is as follows: Section 2 reviews the

existing literature on marine economy topics. Section 3 explains the

mechanism of the CFGM model. Section 4 presents the data

collection process and presents the results of the empirical

analysis. Section 5 offers policy recommendations and concludes

the paper.
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2 Literature review

A wide range of forecasting methods have been applied to make

predictions in marine economy topics, including statistical models,

machine learning models, and grey system models. These models,

with their varying data handling capabilities, computational

complexities, and adaptability, have shown in Table 1.
2.1 Classical forecasting models of
marine economy

First, the application of statistical models, such as logistic and

the Autoregressive Integrated Moving Average (ARIMA) models, in

forecasting the marine economy has been extensively documented.

To be specific, To and Lee (2018) applied a logistic model to forecast

the Chinese marine economy between 2002 and 2017, successfully

predicting its overall growth trajectory in 2019, with the coastal

tourism and transportation industries playing a pivotal role.

Building on these predictions, their paper offered valuable insights

into future growth trends and policy recommendations. Besides,

Wang et al. (2023) employed the ARIMA model to provide more
TABLE 1 The marine economy and fractional grey model related researches.

Categories References Methodologies Periods Regions Topics Horizons Indicators

Statistical
models

(To and
Lee, 2018)

Logistic models 2002-2017 China
primary, secondary, and

tertiary of
maritime economy

Annual
R2, MAE,
and MAPE

(Wang
et al., 2023)

ARIMA 2004-2019 Globality maritime accidents Quarterly
MAE, MAPE
and RMSE

Machine
learning
models

(Zhao
et al., 2019)

BPNN 1989–2016 China Marine economic losses Annual
MAE, MAPE
and RMSE

(Zhao
et al., 2020)

ENN 1989–2017 China Marine economic losses Annual
MAPE, MSE
and MAD

(Lian, 2024) PKNN 2011-2020 Zhejiang
economic value of the

marine industry
Annual

MAPE, RMSE
and NMSE

Traditional
grey models

(Shan and
Cao, 2022)

RMGM(1,m) 2011-2022 Guangdong
The R&D, GOP, and EPC

of marine economy
Annual

MAE
and MAPE

(Li et al., 2023a) FTDNSGM(1,m) 2010-2021 China Marine 3E system Annual
APE, MAE,
MAPE

and RMSE

(Li X.
et al., 2024)

DOFNGBM(1,1) 2007-2019 China marine economic resilience Annual
MAE, MAPE
and RMSE

Fractional
grey models

(Ma
et al., 2020b)

CFGM 2008-2016 Eleven countries Natural gas Annual MAPE

(Dun
et al., 2022)

FGM 2006-2015 Taiwan renewable energy Annual MAPE

(Li
et al., 2023b)

VTFNGBM(1,1) 2000-2021
China, Denmark,

and UK
Onshore and offshore wind

power generation
Annual MAPE

(Ding
et al., 2024a)

CFDSGM (1,1, ta ) 2010-2024 America Sectoral CO2 emissions Monthly
MAPE

and RMSE

The suggested
grey model

CFGM 2012-2023 China
Industrial added values of

marine economy
Annual

MAE, MAPE
and RMSE
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accurate forecasts of maritime accidents and their economic

consequences, capturing the complex interrelationships between

maritime accidents and economic outcomes, and demonstrating

superior prediction accuracy and robustness. However, despite their

effectiveness in capturing broad economic trends, statistical models

face significant limitations when forecasting sector-specific

outcomes, as they require stable and well-distributed data for

accurate modeling, and fail to provide reliable predictions when

such data is lacking or irregular. As a result, inconsistencies in the

added value of production in diverse sectors may undermine the

adaptability and accuracy of these models.

Second, unlike statistical models, which often rely on

assumptions of data distribution and static parameters, machine

learning models can automatically capture intricate patterns and

adapt to dynamic changes within the marine economy. As a result,

Machine learning models have become increasingly popular in

forecasting the marine economy due to their ability to handle

complexity and instability in datasets. For instance, Zhao et al.

(2019) used the Backpropagation Neural Network (BPNN) to make

a prediction of direct economic losses of marine disasters, which are

characterized by non-linearity, volatility, and small sample sizes.

This model provided reliable predictions with significantly

improved precision and outperformed traditional models such as

ARIMA and the Grey Model (GM). Furthermore, they applied the

ENNmodel (Zhao et al., 2020) to forecast the direct economic losses

of marine disasters in China, addressing the challenges of

nonlinearity and volatility in marine disaster loss series. Their

results provided more reliable interval predictions with the lowest

Mean Absolute Percentage Error (MAPE), Root Mean Square Error

(RMSE), and Mean Absolute Error (MAE) values. Besides, Lian

(2024) proposed a neural-learning network estimation model to

forecast the marine economy near the seaport area from 2011 to

2020. Importantly, the MAPE value of this proposed model was

controlled between 4% and 10%, proving its robustness and

effectiveness in forecasting the marine economic growth in the

seaport areas. However, despite the above success, these machine

learning models require large, high-quality datasets for training,

which remains a challenge in the context of marine economy

forecasting, where data is often incomplete or outdated.

Third, grey system models, particularly for handling available

data that is sparse or incomplete, have gained increasing attention

for marine economy forecasting. Specifically, Shan and Cao (2022)

applied the MGM(1,m) model to predict the development trends of

marine science and technology innovation, marine economic

growth, and employment in coastal regions of Guangdong. The

results showed that from 2017 to 2022, the model accurately

forecasted the growth of the scale of marine science and

technology innovation, marine economy, and employed persons,

with MAPE values of 2.1833%, 1.2871%, and 0.0236%, respectively.

Li et al. (2023a) introduced an enhanced GM(1,m)model to predict

the Economic-Energy-Environmental systems of both marine and

land regions. The model successfully handled the nonlinear and

time-delay effects, achieving a MAPE range of 0.21% to 1.36% for

those regions respectively. Besides, Li X. et al. (2024) developed the

fractional nonlinear grey model to predict the output values of the

marine power, marine biopharmaceutical, and marine chemical
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industries in China. By incorporating interaction terms among the

three industries, their model achieved MAPE values of 5.54%,

3.68%, and 4.80%, respectively, and outperformed traditional

models like GM and ARIMA in accurately forecasting

industry growth.
2.2 Grey models with data
processing technology

The traditional grey forecasting model primarily relies on a

first-order accumulation process to fit an exponential growth

pattern, effectively smoothing the data and minimizing the impact

of random disturbances within time series. However, this data

processing method faces challenges when applied to diverse

marine economic industries. For instance, the coastal tourism

industry, though experiencing slow growth, has a high absolute

value. In contrast, the biopharmaceutical sector, despite having

lower output values, demonstrates rapid growth, especially during

periods of technological advancement. This discrepancy highlights

the need for new data processing methods that can better

accommodate the unique characteristics of different marine sectors.

Conformable fractional accumulation, proposed in recent

studies, allows for more nuanced modeling of time series data

from various marine industries, reflecting their distinct growth

patterns and characteristics (Ma et al., 2020b; Dun et al., 2022).

In practical applications, the comfortable fractional grey models

have gained significant attention in recent years due to their

flexibility and effectiveness for forecasting in multiple time series

in diverse regions or industries. For instance, Li et al. (2023b)

proposed a novel flexible fractional grey Bernoulli model, and

forecast onshore and offshore wind power generation trends from

China, Denmark, and the UK. Similarly, Ding et al. (2024a)

introduced the CFDSGM model, based on the comfortable

fractional accumulation, to predict CO2 emissions across the U.S.

commercial, industrial, residential, and electric power sectors.

Moreover, the superior predictive capability, flexibility, and

robustness of this forecasting model are validated because of the

MAPE values below 5% during training and 10% during testing.
2.3 Research gaps

Overall, statistical models, machine learning, and grey system

models are commonly used in marine economy forecasting.

Although statistical and machine learning models are effective in

prediction, they depend on stable data distributions or require large

datasets. In contrast, grey models can provide accurate predictions

in the data limited situation. However, heterogeneity and different

growth characteristics of added values in diverse industries make

high-accuracy predictions difficult with a single grey model.

Consequently, the combination of fractional order

accumulation and grey models enables the model to effectively

handle similar time series from different regions and industries,

such as multi-region wind power generation or multi-industry

carbon emissions. When forecasting added values in the marine
frontiersin.org
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economy, the CFGM model, consists of the fractional order

accumulation and traditional grey model, and can also address

challenges in data heterogeneity and instability, filling the gap in the

relatively predicted research.
3 The mechanism of the conformable
fractional grey forecasting model

This section discusses the CFGMmodel, with a focus on its data

preprocessing method using conformable fractional accumulation,

as described in Subsection 3.2. In addition, the formulation of the

model itself is presented in Subsection 3.3, providing a detailed

explanation of its mathematical foundation. Furthermore, its hyper-

parameter optimization process is further enhanced using Particle

Swarm Optimization (PSO), as detailed in Subsection 3.4.
3.1 Overall framework

The CFGM integrates the advantages of conformable fractional

accumulation and the classical grey forecasting model, making it

particularly suitable for analyzing industrial added values

characterized by small sample sizes and heterogeneity in the

marine economy. The suitability of CFGM stems from two main

aspects: data processing and nonlinear fitting, as demonstrated in

the Data Preprocessing and Establishment of the Proposed Model

parts in Figure 2. On the one hand, the CFA method smooths

fluctuations in the time series of industrial added values, which

exhibit significant differences across various industries. Notably, by

applying different fractional order parameters, the method

effectively captures and smooths the unique fluctuation patterns

inherent to diverse industries.
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On the other hand, grey forecasting efficiently fits the

exponential growth of time series, enabling accurate predictions

with small samples. Specially, the annual fluctuations in marine

economic added values are characterized with the unregular

distribution patterns, and data limited situation. Notably, this lack

of data distribution regularity, such as normal distribution, poses

challenges for statistical models. Additionally, the constrained

sample size prevents machine learning models from being

sufficiently trained to ensure high prediction accuracy. Therefore,

in this study, the CFGM model is recommend to predict the

production value of five representative ocean industries, including

traditional sectors like marine fisheries, coastal tourism, and marine

transportation, as well as emerging industries such as marine

biopharmaceuticals and marine power generation. This

application highlights the capability of CFGM to address features

such as large inter-industry fluctuations and small sample sizes,

offering valuable insights into the complex dynamics of the

ocean economy.

In the following, we provide a detailed explanation of the

operational process of the CFGM model, along with the

procedure by which the PSO algorithm determines the optimal

fractional order accumulation parameters, with a flowchart

as follows.

(1) Data preprocessing. The CFGM model combines

conformable fractional accumulation for data smoothing with the

classical GM for forecasting. This integration enhances accuracy

and adaptability, making it particularly effective for forecasting

ocean economy industries characterized by small-sample and

heterogeneous data.

(2) Establishment of our suggested model. To enhance

performance, the CFGM model parameters are optimized using

PSO, which ensures efficient global search and rapid convergence.

Furthermore, the stability of results generated by the CFGM model
FIGURE 2

The overall framework of the CFGM model.
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is rigorously verified through Monte Carlo simulations (MCS)

and PDA.

(3) Predictions and tests. The CFGM model is evaluated

against traditional econometric, machine learning, and grey

forecasting models. Importantly, its accuracy is assessed using

MAPE, RMSE, and the Improvement Rate (IR) metrics, while its

stability is further examined through MCB tests.
3.2 Comfortable fractional accumulation
for data preprocessing

Predicting the added value of production of marine industries

presents several challenges, especially due to the heterogeneity and

data limitations, which often arises from the distinct characteristics

of different industrial sectors. These differences lead to time series

that exhibit volatility, non-stationarity, and irregular patterns,

making prediction difficult. To address these issues, an effective

data preprocessing method, such as the comfortable fractional

accumulation, is required to smooth the data, reduce noise, and

improve the overall accuracy of the forecasting model.

Let the original time series data be represented as X(0) =

(x(0)(1),  x(0)(2),⋯, x(0)(n)),  n ≥ 4, where each x(0)(k) represents

the data point at time k. The goal of fractional accumulation is to

transform this original data into a new series, X(z ), that exhibits

reduced volatility and improved trend representation. As a result,

the z -order-CFA is denoted as:

X(z ) = x(z )(1),   x(z )(2),⋯,   x(z )(n)
� �

, (1)

where n represents the initial time series size and x(0)(k)

represents the observation in this sequence. Besides, the

conformable fractional accumulation process is defined by the

following equation

x(z )(t) =
ot

j=1
x(0)(j)

j½z �−z
,     0 < z < 1,

ot
j=1x

(z−1)(j),     z ≥ 1,

  t = 1, 2,⋯, n :

8>><
>>:

(2)

The transformed series X(z ) exhibits improved stability,

reducing the noise and irregular fluctuations present in the

original data. This makes the data more suitable for forecasting,

as it helps to smooth out the irregularities inherent in such datasets,

ensuring more reliable forecasting outcomes of ocean industries.

Consequently, by applying conformable fractional accumulation to

the time series of ocean industries such as marine fisheries, coastal

tourism, and marine transportation, the resulting data becomes

more stable and accurate, enabling the CFGM model to make more

precise predictions.
3.3 The formulation of the CFGM model

After the establishment of the conformable fractional

accumulation time series, the forecasting model is constructed by

applying the differential equation, shown in Equation 3, to fit the
Frontiers in Marine Science 06
growth trend of the accumulated sequence.

x(z )(t)
dt

+ aX(z )(t) = b, t = 1, 2,⋯, n − 1 (3)

The next step involves using the white equation, shown in

Equation 4, to model the underlying dynamics of the time series and

estimate the parameters a and b, which represent the growth rate

and the background value, respectively.

X(z )(t) + aZ(z )(t) = b, t = 1, 2,⋯, n − 1 (4)

To estimate these parameters a and b, we calculate the

background value Z(z )(t) = (z(z )(1),  z(z )(2),⋯, z(z )(n)) and use

using the Ordinary Least Squares (OLS) method.

Z(z )(t) = 1
2 (X

(z )(t) + X(z )(t − 1), t = 2, 3,⋯, n,

                            ½a, b�T = (BTB)−1BTY ,

               B =

−z(z )(2)

−z(z )(3)

⋮

−z(z )(n)

     

1

1

⋮

1

2
666664

3
777775
,   Y =

x(0)(2)
z

x(0)(3)
z 2

⋮
x(0)(n)
z n−1

2
6666664

3
7777775
:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(5)

This background value is essential for understanding the

driving force behind the time series and is incorporated into the

whitening process, which reduces the noise and enhances the

accuracy of predictive results generated by the CFGM model.

Then, these parameters are obtained through the OLS, which

minimizes the error between the forecasted values and the

observed data. Finally, to generate forecasts for future values, the

accumulated data is subtracted using the following fractional order

deaccumulation process:

x̂ (z )(1) = x̂ (0)(1) = x(0)(1),

x̂ (z )(t) = b
a + (x(0)(1) − b

a )e
−a(t−1),

x̂ (0)(t) = k(1−z ) x̂ (z )(t) − x̂ (z )(t − 1)
� �

,   t ≥ 2:

8>><
>>:

(6)
3.4 Parameter optimization by using PSO

While traditional methods such as OLS can be used for

estimating the parameters a and b, the fractional order z , which
plays a crucial role in determining the stability and predictive

accuracy of the forecasting model, requires a more sophisticated

approach for optimization. Further, PSO is employed to optimize z
by minimizing the forecasting error, which helps to identify the

optimal smoothing level that improves the forecasting performance

of the CFGM model (Wang and Li, 2019). In particular, it is

important to optimize this parameter for each specific time series

data, particularly for complex, noisy, and heterogeneous marine

industry datasets.

In the PSO algorithm, a swarm of particles represents candidate

values of the fractional order z , and each particle moves through the

solution space, guided by its personal best position and the global

best position of the swarm. The optimization process aims to find
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the value of z that minimizes the error between the forecasted and

actual values, typically using error metrics such as MAPE.

Furthermore, the min MAPE and optimal parameter z can be

solved according to the following conditions:

 min
z MAPE = min 1

non
t=1

x̂ (0)(t) − x(0)(t)

x(0)(t)

����
����

� �

s : t :

 x̂ (z )(t) = b
a + x(0)(1) − b

a

� �
e−a(t−1),

 x̂ (0)(t) = t(1−z )(x(z )(t) − x(z )(t − 1)),

 z ∈ (0, 1�,
 t = 2, 3,⋯, n,

vdi,t = w · vdi,t−1 + c1 · r1(pbest
d
i,t−1 − vdi,t−1) + c2 · r2(gbest

d
t−1 − vdi,t−1),

 xdi,t = xdi,t−1 + vdi,t

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(7)

The above update process for all particles is sequentially

performed until the target criteria or the maximum number of

iterations is reached. In this paper, the search dimension d and

learning factors (c1; c2) are set as default in Rstudio. Besides, the

maximum number of iterations is set by default to 500 times while

the population size is set to 50.

In summary, PSO optimizes the fractional order z of the CFA

process, ensuring that the smoothing and trend extraction are

performed at the optimal level for each specific dataset. This

results in improved forecasting accuracy and model stability,

making the CFGM model more reliable for predicting the

production value of ocean industries.
4 Empirical study

Predicting the value-added of marine production is critical for

understanding the dynamics and growth of various industries

within the marine economy. Furthermore, accurate forecasting

helps guide investments, policy decisions, and strategic planning

(Wang and Jv, 2021). This is particularly true for industries that

significantly contribute to the marine economy, including both

traditional sectors like marine fisheries, coastal tourism, and marine

transportation, as well as emerging industries like marine power

and biopharmaceuticals.

However, the challenge lies in the need for a universal

forecasting model capable of handling the complexities of

multiple time series data. Such a model must achieve not only

high prediction accuracy but also demonstrate robustness and

adaptability across different industries (Ding and Zhang, 2023).

Given the diversity of marine sectors, a versatile and reliable model

is essential to provide actionable insights for policymakers and

industry stakeholders alike.

This section provides an overview of the objectives covered in

Subsections 4.1 through 4.4. Subsection 4.1 focuses on data

collection and describes the marine value-added data used in this

study. Moreover, this section outlines the experimental design,

detailing the model selection, forecasting methodology, and the

criteria used to evaluate accuracy and stability in prediction;
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Subsection 4.2 and 4.3 presents the results of the multi-step

forecasting experiments, comparing the predictive performance of

different models and validating the stability and reliability of the

CFGM. Finally, Subsection 4.4 demonstrates the effectiveness and

reliability of the proposed model, projecting future added values in

industry-level marine, thus providing valuable data for

policymakers and researchers.
4.1 Data collection and experiment design

To evaluate the forecasting performance of the CFGMmodel and

assess its adaptability to multiple marine production value-added

time series, this study adopts a comprehensive experiment design. As

a result, the CFGM model is specifically chosen due to its ability to

handle time series data effectively while offering the flexibility needed

for diverse marine sectors, including traditional sectors such as

marine fisheries, coastal tourism, and transportation, as well as

emerging industries like marine energy and biopharmaceuticals.

4.1.1 Data collection
This study aims to analyze the trends in marine production

value added across five industries from 2012 to 2023, utilizing data

from diverse sectors of the marine economy. Those industries

covered include traditional sectors, including marine fisheries,

coastal tourism, and transportation, alongside emerging sectors

like marine biomedicine and marine power industries. These

industries are integral to the marine economy, each contributing

in distinct ways to its growth and diversification. The selection of

the time period and industries is influenced by several

macroeconomic factors, including key policies and the impact of

the COVID-19 pandemic.

On the one hand, the year 2012 is chosen as the starting point

due to the implementation of the “13th Five-Year Plan for National

Marine Economic Development,” which marked a significant shift

in the trajectory of marine economic growth. The original datasets

used in this study are primarily sourced from the Ifind database

(https://www.51ifind.com), with supplementary data derived from

the marine economic statistical reports published by the Ministry of

Natural Resources. Besides, given that the most recent data available

from these sources is up to 2023, this year has been selected as the

endpoint for the analysis.

On the other hand, the selection of industries reflects the main

disruptions caused by the COVID-19 pandemic. Given the

significant halt in production in marine heavy industries such as

marine oil and gas and marine mining, these sectors are excluded

from the analysis. Instead, the study focuses on more stable and

representative industries, including marine fisheries, coastal

tourism, marine biomedicine, marine transportation, and marine

power, ensuring the reliability and validity of the results. As a result,

the final dataset spans the period from 2012 to 2023, reflecting the

five marine industries, including the marine fisheries, coastal

tourism, transportation, biomedicine, and power sectors, during

this time.
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4.1.2 Experiment design
In the experimental design, this paper includes multi-step

forecasting, accuracy testing, and robustness analysis to ensure the

predictive performance of the CFGM model is not only accurate but

also stable across different time series (Egger et al., 2022).

First, the experiment involves multi-step forecasting, where the

ability of CFGM to predict future added values of the marine

economy is tested across different time horizons. Specifically, in

Table 2, the study uses two types of out-of-sample forecasts: one-

step and two-step predictions. The one-step forecast refers to

predicting the data point in 2023, while the two-step forecast

projects two future data points from 2022 to 2023. Importantly,

the use of two forecast steps allows for a more robust evaluation of

the forecasting ability of all forecasting models. Additionally, the

results generated by CFGM will be compared against six other

forecasting models, including the ARIMA, Exponential Trend

Smoothing (ETS), Support Vector Regression (SVR), BPNN, GM

and Discrete Grey Model (DGM). This above comparison will help

to show the relative strengths of the CFGM model in forecasting

added values that are characterized by data limitations and

heterogeneity in the marine economy.

Second, we use three key metrics, including the MAPE, RMSE,

and IR, to evaluate the forecasting accuracy of the above models. On

one hand, shown in Equation 8, MAPE offers an intuitive

understanding of forecast accuracy across all models, while RMSE

is particularly useful for identifying larger errors when the external

predicted values occur. On the other hand, IR quantifies the

improvement in accuracy achieved by the CFGM model

compared to other models, calculated by comparing the MAPE of

the CFGM and the corresponding indicator of competing models.

Most importantly, the higher IR or litter MAPE values indicate the

superior forecasting performance of the CFGM model, highlighting

its effectiveness in providing more accurate predictions.

MAPE = 1
non

t=1
x̂ (0)(t) − x(0)(t)

x(0)(t)

����
����� 100% :

RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
non

t=1(x̂
(0)(t) − x(0)(t))2

q

IR =
MAPEthe  CFGM(1:1)mod el−MAPEthe  competitive   mod el

1−MAPEthe  competitive mod el

8>>>>>><
>>>>>>:

(8)

Third, to assess the robustness of the forecasting models, we

employ several methods, including MCS, PDA, and MCB tests.

These techniques are used to examine the stability and reliability of

the CFGM model across various conditions and ensure that its

highly accurate results are not due to specific circumstances in the

added values datasets. To be specific, the MCS involves running

multiple simulations with varying inputs of the hyper-parameter to
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observe how the model performs under different scenarios,

providing insights into its overall robustness (Portillo Juan and

Negro Valdecantos, 2024). Then, the PDA further complements this

robustness check by assessing the distribution of forecasting results

(Li J. et al., 2024). Finally, MCB analysis performs repeated

predictions using CFGM across multiple forecasting horizons

(Ye et al., 2024), ensuring that the CFGM model consistently

generates the forecasting values with high accuracy. By applying

these methods, we aim to demonstrate that the CFGM model not

only achieves high accuracy but also exhibits significant robustness,

distinguishing it from other forecasting models.
4.2 Experimental result analysis

This section presents the results of the forecasting experiments,

evaluating the performance of the CFGM model in comparison to

several other forecasting methods. From the industry forecasting

perspective, in subsection 4.2.1, we examine the overall prediction

accuracy of the models across five marine industries, analyzing the

results based on key metrics such asMAPE, RMSE, and IR. Besides,

from the modeling perspective, in subsection 4.2.2, we compare the

applicability and performance of the CFGM model with traditional

statistical models, machine learning models, and gray prediction

models. This comparison is made through the distribution ofMAPE

and RMSE values, analyzing metrics like the mean, variance, as well

as the maximum and minimum values. Finally, subsection 4.2.3

focuses on the robustness of the CFGM model by employing PCA

and MCB tests, assessing the stability and reliability of the model

under varying conditions, and validating its performance across

different forecasting horizons and industries.
4.2.1 Overall comparisons of the
prediction performance

This section presents a comprehensive analysis of the

forecasting performance of the models, with detailed evaluations

based on the MAPE and RMSE metrics, as shown in Table 3, and

the IR, as presented in Table 4. Specifically, based on the five

industrial predictions, Table 3 provides the mean values and

standard deviations of MAPE and RMSE for each model across

different forecasting periods (in-sample and out-of-sample),

allowing for a comparison of their accuracy and stability. On the

other hand, Table 4 presents the improvement rates in MAPE for

each model relative to CFGM, highlighting how much better or

worse each competing model performs compared to CFGM in

various industries.
TABLE 2 The multi-step forecasting experiment set about the one-step and two-step predictions.

Forecasting
horizons

Industries Datasets Training period Testing period

One-step Marine fishery,
Coastal tourism,

Marine transportation,
Marine biomedicine, and Marine

power industries.

The marine production added value
time series

2012-2022 2023

Two-steps 2012-2021 2022-2023
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From Table 3, we can conclude that the CFGM model

consistently demonstrates the best overall forecasting performance,

although this model is defeated by BPNN in the fitting period. In

detail, CFGM demonstrates more consistent and reliable forecasting

performance because it achieves a balanced forecasting performance

in both fitting and testing periods. To be special, while CFGM

generates MAPE (5.42%) and RMSE (365.57) are slightly higher in

the in-sample forecast than BPNN, it performs significantly better in

the out-of-sample forecast, with the lowestMAPE (7.08%) and RMSE

(405.53), as shown in Table 3. Additionally, CFGM exhibits the lowest

standard deviations for both MAPE and RMSE in the out-of-sample

period, indicating its stability across all industries. In contrast,

considering the in-sample forecasting performance, the BPNN

model performs the best with the lowest MAPE (0.98%) and RMSE

(69.42), indicating an excellent fit to the training data. However, this

strong performance deteriorates significantly in the out-of-sample

forecast, with MAPE increasing to 37.35% and RMSE rising to

1039.66. This indicates that BPNN struggles with overfitting

problems. Similar conclusions can be found in other competitive

forecasting models. Consequently, the performance in both in-

sample and out-of-sample periods suggests that CFGM maintains

high accuracy in predictions across diverse industries, making it more

consistent and reliable in overall predictions.

In Table 4, we examine the IR for CFGM relative to its

competitors across different industries and forecasting horizons.

The improvement rates clearly demonstrate the superior forecasting

accuracy of the CFGM model, both in terms of industry-specific

performance and the forecasting horizon, including one-step and

two-step predictions.
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From the industry perspective, CFGM consistently outperforms

other models in most sectors, with the exception of the marine fishery

industry, where it shows a marginal improvement of -0.10%. This

suggests that CFGM provides a slight decrease in accuracy for marine

fishery forecasts. But, its performance across other industries remains

notably superior. In the marine power industry, for example, the

improvement rate reaches 89.53%, showcasing a significant gain in

forecasting accuracy compared to other models.

In addition, from the forecasting horizon perspective, we can see

the CFGM demonstrates a clear advantage in two-step forecasting,

where it consistently outperforms all other models across all

industries. In this context, CFGM yields positive improvement rates

for all industries, with the highest improvements (200.17%) compared

with the DGM model and the lowest improvements in the marine

power sector (1.41%) compared with the ARIMA model. Similar

conclusions can be found in the one-step forecasting situation.

Overall, the analysis of Tables 3 and 4 shows that CFGM

outperforms other models in both forecasting accuracy and

consistency across industries and forecasting horizons. This

makes CFGM a highly adaptable and reliable model, capable of

providing more accurate and consistent forecasts than its

competitors, especially when facing time series with more

complex and data heterogeneity environments.

4.2.2 The comparison in the applicability of
diverse models based on the
prediction performance

This section focuses on evaluating the applicability of the

CFGM model compared to other forecasting models based on
TABLE 3 The statistical descriptions of MAPE and RMSE generated by all forecasting models for five industrial added value time series.

Competing
models

Forecasting
horizons

MAPE RMSE

Mean values
Standard
deviations

Mean values
Standard
deviations

CFGM
In-sample 5.42 2.48 365.57 512.19

Out-of-sample 7.08 3.36 405.53 466.08

ARMA
In-sample 9.84 3.73 552.83 727.43

Out-of-sample 9.55 4.38 638.83 698.76

ETS
In-sample 6.49 2.38 497.77 708.74

Out-of-sample 8.22 4.94 427.14 475.42

SVR
In-sample 10.58 5.97 579.22 836.82

Out-of-sample 18.55 13.54 649.36 649.62

BPNN
In-sample 0.98 0.37 69.42 59.28

Out-of-sample 37.35 84.88 1039.66 1337.19

GM
In-sample 7.64 3.85 566.58 845.29

Out-of-sample 9.36 9.65 812.85 1515.87

DGM
In-sample 24.01 15.82 1087.83 1486.00

Out-of-sample 43.13 30.45 1487.14 1551.25
The optimum MAPE and RMSE values for in-sample and out-of-sample are in bold type.
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their prediction performance. To achieve this, we analyze the results

presented in Figures 3, 4, which illustrate the MAPE and RMSE

boxplots for the in-sample period and out-of-sample period,

respectively. These figures provide insights into the performance

and stability of CFGM against statistical models (ARIMA and ETS),

machine learning models (SVR and BPNN), and gray models (GM

and DGM). Together, these metrics, including MAPE and RMSE,

offer a comprehensive view of the suitability of those forecasting

models under varying conditions, especially in small-sample,

heterogeneous, and complex time series datasets.

First, from the perspective of statistical models, Figures 3 and 4

compare the in-sample and out-of-sample performance of ARIMA

and ETS. For ARIMA, CFGM consistently outperforms in both

periods. In terms of MAPE, CFGM achieves the smallest mean,

variance, and range (maximum and minimum values), as shown in

Figure 3A. For example, CFGM’s in-sampleMAPEmean (5.42%) is

significantly lower than ARIMA’s (9.84%), and this advantage

extends to the out-of-sample period, where CFGM’s mean MAPE

(7.08%) is also lower than ARIMA’s (9.55%). Moreover, CFGM

demonstrates consistently smaller MAPE variance and range,

indicating greater stability and more evenly distributed prediction

errors across industries.

Similarly, CFGM exhibits superior RMSE performance.

Although specific RMSE values are omitted, CFGM consistently

shows lower mean, variance, and range across both periods,

underscoring its ability to maintain accurate and stable forecasts.

ETS, while slightly better than ARIMA, still falls short of CFGM in

all aspects. The underperformance of statistical models can be

attributed to their reliance on strict assumptions about the data,

such as stationarity or normality (Ma et al., 2020a). In real-world

applications, particularly in small-sample marine industries, these
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assumptions are often unmet, leading to larger errors and reduced

stability. This highlights the limitations of statistical models in

complex, small-sample environments and underscores the need

for adaptive approaches like CFGM.

Second, from the perspective of machine learning models,

Figures 3 and 4 also compare CFGM with BPNN and SVR. In the

out-of-sample period, CFGM consistently outperforms BPNN.

While BPNN achieves the lowest in-sample MAPE (0.98%)

among all models, its out-of-sample MAPE rises sharply to

37.35% (Figure 4A), far exceeding CFGM’s out-of-sample

MAPE (7.08%). This dramatic increase underscores BPNN’s

overfitting tendencies and poor generalization. Furthermore,

BPNN ’s out-of-sample MAPE variance and range are

significantly higher than CFGM’s, emphasizing its instability

across industries. For example, BPNN’s maximum out-of-

sample MAPE (277.52%) vastly exceeds CFGM’s, highlighting

its unreliable predictions.

Regarding RMSE, a similar pattern emerges. While BPNN

achieves the lowest in-sample RMSE (69.42) in Figure 3B, its out-

of-sample RMSE rises to 1039.66, compared to CFGM’s

significantly lower RMSE of 405.53 (Figure 4B). These results

reinforce BPNN ’s susceptibility to overfitting and poor

generalization. SVR follows a similar trend, performing

moderately well in the in-sample period but showing high

variability and reduced accuracy out-of-sample due to its reliance

on sufficient sample sizes. These findings highlight CFGM’s

superior adaptabil i ty and robustness in small-sample

environments like the marine industry, where data limitations

constrain machine learning models (Zhou et al., 2025).

Third, from the perspective of gray models, Figures 3 and 4

further illustrate CFGM’s superiority over GM and DGM. For
TABLE 4 The predicting MAPE improvement rates (%) between CFGM and its competitors.

Horizons Models
Marine
fishery

Coastal
tourism

Marine biomedi-
cine industry

Marine trans-
port industry

Marine
power
industry

Average
improvements

One-steps

ARIMA -2.60 13.61 -7.27 12.14 6.76 4.53

ETS -4.42 1.83 -6.84 -1.44 4.62 -1.25

SVR -1.90 11.95 5.66 2.15 39.53 11.48

BPNN -7.47 35.26 -7.23 28.53 8.03 11.42

GM -8.54 14.25 0.00 -2.75 0.00 0.59

DGM -2.42 35.87 197.85 35.36 543.19 161.97

Two-steps

ARIMA 5.05 -1.19 -2.16 3.04 2.31 1.41

ETS 17.16 2.25 7.48 -5.82 0.54 4.32

SVR -0.04 1.91 46.44 6.39 62.54 23.45

BPNN 3.80 -1.11 152.53 -6.64 -3.82 28.95

GM 0.95 38.92 0.00 -5.11 0.00 6.95

DGM -0.72 26.40 200.17 23.05 410.68 131.92

Average
improvements

-0.10 14.99 48.89 7.41 89.53 32.14
The bold values mark the situation where the CFGM model shows better prediction accuracy compared to the competing models.
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example, in the in-sample period (Figure 3A), GM achieves a mean

MAPE of 7.64%, higher than CFGM’s 5.42%. This trend becomes

more pronounced in the out-of-sample period, where GM’s mean

MAPE rises to 9.36%, while CFGM maintains a lower value of

7.08%. Additionally, GM’s MAPE variance and range are

consistently higher, reflecting greater instability. For example,

GM’s maximum and minimum MAPE values (15.11% and 4.17%)
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show a wider spread compared to CFGM’s, which remains more

consistent across industries.

For RMSE, CFGM again outperforms GM, showing consistently

lower mean, variance, and range in both periods. DGM performs

even worse, with larger prediction errors and greater variability.

These results highlight the limitations of traditional gray models,

which, despite their independence from large samples or strict data
FIGURE 3

(A,B) The MAPE and RMSE boxplots of the CFGM and traditional predictive models for the in-sample period.
FIGURE 4

(A,B) The MAPE and RMSE boxplots of the CFGM and traditional predictive models for the out-of-sample period.
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assumptions, lack advanced data processing capabilities to handle

complex and heterogeneous time series (Wang and Li, 2024). In

contrast, CFGM leverages conformable fractional accumulation to

effectively capture intricate patterns in small-sample datasets,

making it more reliable and adaptable.

In summary, the comparative analysis across statistical models,

machine learning models, and gray models demonstrates that

CFGM consistently outperforms its competitors, especially in the

out-of-sample period. Unlike statistical models, CFGM does not

rely on strict assumptions about data distributions, such as

stationarity or normality, making it more suitable for real-world

datasets that are often small, heterogeneous, and complex. Similarly,

compared to machine learning models like BPNN and SVR, CFGM

avoids issues of overfitting and instability, which commonly arise

due to limited sample sizes. Furthermore, in comparison with

traditional gray models, CFGM incorporates advanced data

processing capabilities because of the conformable fractional

accumulation, which enables it to fit a wide range of time series

effectively and achieve superior performance in various scenarios.

Overall, the forecasting ability of CFGM to achieve the smallest

mean, variance, and range in the out-of-sample period highlights its

superior performance across diverse industries and forecasting

horizons. Moreover, these strengths can be attributed to its

unique data processing mechanism, which enhances its

adaptability and effectiveness in handling small-sample,

heterogeneous, and complex datasets. As a result, CFGM emerges

as a highly reliable and robust choice for predictive modeling in

added values in diverse marine industries.
4.3 Robustness test

To ensure the reliability and applicability of the CFGM model,

robustness testing is conducted to evaluate the stability and

accuracy of its predictive performance under varying conditions.

Importantly, robustness tests are particularly important in

forecasting models as they validate whether the anticipated values

remain precise and consistent across multiple scenarios, such as

diverse industries or time horizons.

In this study, two complementary methods are adopted to

assess the robustness of CFGM. On the one hand, PDA is used to

examine the stability of one-step forecasted values by analyzing

their probability distribution curves, which are derived through

MCS and kernel density estimation (Wang et al., 2020). On the

other hand, the MCB test is performed to statistically compare

CFGM with benchmark models across multiple industries. This test

evaluates whether CFGM significantly outperforms other models in

multi-step forecasting scenarios by analyzing their average rankings

and confidence intervals. In short, these two approaches provide a

comprehensive evaluation of the robustness of CFGM, verifying

both the precision of its predictions and its relative superiority over

competing models.

4.3.1 Probability density analysis
As outlined in the PSO procedure, the initialization of the

population and particles is inherently stochastic, leading to
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variations in the optimal parameter z -order-CFA across repeated

predictions under identical experimental conditions. This inherent

randomness introduces uncertainty into the model’s predictive

performance, as the fitted and forecasted values are contingent

upon the specific parameter configurations. To address this issue

and ensure the robustness of the proposed model, we incorporate

the PDA framework. This approach systematically evaluates the

stability and accuracy of the predictive outcomes, thereby

enhancing the reliability of the model in practical applications.

Moreover, the inherent randomness, from the optimal

parameters in each repeated experiment, has a direct impact on

the prediction outcomes of the CFGM model, as the fitted and

forecasted values vary depending on the comfortable fractional

parameters z (Ding et al., 2024b). As a result, MCS involves

repeating the optimization process for finding hyper-parameter z
1000 times, resulting in a dataset of predicted values in the one-step

prediction. These values, denoted as x = (x1  , x  2,…, x500), are used

as input for describing PDA, and this process can be calculated as

follow.

f (x) = 1
500ho500

i=1K(
x − xi
h

)

K(x) = e−0:5x
2ffiffiffiffi

2p
p 1

∫+∞−∞ f (x) = 1

,

8>>>><
>>>>:

(9)

here, h denotes the bandwidth, a smoothing parameter that is

set based on the specific data characteristics, and xi represent the

predicted values generated by CFGM.

By applying the above method to CFGM, we can generate the

probability density curves shown in Figure 5, which provide

intuitive insights into the stable predictions generated by the

CFGM across different industries. Specifically, the PDA in one-

step forecasting of CFGM is displayed for five marine industries: the

red, orange, yellow, green, and blue curves represent the marine

fishery, coastal tourism, biomedicine, transportation, and power

industries, respectively. In detail, the X-axis corresponds to the

forecasted added values of the marine economy, while the height of

the probability density curve at any given point represents the

likelihood of that forecasted value occurring. As a result, the peak of

each curve marks the forecasted value with the highest probability

of occurrence. Notably, when a probability density curve exhibits a

unimodal pattern, it indicates that the predictions by CFGM are

highly stable, as the predicted values are concentrated around a

single point with minimal fluctuations.

For example, focusing on the marine power industry (shown in

the blue curve in Figure 3), the peak of the probability density curve

occurs near 450, while the actual added value for this industry in

2023 is 446. This demonstrates that the CFGM model generates an

accurate and stable prediction. On the one hand, the unimodal

pattern confirms the stability of the forecasts, as the predicted values

are tightly concentrated around the peak. On the other hand, the

proximity of the peak value to the actual added value highlights the

precision in the predictions of the CFGM model. Similar

conclusions can be drawn for the other industries, where the

unimodal probability density curves confirm the stability and

accuracy of predictions generated by CFGM across different
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scenarios. This indicates that the predictive results of CFGM remain

robust even under varying scenarios, fulfilling the requirements for

stable and precise time series forecasting.

4.3.2 Multiple comparisons with the best tests
TheMCB test was used to statistically compare the performance

of CFGM against benchmark models, utilizing Absolute Percentage

Error (APE) values from multi-step forecasts. This method

computes the average ranks of models across various industrial

predictions and their corresponding confidence intervals, providing

statistical evidence to assess whether differences in performance are

meaningful rather than due to random variations. Notably, the

BPNN model was excluded from the MCB test due to its overfitting

tendency, avoiding potential distortions caused by such models.

As shown in Figure 6, the average ranks of CFGM and its

competitors are displayed, along with their confidence intervals.

The analysis highlights two key aspects of the comparative

performance. First, in regard to non-overlapping confidence

intervals, models such as DGM (the average rank: 4.89), SVR (the

average rank: 3.72), ARIMA (the average rank: 3.47), and ETS (the

average rank: 2.97) have confidence intervals that do not overlap

with CFGM (the average rank: 2.52). This lack of overlap

statistically confirms that CFGM significantly outperforms these

models in multi-step forecasting tasks, indicating their relatively

poor predictive performance compared to CFGM.

Furthermore, from the perspective of overlapping confidence

intervals, GM (the average rank: 2.92) has a confidence interval that

overlaps with CFGM, but it still ranks slightly lower. Consequently,

this phenomenon suggests that GM exhibits less stability and

reliability in predictive accuracy, as evidenced by its lower

ranking than the CFGM model.

In conclusion, the results of the MCB test demonstrate that

CFGM consistently achieves superior performance compared to
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competing models across multiple industries and forecasting

horizons. These findings, combined with insights from the PDA

and MCB tests, verify the reliability and applicability of CFGM in

addressing heterogeneous and complex marine industrial added

value time series. Moreover, by demonstrating both precision and

stability tests, CFGM proves to be a reliable tool for future

predictions, offering valuable insights for decision-making and

strategic planning in diverse marine industry scenarios.
4.4 Future industrial added
value predictions

To explore the future economic trends of five major marine

industries, the CFGM model is employed to predict their added

values of the marine economy for the period 2024–2026, based on

fitted values from 2012–2023. The results, as presented in Figure 7

and Table 5, reveal industry-specific variations in both added values

and growth rates, providing a robust scientific basis for future

policy formulation.

The marine fishery industry: this sector shows a consistent

decline in added value, dropping from 433.18 billion yuan in 2023

to 397.61 billion yuan in 2026. Besides, the average growth rate

remains negative at -0.53% (shown in Column (1) of Table 5),

reflecting the contraction of the added values in this sector. This

decline may result from overexploitation of resources and stricter

environmental regulations, which limit the availability of fish stocks

and impose constraints on production capacity, ultimately reducing

growth potential (Bahamon et al., 2024; Firpo et al., 2023).

The coastal tourism industry: this sector exhibits steady

growth in added value, rising from 1490.78 billion yuan in 2023

to 1386.95 billion yuan in 2026. Besides, the average growth rate is

positive at 3.19% (shown in Column (2) of Table 5), indicating
FIGURE 5

Probability density curves of all industrial predictions for one-step forecasts by CFGM.
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moderate expansion. Although the added value in the next three

years has declined slightly, the industry can still maintain the trend

of growth for a long time from the perspective of growth rate, which

reflects the strong resilience of the industry (Liu, 2023; Cramer

et al., 2023).

The marine biomedicine industry: this sector demonstrates

rapid growth, with added value increasing from 77.90 billion yuan

in 2023 to 112.83 billion yuan in 2026. Moreover, the average

growth rate reaches an impressive 13.22% (shown in Column (3) of

Table 5), making it the fastest-growing industry among the five. The

high growth rate may be driven by advancements in biotechnology

and increasing demand for marine-based pharmaceuticals (Al-

Belushi et al., 2015). However, the slight decline in growth rates

over time reflects challenges such as market competition and high

research and development costs (Miller and Virmani, 2023).

The marine transport industry: this industry experiences

steady growth, with added value rising from 737.34 billion yuan

in 2023 to 800.75 billion yuan in 2026. Additionally, the average

growth rate remains stable at 3.33% (shown in Column (4) of

Table 5), reflecting consistent demand for transportation services.
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This stability is likely due to the reliance on international trade and

well-established logistics networks (Liu et al., 2022), though external

factors like fluctuating global trade volumes and fuel prices may

influence future trends.

The marine power industry: this sector shows the most

dynamic growth, with added value soaring from 43.35 billion

yuan in 2023 to 75.13 billion yuan in 2026. Furthermore, the

average growth rate is exceptionally high at 20.12% (shown in

Column (5) of Table 5), indicating substantial expansion potential.

This rapid growth is driven by investments in renewable energy

technologies (Sinfield et al., 2024), such as offshore wind and

tidal energy.

In summary, these predictions provide valuable insights into the

economic dynamics of the marine industries, showcasing distinct

sectoral characteristics. Specifically, the coastal tourism industry is

projected to maintain the largest added value of production,

reflecting its foundational role in the marine economy. Similarly,

the marine power industry stands out with the fastest average

growth rate, highlighting its importance and rapid expansion

driven by advancements in renewable energy technologies.

Besides, the marine biomedicine industry also demonstrates

substantial growth potential, underscoring its emergence as a key

innovation-driven sector. In contrast, the marine fishery industry

faces negative growth, reflecting challenges such as resource

overexploitation and regulatory pressures. Meanwhile, the marine

transport industry exhibits steady and stable growth, reinforcing its

essential role in supporting global trade. These diverse trends

emphasize the need for differentiated policy measures to ensure

sustainable and balanced development across the marine economy.
5 Policy implications and conclusions

5.1 Policy implications

Numerous explanations can be provided to interpret the

predicted sectoral variations in marine economic growth,
FIGURE 7

Future five industrial added value predictions from 2012 to 2026. The Y-axis data for each subgraph represents the added values (billion yuan) while
the X-axis data represents the years.
FIGURE 6

Statistical significance at the 5% level: MCB test for CFGM and
benchmark models for multi-step forecasts across the added value
time series of all industries.
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including technological advancements, resource utilization

patterns, and environmental constraints. Based on these findings,

the following policy recommendations are proposed to promote

sustainable and balanced development across the marine economy:

Promoting the rapid development of strategic marine

technologies. To capitalize on the growth potential of the marine

power industry and marine biomedicine industry, targeted policies

should prioritize increased funding for research and development

and the establishment of tax incentives for innovation-driven

companies (Araújo et al., 2021). Additionally, fostering

international cooperation in renewable energy and biotechnology

could accelerate technological breakthroughs and facilitate market

expansion (Fang et al., 2024), ensuring these sectors sustain their

high growth rates and drive the marine economy forward.

Strengthening resource management for marine industries.

Given the declining trend in the marine fishery industry, stricter

resource management policies are essential (Chai et al., 2024).

Measures such as implementing scientific fishing quotas,

expanding marine protected areas, and supporting sustainable

aquaculture practices can mitigate overexploitation and

environmental degradation (Alves, 2021). Furthermore,

diversification of economic activities within traditional fishing

communities may help offset the economic losses caused by

reduced fishery outputs.

Optimizing industrial structure and promoting balanced

growth. For industries with stable or moderate growth, such as
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the coastal tourism industry and marine transport industry, policies

should focus on enhancing infrastructure and driving green

transitions (Song and Dong, 2024). For coastal tourism, this

includes developing eco-friendly tourism practices, improving

coastal resilience to climate change, and upgrading visitor

facilities to attract higher-value tourism. For marine transport,

investments in clean-energy vessels and digitalized port

operations are necessary to align growth with sustainability

objectives while maintaining global competitiveness (D’Amato

and Korhonen, 2021).
5.2 Conclusion

This paper sheds light on the development of the marine

economy by forecasting the added value in key sectors, including

marine fishery, coastal tourism, marine biomedicine, marine

transport, and marine power industries. Our findings underscore

the augmented accuracy achieved by the CFGM model over

conventional approaches, providing practical implications for

enhancing marine economic forecasts.

Specifically, the added value time series of production for

marine industries often exhibits mall-sample, heterogeneous, and

non-stationarity, making traditional forecasting methods

inadequate for accurate predictions. In this context, the CFGM

model was developed to address these challenges, by incorporating
frontiersin.or
TABLE 5 The predicted values and their average growth rate for five industrial added value time series.

Years

Predicted added values (billion yuan)

Marine
fishery

Coastal
tourism

Marine biomedi-
cine industry

Marine trans-
port industry

Marine
power industry

2012 365.20 697.20 17.20 480.20 7.00

2013 385.25 738.45 22.40 511.10 6.93

2014 425.22 971.13 25.44 540.76 8.33

2015 448.56 1148.68 28.85 566.29 10.00

2016 461.59 1282.02 32.69 589.69 12.02

2017 467.60 1379.22 37.03 611.87 14.43

2018 468.59 1446.64 41.94 633.32 17.34

2019 465.87 1489.46 47.48 654.35 20.82

2020 460.37 1511.97 53.75 675.15 25.01

2021 452.76 1517.75 60.83 695.85 30.04

2022 443.57 1509.83 68.84 716.56 36.09

2023 433.18 1490.78 77.90 737.34 43.35

2024 421.90 1462.77 88.15 758.28 52.07

2025 409.98 1427.64 99.73 779.40 62.55

2026 397.61 1386.95 112.83 800.75 75.13

Average growth
rates (%)

-0.53 3.19 13.22 3.33 20.12
g
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conformable fractional accumulation and traditional grey

forecasting models. The model enhances data smoothing and

improves predictive accuracy, making it particularly well-suited

for forecasting the diverse added value of marine industries.

In empirical analysis, to validate the accuracy and robustness of

the CFGMmodel, we performed both accuracy tests and robustness

checks. On the one hand, in the accuracy tests, three types of models

are compared, including the statistical (ARIMA and ETS), machine

learning (SVR and BPNN), and grey forecasting (GM and DGM)

models. In terms of the MAPE, RMSE, and IR indicators, the

competitive results showed that the CFGM model consistently

defeated its competitors because of its lowest MAPE and RMSE,

with values of 7.08% and 405.53 in the out-of-sample period,

respectively. Moreover, these predictions fluctuated within the

smallest range, as those above forecast errors of CFGM had the

lowest mean, variance, and range of maximum and minimum

values. Additionally, the IR for CFGM showed a significant

improvement, with an average 32.14% increase in predictive

ability than the other models, further highlighting its superior

predictive accuracy. On the other hand, for robustness, the PDA

and MCB results further confirm the robustness and superior

performance of the CFGM model across multiple industries.

Over the next three years, the future projections derived from

the CFGM model offer valuable insights into Chinese marine

industries from 2024 to 2026. In detail, the added value of

production in the marine power industry is expected to grow

significantly, with an annual growth rate of 20.12%. Meanwhile,

the corresponding data in the marine biomedicine sector is

projected to increase by 13.22% annually. In contrast, the added

value of production in the marine fishery industry is forecast to

decline from 421.90 billion yuan in 2024 to 397.61 billion yuan by

2026, due to overfishing and regulations. Similarly, the coastal

tourism industry will decrease slightly, from 1462.77 billion yuan

to 1386.95 billion yuan. Besides, the marine transport sector is

expected to have a rise from 737.34 billion yuan to 800.75 billion

yuan, supported by global trade. Most importantly, the projected

values across different industries show significant disparities, such

as high growth rates and large values. Based on these data

characterist ics , this paper offers differentiated policy

recommendations tailored to each industrial unique trend.

In the future, there are several promising directions for further

research in the field of marine economy forecasting. For example,

more advanced data preprocessing techniques could be

incorporated to address potential outliers and abrupt changes in

marine economic data series, which may arise from factors such as

extreme weather events or significant policy shifts. Additionally,

efforts could focus on enhancing the CFGM model’s capability to

handle multivariate relationships within the marine economy,

which is influenced by various factors such as oceanographic

conditions, technological advancements, and global economic

trends. Furthermore, given the global nature of the marine
Frontiers in Marine Science 16
economy, applying the CFGM model to investigate international

marine economic trends and comparisons would be highly valuable.

Overall, the field of marine economy forecasting holds significant

potential for further theoretical and practical contributions.
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