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In recent years, underwater object detection (UOD) has become a prominent

research area in the computer vision community. However, existing UOD

approaches are still vulnerable to underwater environments, which mainly

include light scattering and color shifting. The blurring problem caused by

water scattering on underwater images makes the high-frequency texture

edge less obvious, affecting the detection effect of objects in the image. To

address this issue, we design a multi-scale high-frequency information

enhancement module to enhance the high frequency features extracted by

the backbone network and improve the detection effect of the network on

underwater objects. Another common issue caused by scattering and color

shifting is that it can easily change the low-frequency information in the

background of underwater images, leading to performance degradation of the

same target in different underwater scenes. Therefore, we have also designed a

multi-scale gated channel information optimization module to reduce the

scattering and color shifting effects on the channel information of underwater

images and adaptively compensate the features for different underwater scenes.

We tested the detection performance of our designed method on three typical

underwater object detection datasets, RUOD, UDD and UODD. The experimental

results proved that our method performed better than existing detection

methods on underwater object detection datasets.
KEYWORDS

underwater object detection, deep learning, frequency utilization, feature
extraction, DINO
1 Introduction

Recently, the availability of underwater imagery has increased exponentially due to the

widespread use of digital cameras deployed in autonomous underwater vehicles (AUVs),

remotely operated vehicles (ROVs), and unmanned underwater vehicles (UUVs). These

devices provide a sound platform to collect various underwater images and opportunities

for learning-based underwater object detection (UOD) automatic image analysis

techniques (Xu et al., 2023a; Han et al., 2023). Accurate detection of organisms, geology,
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and marine debris in deep-sea environments is vital for human

society and marine environmental protection (Zhang et al., 2022).

However, the complex underwater environment results in high

noise, low visibility, blurred edges, low contrast, and color deviation

in underwater images, posing significant challenges to underwater

object detection tasks (Xu et al., 2023b).

Advancements in deep learning have led to many high-

performance object detection algorithms (Girshick, 2015; Ren

et al., 2017; Redmon, 2016; Liu et al., 2016). Recently, the

transformer-based end-to-end object detector DETR (DEtection

TRansformer) (Carion et al., 2020) proposed by Carion et al. has

received widespread attention. DETR (Carion et al., 2020)

eliminates the need for manually set pre-processing and post-

processing operations, greatly simplifying the object detection

pipeline. Networks such as DABDeTR (Liu et al., 2022),

Deformable-DeTR (Zhu et al., 2021), DN-DeTR (Li et al., 2022b),

and DINO (Zhang et al., 2023) have further optimized the DETR

(Carion et al., 2020)model, achieving excellent detection results.

The common solution for UOD is to retrain existing detectors

(e.g., CNNs) (Fu et al., 2023). However, the complex underwater

environment results in high noise, low visibility, blurred edges, low

contrast, and color deviation in underwater images, posing

significant challenges to underwater object detection tasks (Xu

et al., 2023b). While many existing UOD works focus on efficient

feature enhancement (Fan et al., 2020), augmentation (Lin et al.,

2020) or small object detection (Jiang et al., 2021a), few UOD works

noticed the frequency information utilization. As shown in Figure 1,

the influence of water scattering causes blurring in underwater

images, which can make the original high-frequency texture edges

and other distinguishing features of the image less obvious and
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degrade the detection effect. Therefore, we propose a multi-scale

high-frequency information strengthening module (MHFIEM) to

strengthen high-frequency information for multi-scale features

extracted by the backbone network, optimizing the detection

effect of the network on blurred underwater images.

Furthermore, different underwater environments usually result

in unfixed information variation in different channels, leading to

low-frequency feature shifting (e.g., color biases or illumination

variation) in underwater images. To address this, we propose a

multi-scale gated channel information refinement module

(MGCIRM), which combines a gating mechanism to take

advantage of low-frequency features to optimize multi-scale

underwater image channel features and reduce the impact of

scattering and color shifting on channel information in

underwater images.

Additionally, the significant scale differences among underwater

objects (e.g., sea cucumbers, sea turtles, and divers) and the scale

imbalance pose a huge challenge for underwater object detection

(Fu et al., 2023). Inspired by the multi-scale strategy of DINO, we

design both the MHFIEM and MGCIRM modules to optimize

underwater image features at multiple scales to better adapt to the

scale changes of underwater detection targets.

In summary, this paper designs an underwater object detection

network, named underwater DINO (UDINO), based on the current

excellent detection model DINO (Zhang et al., 2023). UDINO

introduces a mult i -scale high-frequency information

strengthening Module (MHFIEM) and a multi-scale gated

channel information refinement module (MGCIRM) on top of

the DINO network to enhance the network’s detection

performance for underwater objects. Experimental validation
FIGURE 1

The improvement of underwater image object detection performance by UDNIO compared to DINO.
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demonstrates that UDINO achieves better detection results than

existing methods on current underwater object detection datasets.

The contributions of this paper are as follows:
Fron
• This paper proposes a new underwater object detection

network, UDINO, which achieves the best detection results

on the existing underwater object detection datasets, UDD,

RUOD and UODD.

• This paper introduces the MHFIEM module to optimize

high-frequency information in underwater images at

multiple scales, mitigating the adverse effects of

underwater image blurring on detection.

• This paper proposes the MGCIRM module to optimize

channel features in underwater images based on low-

frequency information, reducing the impact of

background interference caused by scattering in

underwater images.

• Through experiments, we demonstrate the effectiveness of

modules MHFIEM and MGCIRM, and find that these two

modules also contribute to the underwater object detection

performance of other DETR-based object detection models.
2 Research background

2.1 Underwater object detection

Object detection is a fundamental problem in computer vision

and has gained significant attention in recent years. The success of

deep-learning spawns various deep learning based object detection

models. There are two typical groups of deep learning based object

detectors: “two-stage” and “one-stage” (Zhang et al., 2020b). The

two-stage detectors follows a “coarse-to-fine” process, while the

latter completes the object detection task “in one step.”

The core idea of single-stage object detection algorithms is to

directly predict the category and location of objects in a single

forward pass, eliminating the step of generating candidate regions

in traditional two-stage algorithms, thereby achieving faster

detection speeds. SSD (Liu et al., 2016) predicts the location and

category of objects on feature maps at multiple scales, enabling

effective detection of objects of different sizes. The RetinaNet (Ross

and Dollár, 2017) algorithm addresses the issue of imbalance

between positive and negative samples in single-stage object

detection by introducing Focal Loss, significantly improving

detection accuracy. The YOLO series object detection algorithms

are a typical branch of fast object detection approaches (Redmon,

2016; Redmon and Farhadi, 2017; Wang et al., 2023).

The two-stage object detection method first determines the area

where the target is located and then determines the target category

during object detection. For example, the Faster R-CNN (Ren et al.,

2017) introduces the Region Proposal Network (RPN), which

enables the process of generating candidate regions to be

optimized through learning. Cascade RCNN (Cai and

Vasconcelos, 2018) improves detection accuracy based on Faster
tiers in Marine Science 03
RCNN by cascading multiple detectors to gradually correct the

localization and recognition results of the target.

Similar as the object detection tasks, the purpose of underwater

object detection (UOD) is to identify the type and location of an

object in an underwater image (Fu et al., 2023). However, the UOD

tasks always suffer from high noise, low visibility, blurred edges, low

contrast, and color deviation in underwater images. To address

these issues, some researchers redesigned architectures based on the

existing object detection frameworks with efficient feature

refinement (Fan et al., 2020), augmentation (Lin et al., 2020) or

small object detection (Jiang et al., 2021a). Unlike these works, this

paper focus on the exploration of frequency information utilization.
2.2 DETR-based object detection

Compared to classical detection algorithms, DETR (Carion et al.,

2020) is a novel detection algorithm based on transformers. DETR

(Carion et al., 2020) models object detection as a set prediction task

and assign labels through bipartite matching. While DETR

demonstrates good performance, it has a slow training convergence

rate. Conditional DETR (Meng et al., 2021) proposed the conditional

cross attention mechanism. It explicitly searches for the extreme

region of an object through conditional spatial queries, thereby

narrowing down the search range and accelerating the convergence

speed of the DETRmodel training. UP-DETR (Dai et al., 2021) learns

target localization capability through random query patch detection,

which also significantly improves the performance and convergence

speed of the DETR model. Deformable DETR (Zhu et al., 2021)

addresses this issue by designing a Deformable attention module that

focuses only on certain sampling points around reference points to

improve the training convergence speed of the DETR algorithm.

DAB-DETR (Liu et al., 2022) proposes defining the DETR queries as

dynamic anchor boxes (DAB), bridging the gap between traditional

anchor-based detectors and DETR-like detectors. DN-DETR (Li

et al., 2022b) further addresses the instability of bipartite matching

by introducing denoising (DN) techniques. DINO (Zhang et al.,

2023), on the other hand, proposes a contrastive denoising training

approach that rejects useless anchor boxes to assist in model training

convergence. Based on the DINO (Zhang et al., 2023) model, we

designed the UDINO model for underwater object detection, which

addresses the issues of large target scale span, blurring of detection

images due to water scattering, and loss of channel information. This

model achieves better performance in underwater object detection.
3 Methods

3.1 Overall structure of UDINO

The overall structure diagram of Underwater DINO (UDINO)

proposed by us is shown in Figure 2. We design our model based on a

popular detection backbone DINO. Since DINO includes a pyramid

structure to obtain multi-scale features using the ResNet50 (He et al.,

2016) backbone network, we design the multi-scale high-frequency
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https://doi.org/10.3389/fmars.2025.1544839
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Wang et al. 10.3389/fmars.2025.1544839
information strengthen module (MHFIEM) and multi-scale gated

channel information refine module (MGCIRM) to utilize the multi-

scale features, separately. Finally, the optimized features are passed

through the DINO’s transformer encoder, decoder, and prediction

head to obtain the prediction results.
3.2 Multi-scale high-frequency information
enhancement module

Refining features is a typical way to improve the detection

performance (Fan et al., 2020). Specially, the key features of the

underwater objects (e.g., sea urchin and holothurian) always includes

high frequency information (e.g., edges, textures and contours).

However, the degradation of underwater image quality caused by

water scattering brings difficulties in underwater object detection.

Although many underwater image enhancement methods can

generally improve the image contrast (Wang et al., 2024b), pointed

out that enhancing the degraded underwater images before detection

often can hardly improve the underwater object detection effect. On

the one hand, underwater image enhancement may increase noise

interference, edge blur, and texture corruption problems. These

problems can further damage the high-frequency texture edge

information and lead to performance degradation of an underwater
Frontiers in Marine Science 04
objection detection task. On the other hand, the independent

enhancement and the detection process result in the lack of

connection between the adjustment of enhanced images and the

performance optimization of the detection network. Considering

these factors, we design an embedded multi-scale high-frequency

information enhancement module (MHFIEM), which can adaptively

enhance the high-frequency features according to the detection

requirements of the detection network.

FcaNet (Qin et al., 2021) pointed out that the low-frequency

characteristics of the input information are linearly correlated with

its average pooling result. This inspires us to obtain high-frequency

information through the pooling operation with subtraction. As

shown in left part of Figure 3, suppose MHFIEM receives multi-

scale features X extracted from the backbone network and uses the

dictionary structure to store and process different scale features

separately. We use the average pooling operation to process the

different scale features X of the input image individually, obtaining

the corresponding low-frequency features Fl in different scales as

shown in Equation 1:

Fl = Avgpool(X) (1)

Next, we subtract the original features Xm under the mth scale

from Fl,m to obtain the high-frequency feature Fh,m of the input

feature Xm as shown in Equation 2.
FIGURE 3

The network structure of MHFIEM and MGCIRM.
FIGURE 2

Overview of the UDINO.
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Fh,m = Xm − Fl,m = Xm − Avgpool(Xm) (2)

where Fhm is adaptively weighted by a 1×1 convolutional layer. The

enhanced feature Fe can be simply represented by the following

formulas (Equation 3):

Fe,m = Conv(Fh,m) + Xm (3)

Since the convolutional operation Conv includes trainable

parameters, the whole feature enhancement process is also an

adaptive enhancement progress.
3.3 Multi-scale gated channel information
refinement module

Water bodies’ absorption and scattering can easily cause

channel information severely changing in underwater images,

resulting in varying degrees of color cast in the underwater image

background. The color cast difference in the background can

interfere with the stable detection of the same target. To alleviate

this issue, we design a multi-scale gate-controlled channel

information refinement module (MGCIRM) to adaptively

optimize the channel information of underwater images. Unlike

the features of underwater objects, the underwater backgrounds

always contain low-frequency features with different color and

brightness. Thus, the purpose of MGCIRM is to capture the

background (low-frequency) information and adaptively

compensate the features for different underwater scenes and

reduce the impact of scattering on channel information changing

of underwater images.

As shown in the right part of Figure 3, the multi-scale feature Fe
strengthened by the MHFIEM module is convolved by 1 × 1

convolution to stretch the channel to twice its previous size. Next,

the information flow is split into feature F1, and feature F2 through

the split operation. The number of feature channels for F1 and F2 is

consistent with the input feature Fe as shown in Equation 4.

F1,m, F2,m = Split(Conv(Fe,m)) (4)

where F1 undergoes a layer of 1 × 1 convolution to further tune the

features and obtain feature Xe. F2 is processed through an average

pooling, a 1 × 1 convolution layer to obtain a low-frequency feature

Avgpool(F1). Since a sigmoid function can provide outputs between

0 and 1, we design a sigmoid function after Avgpool(F1) to obtain

the channel adaptive adjustment factor fc. Next, we can obtain the

channel-wise attention result of by multiplying Fc and Xe. Finally,

we can get the output of MGCIRM by adding the original feature Fe
and the channel-wise attention, achieving channel information

optimization for the multi-scale feature Feand get the refined

feature Fr. The entire forward propagation process can be

represented by the following formulas (Equations 5, 6):

Fc,m = Sigmoid(Conv(Avgpool(F2,m))) (5)

Fr,m = Xm + Conv(F1,m)� Fc,m (6)
Frontiers in Marine Science 05
4 Experiment

In this section, we first describe the implementation details and

introduce the experimental settings. Then, we compare our method

with representative object detection methods on underwater object

detection datasets RUOD (Fu et al., 2023), UDD (Liu et al., 2021)

and UODD (Jiang et al., 2021a). Then, we show the underwater

object detection visual effect of UDINO on (Fu et al., 2023) and

UODD (Jiang et al., 2021a). In the ablation experiment, we verify

the efficiency of MHFIEM and MGCIRM. Finally, we show the

MHFIEM and MGCIRM are also applicable to other DETR (Carion

et al., 2020) models.
4.1 Implementation details

UDINO includes 69.541M parameters, and the FLOPS for a an

image with 1920×1080 resolution is 209.6 GFLOPs. We implement

our method with PyTorch and train it on 4 NVIDIA Tesla A40

GPUs. The batch size is 8. The number of iterations of ablation and

verification experiments is 100K. We adopt average precision (AP)

and AP50 as the primary metrics for model accuracy evaluation

(Zhu, 2004), with precision (P) and recall (R) as supplementary

indicators. We use APs, APm, and APl to evaluate the detection

effect of detectors on objects with different scales. To showcase the

generalizability of our network, we train and test our method on the

RUOD dataset, the UODD dataset and UDD dataset. The RUOD

dataset contains various underwater scenes and consists of 10

categories. It includes 9800 training images and 4200 test images.

The UODD dataset consists of 3 categories, which include 2688

training images and 506 test images. The UDD dataset includes

2227 underwater images, where 1,827 ones are for training and 400

for testing.
4.2 Quantitative comparisons

We compared the detection performance of our method with

single-stage, two-stage, and DETR-based object detection methods

on the RUOD dataset in Table 1. We also evaluated the

performance of some YOLO series on RUOD dataset in Table 2.

As shown in Tables 1, 3, compared to other methods, our method

achieved the best detection performance on all indicators.

Compared to the suboptimal DINO model (Zhang et al., 2023),

our UDINO improved the overall AP metric by 1.1 (from 60.9 to

62.0). Our APl and APm metrics improved by 1.0 (from 66.8 to

67.8) and 0.2 (from 46.4 to 46.6) respectively in large and medium-

sized object detection on the dataset. Compared to the suboptimal

FCOS method for small object detection, our method improves the

APs metric by 0.1.

We compare the detection performance of our method with

other methods on the UODD dataset in Table 4. We also evaluated

the performance of some YOLO series on UODD dataset in Table 3.

As shown in Tables 3, 4, compared to other methods, our method
frontiersin.org
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achieved the best detection performance on all indicators.

Compared to the suboptimal DINO model (Zhang et al., 2023),

our UDINO improved the overall AP metric by 1.1 (from 60.9 to

62.0). Our APl and APm metrics improved by 1.0 (from 66.8 to

67.8) and 0.2 (from 46.4 to 46.6) respectively in large and medium-

sized object detection on the dataset. Compared to the suboptimal

FCOS method for small object detection, our method improves the

APs metric by 0.1.

We further conducted experiments on UDD datasets (Liu et al.,

2021) and compared them with some other methods in Table 5.

Comparing with the other two datasets, UDD is a challenging

dataset for underwater object detection with less samples and small

sizes. Compared to the suboptimal FCOS method for small object

detection, our method improves the AP metric by 0.5 (from 25.8 to

26.3). Since most of the targets of UDD are objects with small sizes,

our APs and APm metrics improved by 1.9 (from 14.2 to 16.1) and

0.5 (from 25.1 to 25.6) respectively in small and medium-sized

object detection tasks on the UDD dataset.
Frontiers in Marine Science 06
4.3 Qualitative comparisons

We compare our method with recent excellent object detection

methods in Figures 4, 5. The proposed method has outperformed

the other detection methods. As shown in Figure 4, our method

performs better than other methods, especially in detecting unclear,

small targets at the bottom of the input image in the first line. For

the input image in the first line, our method performs better in

detecting blurry small targets on the right side of the image,

detecting more targets overall and fewer missed targets. For the

second line of Figure 4, our method has higher detection accuracy

for jellyfish targets in deep blue waters.

As shown in Figure 5, there are many underwater objects

located in different underwater scenes with significant color

shifting. Our method has better localization ability on the

holothurian target at the bottom of the input image in the first

line compared to other methods. Our method detects box

boundaries more accurately. In the second line of Figure 5, our

method can detect more correct scallops that are close to the

background color. In the third and fourth lines of Figure 5, our

method can accurately locate the sea urchin target sandwiched

among starfishes and sea urchins.
TABLE 2 Quantitative comparisons with YOLO series on RUOD dataset
(Fu et al., 2023).

Methods AP↑ AP50↑

YOLOv3 (Farhadi and Redmon, 2018) 49.1 80.3

YOLOv5 (Bochkovskiy et al., 2020) 53.8 81.4

YOLOv6 (Li et al., 2022a) 60.1 84.9

YOLOv7 (Wang et al., 2023) 57.9 84.3

YOLOv8n (Sohan et al., 2024) 58.2 84.2

YOLOv9t (Wang et al., 2024a) 59.2 83.3

YOLOv10s (Wang et al., 2025) 59.8 84.6

YOLOv11n (Khanam and Hussain, 2024) 56.5 81.9

YOLOv11s (Khanam and Hussain, 2024) 61.7 85.8

UDINO (Ours) 62.0 86.1
TABLE 1 Quantitative comparisons of underwater object detection effects on RUOD dataset.

Methods AP↑ AP50↑ AP75↑ APs↑ APm↑ APl↑

Faster RCNN (Ren et al., 2017) 52.8 81.8 57.5 17.2 40.9 58.2

Cascade RCNN (Cai and Vasconcelos, 2018) 54.8 81.1 59.7 16.8 42.2 60.6

Dynamic RCNN (Zhang et al., 2020a) 54.4 81.3 60.3 17.1 42.8 60.0

Libra RCNN (Pang et al., 2019) 54.8 82.8 60.5 16.5 43.1 60.6

RetinaNet (Ross and Dollár, 2017) 50.7 79.3 54.5 14.3 39.2 56.1

FCOS (Tian et al., 2022) 50.7 79.5 54.0 18.0 40.0 56.2

ATSS (Zhang et al., 2020b) 52.9 80.3 56.9 16.4 41.1 58.6

Deformable-DETR (Zhu et al., 2021) 57.4 85.6 63.2 17.4 43.0 63.1

Dab-DETR (Tian et al., 2022) 55.7 85.0 61.1 13.8 41.7 61.3

DINO (Zhang et al., 2023) 60.9 85.7 66.3 17.6 46.4 66.9

UDINO (ours) 62.0 86.1 67.8 18.1 46.6 67.8
TABLE 3 Quantitative comparisons of underwater object detection
effects on the UODD dataset (Jiang et al., 2021a).

Methods AP↑ AP50↑

YOLOv3 (Farhadi and Redmon, 2018) 48.4 88.9

YOLOX (Ge et al., 2021) 48.8 86.3

YOLOv8s (Sohan et al., 2024) 50.7 89.8

YOLOv9t (Wang et al., 2024a) 48.7 86.8

YOLOv10s (Wang et al., 2025) 49.2 88.5

YOLOv11s (Khanam and Hussain, 2024) 50.8 89.9

UDINO (Ours) 51.1 90.2
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4.4 Verify the effectiveness of module
design

4.4.1 Ablation of MHFIEM
To verify the impact of the proposed module on the network

performance, we conducted a series of ablation experiments. Table 6

shows that after adding the MHFIEM module, the network’s AP

detection performance on the RUOD dataset improved by 0.78. At

the same time, we noticed that the model with the MHFIEM module

performed better when detecting large and medium-scale detection

targets, with the model’s APm index improving by 0.17 and the APl

index significantly increasing by 0.92.

To validate the effectiveness of our design, we also conducted an

experiment of low-frequency information enhancement to observe the

effect of low-frequency information enhancement. We named the low-

frequency information enhancement module MLFIEM, and its effect

with the previous high-frequency information enhancement module

MHFIEM. From the experimental results in Table 6, the effect of

MHFIEM module is better than MLFIEM. The high-frequency and

low-frequency information with different scale features is also different,

and the effect of strengthening the high-frequency information from

multiple scales will be better. To verify this point, we constructed a

single scale high frequency information enhancement module HFIEM,
Frontiers in Marine Science 07
and compared its effect with our MHFIEM module in Table 6. The

experimental results show that enhancing high-frequency information

from multi-scale performs better.

4.4.2 Ablation of MGCIRM
From Table 6, we can see that after further adding the MGCIRM

module, the network’s Ap detection performance on the RUOD dataset

has significantly improved by 0.33. At the same time, we noticed that

themodel with theMHFIEMmodule can greatly improve the detection

performance of the model for small-scale targets, with a significant

increase in the APs metric of 2.23. The model’s detection performance

for large targets has slightly improved, with an APl index increase of

0.07. Due to the large proportion of large-scale targets in the dataset, the

slight improvement in detection performance for large targets also has a

significant positive impact on overall detection performance.

4.4.3 MHFIEM and MGCIRM modules are also
effective in other DETR models

To further investigate the potential of our design, we added our

MHFIEM module and MGCIRM module to other DETR (Carion

et al., 2020) structures. Table 7 shows the changes in the detection

performance of our DETR models Dab-DETR (Liu et al., 2022) and

Deformable-DETR (Zhu et al., 2021) after adding MHFIEM and
TABLE 5 Quantitative comparisons of underwater object detection effects on the UDD dataset (Liu et al., 2021).

Methods AP↑ AP50↑ AP75↑ APs↑ APm↑ APl↑

Faster RCNN (Ren et al., 2017) 25.7 60.3 14.3 13.6 25.3 34.0

Dynamic RCNN (Zhang et al., 2020a) 25.0 58.6 15.1 13.6 24.6 36.5

Libra RCNN (Pang et al., 2019) 25.5 60.1 14.7 14.1 25.4 29.0

RetinaNet (Ross and Dollár, 2017) 19.4 45.6 11.4 10.3 17.4 26.2

FCOS (Tian et al., 2022) 25.8 61.0 15.5 14.2 25.1 31.2

UDINO (Ours) 26.3 66.6 13.5 16.1 25.6 25.4
TABLE 4 Quantitative comparisons of underwater object detection effects on the UODD dataset.

Methods AP↑ AP50↑ AP75↑ APs↑ APm↑ APl↑

Faster RCNN (Ren et al., 2017) 47.1 86.5 44.7 30.7 46.9 56.6

Cascade RCNN (Cai and Vasconcelos, 2018) 48.5 86.4 49.1 33.9 48.2 58.2

Dynamic RCNN (Zhang et al., 2020a) 46.9 84.8 47.2 30.9 47.2 55.1

Libra RCNN (Pang et al., 2019) 47.5 87.0 45.3 32.0 47.7 58.0

RetinaNet (Ross and Dollár, 2017) 45.2 84.2 42.2 33.0 45.5 53.5

FCOS (Tian et al., 2022) 44.8 86.3 39.2 32.1 44.9 52.4

ATSS (Zhang et al., 2020b) 48.3 88.1 45.5 34.5 47.7 57.9

Deformable-DETR (Zhu et al., 2021) 48.4 84.2 51.5 32.6 48.0 62.6

Dab-DETR (Tian et al., 2022) 49.8 89.4 49.8 31.0 50.1 60.8

DINO (Zhang et al., 2023), 49.8 87.2 51.7 33.4 50.5 64.1

UDINO (ours) 51.1 90.2 52.6 34.3 51.1 62.7
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MGCIRM modules. After introducing our module, the detection

performance indicator AP of the Dab-DETR (Liu et al., 2022) model

has improved by 0.50, and the detection performance of the

Deformable-DETR model has improved from 57.44 to 59.81. Thus,

we found that MHFIEM and MGCIRM modules can enhance other

DETR models’ underwater object detection performance as well.

To further demonstrate the efficiency of MHFIEM and

MGCIRM modules, we added Figure 6 to demonstrate the impact

of our design in the feature dimension. From the figure, we can find

that the attention maps with MHFIEM and MGCIRM are brighter

than the baseline, which indicate that the proposed UDNIO can

effectively capture the underwater features.
Frontiers in Marine Science 08
5 Conclusion

In this paper, we propose a new underwater object detection

network UDINO which can refine underwater features at the

frequency level. The blurring and color cast of underwater images

caused by water scattering pose challenges to underwater object

detection. We design MHFIEM and MGCIRM modules specifically

to adaptively enhance the high-frequency and channel features of

underwater images, respectively, to improve the detection

performance of the detection network for underwater targets. We

tested the detection performance of our designed method on

representative underwater object detection datasets RUOD and
FIGURE 4

Qualitative comparison on the RUOD dataset.
FIGURE 5

Qualitative comparison on the UODD dataset.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1544839
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Wang et al. 10.3389/fmars.2025.1544839
TABLE 6 Ablation study.

Methods AP↑ AP50↑ AP75↑ APs↑ APm↑ APl↑

Base 60.87 85.66 66.28 17.60 46.43 66.85

Base + MHFIEM 61.65 85.86 67.62 15.84 46.60 67.77

Base + MLFIEM + MGCIRM 61.20 85.81 66.47 19.44 46.43 66.08

Base + HFIEM + MGCIRM 61.57 85.52 67.20 19.28 46.31 67.90

Base + MHFIEM + MGCIRM (Ours) 61.98 86.14 67.76 18.07 46.56 67.84
F
rontiers in Marine Science
 09
TABLE 7 Effectiveness of the proposed modules with different DETR backbones.

Methods AP↑ AP50↑ AP75↑ APs↑ APm↑ APl↑

Deformable-DETR (Zhu et al., 2021) 57.44 85.57 63.18 17.41 43.02 63.11

Deformable-DETR + MHFIEM + MGCIRM 59.81 85.05 66.32 16.27 44.76 65.78

Dab-DETR (Tian et al., 2022) 55.74 84.98 61.11 13.79 41.65 61.26

Dab-DETR + MHFIEM + MGCIRM 56.24 85.51 61.25 15.03 42.03 61.63

DINO (Zhang et al., 2023) 60.9 85.7 66.3 17.6 46.4 66.9

DINO + MHFIEM + MGCIRM (Ours) 61.98 86.14 67.76 18.07 46.56 67.84
FIGURE 6

Demonstrate the impact of our design in the feature dimension. w/o and w/o means without and with our network design(MHFIEM and MGCIRM).
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UODD, and relevant experiments proved that our method has

better detection accuracy than existing detection methods on

underwater object detection datasets.
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