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With its safe and efficient characteristics, container transportation has become

vital for advancing the global economy. However, port congestion has become a

significant obstacle to the container freight price system’s stability. There is

currently no dependable engineering solution to guarantee the stability of the

maritime transport system in a port congestion scenario. Therefore, decision-

makers must comprehend the changing characteristics of the container freight

index in the context of port congestion. Using the Shanghai container freight

index as a proxy, this paper investigated the effect of port congestion on

container freight rates, proposing a container freight index forecasting model.

This study compiled congestion data from the Shanghai, Busan, Los Angeles, and

New York ports from January 1, 2016 to January 1, 2023, to predict a Shanghai

container freight index (SCFI). With its high-precision fitting effect, the RBF neural

network effectively predicted the change in SCFI, and the R2 reached 96%. We

also confirmed the transfer effect of SCFI using the time-lag correlation model in

a large congestion environment. The research results give container shipping

organizations a decision-making foundation for planning shipping strategies and

mitigating market risk.
KEYWORDS

container transportation, container freight index, container freight rate, shanghai
container freight index, RBF neural network
Highlights
• Analyzed the fluctuations in freight rates within the context of port congestion.

• Utilizing deep learning to forecast shipping costs.

• Utilizing time-lag correlation to determine the internal relationship between

freight rates.

• Enhance quantitative research on port congestion and freight rates.
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1 Introduction

Container transport is one of the most rapidly expanding

sectors of the global shipping industry (Montes et al., 2012;

Mondello et al., 2023). It has become the backbone of the global

transportation industry over time (Fan et al., 2012). Container

shipping has contributed significantly to the economic growth of

cities and even nations. Therefore, the normal operation of the

container transportation industry has contributed significantly to

the robust growth of the global economy (Shuaibu, 2019). Notably,

container shipping volume continues to rise, and containerization

within the transportation industry is also intensifying (Berle et al.,

2011). Nevertheless, taking into account the specific advantages of

containerized transport, such as shorter handling costs and times as

well as guarantees of cargo security, this proportion is expected to

continue to grow rapidly over the next few years (Lee et al., 2013;

Tavakoli et al., 2023). Nonetheless, the volatility of container freight

rates has always been a significant factor impeding the growth of the

container transportation industry (Jeon et al., 2020). In actuality,

container freight rates are central to the container transportation

industry (Adumene et al., 2021). Fluctuating container freight rates,

upon which the success or failure of shipping lines depends

significantly, characterize container shipping risks (Schramm and

Munim, 2021).

The contemporary shipping market extensively utilizes the

container freight rate index to reflect the dynamics and status of

container freight rates (Yuan, 2014; Gui et al., 2022). Due to the

growing containerization of maritime cargo, the standards used to

measure the freight index for the container transport industry are

becoming more stringent (Schramm and Munim, 2021). The

Shanghai containerized freight index (SCFI) is a key indicator of

the container transportation market in China. SCFI is also a widely

used economic indicator in the global economy. The dynamic

changes of SCFI can directly impact the profits of container

transportation companies around the globe (Xu, 2021). Therefore,

mastering the changing characteristics of SCFI is crucial for

container transport operators and investors when making

investment decisions (Yuan, 2014; Wu et al., 2024). However,

even though the study of SCFI fluctuation has progressively

become the consensus in the global shipping industry, there are

very few studies on the prediction of SCFI fluctuation (Chen et al.,

2021). Most shipping freight rate forecasts are primarily based on

Baltic Dry Index (BDI) forecasting studies (Yuan, 2014). In

addition, among the few SCFI studies, the prediction of SCFI is

still surrounded by controversy (Hirata and Matsuda, 2022).

Notably, since the onset of the COVID-19 pandemic, the

world’s leading container ports have experienced unusually severe

congestion due to a severe imbalance between demand and the

effective transportation capacity of sea containers (Guerrero et al.,

2022; Ma et al., 2021). SCFI has undergone a remarkable upswing

under port congestion, resulting in significant losses for sectors

associated with container transport (Koyuncu and Tavacioğlu,

2021). The research concurs that container freight index

forecasting in specific environments requires immediate attention

(Jeon et al., 2020; Chen et al., 2021; Hirata and Matsuda, 2022;
Frontiers in Marine Science 02
Rahman and Adjeroh, 2019; Huang et al., 2022; Bai et al., 2023). In

addition, port congestion has become a widespread issue in

numerous industries, particularly container shipping. Congestion

at container ports impacts the SCFI market by limiting shipping

supply (Fan et al., 2012). In fact, congestion research has been a

significant concern in the maritime industry, particularly in global

emergencies such as natural disasters, financial crises, and

epidemics (Lin et al., 2022). According to studies, port congestion

may transmit from one port of call to another (Xu et al., 2021).

Considering the “knock-on” effect of container port congestion,

port congestion will continue to the next port with a higher

correlation (Koyuncu and Tavacioğlu, 2021; Regan and Golob,

2000). When congestion events occur, freight rates on various

global container transport system routes become more uncertain.

Port congestion makes container ocean freight rates more

unpredictable when coupled with the heterogeneity of the

container shipping market (container freight rates exhibit

cyclicality and volatility) (Hirata and Matsuda, 2022). Therefore,

when planning major infrastructure projects, it is critical to identify

the most influential attributes that exporters and importers consider

when choosing a port (Vega et al., 2019). Consequently, industry

researchers have increasingly valued the field of study on the

adverse effects of port congestion on SCFI dynamics.

Intriguingly, despite the expanding challenge of container port

congestion, there is relatively little academic or commercial research

on producing an excellent integrated response in SCFI (Xu et al.,

2021). Port congestion’s effect on SCFI has been a relatively

unexplored study area. Consequently, we pose the following

research topics:
RQ1: When congestion occurs, is it possible to precisely

predict the change in SCFI?

RQ2: When port congestion events occur, does SCFI also

have a “transfer effect?”
We have made the following endeavors to address the above

issues and fill the research gap in container shipping freight and

port congestion. First, we gathered the SCFI Weekly Freight Index

data. We also gathered Shanghai, Busan, New York, and Los

Angeles port daily congestion data between January 1, 2016, and

January 1, 2023. In this investigation, we used the above data and

the RBF neural network model to predict and analyze SCFI. In

addition, we employed the time-lag correlation model to confirm

the existence of the “transfer effect” among subdivided SCFIs during

periods of port congestion. The results indicate that the R2of the

container freight rate forecasting model developed in this study

attained 96%, 94%, and 93% for the SCFI Composite Index, SCFI

Shanghai–Los Angeles Index (SCFI1), and SCFI Shanghai–New

York Index (SCFI2). This study also confirmed the hysteresis

correlation between SCFI1 and SCFI2 during uncommon

extreme congestion.

This study makes multiple contributions. First, it provides a

comprehensive deep-learning method for predicting SCFI, which

increases the accuracy of transportation industry forecasts. Second,

it verifies the characteristics of the impact of port congestion, a
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prevalent occurrence, on the economic indicators of container

shipping and expands the research on port congestion. Third, this

study improves the maritime sector’s ability to respond to port

congestion events in advance and reduces the negative influence of

port congestion on the container shipping industry. This study

concludes by proposing and validating the “transfer effect” of SCFI

in the container transportation system, enhancing the research on

container shipping system freight rates.

The rest of this paper is as follows. In Section 2, we forecast

research on the ocean freight index and port congestion. Then, in

Section 3, we introduce this study’s collected research data and

methods. Next, Section 4 explores the results of the analysis. Finally,

Section 5 presents this study’s contributions and conclusions.
2 Literature review

2.1 Research on freight rate prediction

SCFI forecasts provide stakeholders in the container shipping

industry with a crucial premise for decision-making (Schramm and

Munim, 2021; Zhu et al., 2019). Irrespective of whether the results

of SCFI’s projections meet the requirements of their optimal

business environment, their accuracy is crucial (Orrell and

McSharry, 2009). Therefore, increasing the accuracy of SCFI

forecasts is essential for shipping industry agents seeking to make

business decisions and avoid or reduce potential risks (Duru, 2010).

Existing research on shipping freight price forecasting focuses

primarily on predicting the world’s key shipping freight price

indicators. Researchers regard the Baltic Dry Index (BDI) and the

Baltimore Tanker Index as the primary maritime shipping market

indicators. Scholars frequently view these freight rate indicators as

indicators of the overall transportation market and global economic

health (Han et al., 2020). Consequently, research on freight rate

forecasting centers primarily on these indicators (Chen et al., 2021;

Sirshar et al., 2022). Although research on freight rate forecasting in

container transportation began relatively late, it has progressed

quickly. In recent years, SCFI has progressively become one of the

most significant indicators in the shipping industry and an essential

indicator for container shipping evaluation. Moreover, SCFI is one

of the most frequently cited indicators for evaluating the health and

status of international trade. However, compared to the preceding

two fields, SCFI prediction studies are relatively scarce (Nielsen

et al., 2014; Tasdelen and Sen, 2021). In the past, many empirical

studies have focused on the determination of freight rates in

shipping markets (Fung et al., 2003). Notably, prior research on

the maritime freight index provides methodological guidance for

the SCFI’s forecasting research.

According to various forecasting methods, we can divide the

existing literature on shipping freight price forecasting into three

categories (Zhang et al., 2019). The traditional econometric

approach is the initial technique. Shipping freight price analysis

and forecast widely uses the autoregressive integrated moving

average (ARIMA), vector autoregressive (VAR), generalized

autoregressive conditional heteroscedasticity (GARCH), and
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vector error correction (VEC) models (Zhang et al., 2019; Xiao

et al., 2021; Xu et al., 2023). First, Cullinane et al. (1999) pioneered

using ARIMA models to evaluate the impact of the BDI’s new

composition principles. Second, Chen et al. (2012) utilized ARIMA

and VAR to predict the freight rates of multiple dry bulk

transportation routes and discovered that VAR performed better

than ARIMA in sample prediction. In addition, other studies have

demonstrated that combining GARCH and classical econometric

models can enhance the precision of BDI forecasting (Katris and

Kavussanos, 2021). However, Batchelor et al. (2007) found that the

VECM model provided the best fit in predicting forward freight

rates versus spot freight rates. In addition, Koyuncu and Tavacioğlu

(2021) compared the SCFI prediction methods SARIMA and Holt-

Winters. They concluded that the SARIMA model is superior to

extant freight rate forecasting models when making short-term

monthly predictions. Weimar-Rasmussen (2010) also utilized the

ARMA and ARFIMA models to predict the container freight rates

for the three most important routes. According to numerous

research sources, traditional econometric models have poorly

predicted the maritime shipping market (Zhang et al., 2018, 2019;

Katris and Kavussanos, 2021). This inadequate forecasting is

primarily due to the difficulty of capturing the non-linear

properties of the dry bulk cargo capacity index using

conventional econometric techniques. Therefore, non-linear

regression and artificial intelligence (AI) techniques predominate

in maritime freight price forecasting research.

The second category of techniques consists primarily of

artificial neural networks (ANN), support vector machines, other

machine learning algorithms, and non-linear regression (Zhang

et al., 2018; Katris and Kavussanos, 2021). For instance, Adland and

Cullinane (2006) analyzed the non-linear dynamics of spot freight

rates in the tanker market. Leonov and Nikolov (2012) utilized

wavelet and neural network-based models to predict dry bulk

freight rates. Li and Parsons (1997) used neural networks to

forecast monthly tanker freight rates from the short term to the

long term. They discovered that neural systems performed better

than ARIMA time-series methods in long-term forecasting. In

addition, Yang et al. (2008) utilized a support vector machine

(SVM) to investigate and forecast the freight price instability

warning of the China Coastal Bulk Freight Index (CCBFI), China

Container Freight Index (CCFI), and Baltic Sea Freight Index (BFI).

Their research accurately depicts the extreme volatility of several

transport freight indices. However, fluctuations in freight rates are

typically complex and non-stationary. Any single predictive

instrument has limitations, including single non-linear regression

and artificial intelligence-based methods. Therefore, there is

ongoing research to increase the accuracy of shipping freight

index predictions by employing integrated methods (Zhang

et al., 2019).

In the third category of forecasting methodologies, the literature

proposes redefining the accuracy of freight rate forecasting by

constructing an ensemble model (Zhang et al., 2019; Rahman and

Adjeroh, 2019). This method primarily integrates multiple

independent models into a single model to increase the accuracy

of shipping freight index prediction. For the short-term prediction
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of tanker freight rates, Eslami et al. (2017) devised a hybrid model

based on an artificial neural network (ANN) and adaptive genetic

algorithm (AGA). Han et al. (2014) utilized wavelet transform to

eliminate noise from BDI data and combined it with other artificial

intelligence techniques to improve the accuracy of BDI prediction.

Using a dynamic fluctuation network (DFN) and artificial

intelligence, Zhang et al. (2019) predicted BDI. In addition,

Kamal et al. (2020) utilized a profoundly integrated recurrent

network composed of recurrent neural networks (RNN), long

short-term memory (LSTM), and gated rectifier unit neural

network (GRU) to improve the predictive performance of BDI. In

addition, Chen et al. (2021) predicted China’s container freight

index using the decomposition–integration method that combines

the empirical mode decomposition and the gray fluctuation

prediction model. They discovered that the method performed

better than autoregressive moving average models for multistep-

ahead forecasts. Hirata and Matsuda (2022) compared the long-

short-term memory (LSTM) and seasonal autoregressive integrated

moving average (SARIMA) techniques for forecasting the

composite and route-based Shanghai Containerized Freight Index

(SCFI). LSTM possesses superior efficacy (Shoorkand et al., 2024).

Innovative studies also predict container freight rates using

machine learning and natural language technology (Saeed

et al., 2023).
2.2 Research on port congestion

The smooth operation of container port operations significantly

influences the efficiency of global cargo management, vessel

availability, supply chain connectivity, and overall trade costs

(Guo et al., 2021). Consequently, container ports play a crucial

role in international commerce (Wang et al., 2020). Nonetheless,

the frequent occurrence of port congestion has impeded the regular

operation of container ports. Studies provide an overview of the

causes of container port congestion (Talley and Ng, 2016). First, a

study identified inadequate infrastructure or hinterland transport

capacity as the leading cause of port congestion (Tongzon, 2009).

Second, extreme weather conditions, strikes, demand shocks, or

labor shortages are the second leading cause of port congestion. In

addition, sudden events such as the global financial crisis, natural

disasters, and pandemics have directly contributed to global

congestion in ports (Lin et al., 2022).

Regarding port congestion consequences, congestion results in

unnecessary petroleum consumption and carbon emissions (Jia

et al., 2017). These consequences increase the cargo proprietor/

carrier’s shipping costs. In addition, lengthy delays at ports wreak

havoc on supply chains, including those in the manufacturing and

energy industries, causing disarray in global production. However,

in the literature, land and air freight terminal congestion has

garnered more attention than port congestion in the maritime

industry. Therefore, port congestion research has shifted its

concentration to port congestion management. First, ports must

implement effective mitigation strategies to address the possibility

of congestion (Lin et al., 2022). According to several studies, port
Frontiers in Marine Science 04
alliances or alliances between ports and shipping lines could

alleviate port congestion. These studies recommend that ports in

the same region establish a comprehensive multi-port system and

strengthen cooperation (Li et al., 2022; Shi et al., 2020).

Several studies have also presented the perspective of reducing

congestion from port management and construction standpoints. For

instance, Leachman and Jula (2011) noted port management must

consider assessing infrastructure, managing staffing levels, and

arranging operational schedules to reduce congestion. The study

concluded that port infrastructure investment and prudent

management could alleviate port congestion (Lin et al., 2022). In

addition, the study revealed that ports must increase their human

resources to reduce port congestion (Asteris et al., 2012). Other

studies examined port congestion governance solutions from a

modeling perspective. They found queuing models necessary for

congestion modeling and analysis in port systems, particularly

container port terminals. Thus, numerous studies have utilized

queuing models for optimization analyses of port congestion (Peng

et al., 2022). Simulation is the second model for addressing port

congestion. These studies have solved the actual problem of port

congestion by simulating the real situation using simulation models

(Ke et al., 2012). The third model uses machine learning—digitalizing

container ports has enhanced data quality and accessibility. Thus, big

data analytics techniques have become popular in measuring port

management (Yang et al., 2019). Big data analysis can accurately

estimate and forecast port congestion. However, machine-learning-

based research on predicting port congestion is minimal.

In addition, some of the research on port congestion also focuses

on port congestion’s effects on regional economies and ports. Port

congestion has a particularly significant impact on the global container

transportation system due to container transport’s accelerated growth.

Container port congestion affects freight prices on liner routes and

global container leasing costs (Lin et al., 2022). In addition, port

congestion directly contributes to decreased ship capacity turnover,

increasing the risk of the shipping alliance transportation system

collapsing. Although industry practitioners frequently acknowledge

the impact of port congestion on shipping market dynamics,

systematic and persuasive academic research on this topic is limited

(Steinbach, 2022; Xu et al., 2021). According to a literature review of

port congestion problems and mitigation strategies, there are

numerous solutions to port congestion; however, applying these

solutions depends on specific circumstances. In addition, literature

seldom quantifies port congestion’s effect on global ocean freight rates.

Specifically, there is no determination yet on how to forecast changes

in global container freight rates due to port congestion (Carrier et al.,

2023; Wang et al., 2023; Zou et al., 2023; Liu et al., 2024; Ma et al.,

2024; Tao et al., 2024; Sheng et al., 2025).
3 Methods

3.1 General structure

This study aims to achieve two key objectives. First, it seeks to

predict fluctuations in the SCFI using large-scale port congestion
frontiersin.org
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data. Second, it aims to analyze the “transfer effect” of SCFI during

periods of severe congestion. To accomplish these goals, we propose

two distinct models: one for forecasting SCFI variations and

another for verifying the freight rate “transfer effect” across

different shipping routes.

For the first objective, we develop an RBF neural network model

that leverages port congestion and SCFI data to predict changes in

freight rates. For the second objective, we employ a time-lag

correlation model to examine how freight rates shift between

different routes during congestion. The overall research framework

is illustrated in Figure 1, which outlines the three core methodological

components: (1) data acquisition and preprocessing, (2) RBF neural

network analysis, and (3) hysteresis correlation testing.
3.2 Modeling methods

3.2.1 Radial basis function neural network
The RBF neural network is a three-layer forward neural network;

Figure 2 shows the network’s topology. The first layer is the input

layer, which is the signal source node. The second layer is the hidden

layer; actual needs determine the number of units. The third layer is

the output layer, which is the response to the input data. In the

structure of the RBF neural network in Figure 2, x = ½x1, x2,⋯, xn�T  
is the n-dimensional input of the network, y = ½y1, y2,⋯, y∞�T   is the
m-dimensional output of the network, c = ½c1, c2,⋯, ck�T   is the

matrix formed by the center of the hidden layer basis function, Fk(

x − ckj j), k = 1, 2⋯, h is the hidden layer radial basis function, Whm

∈ Rhc*m   is the connection weight matrix from the hidden layer to

the output layer, and b = ½b1, b2,⋯, bm�T is the threshold vector of

the network. This paper uses the Euclidean distance function as the

hidden layer node basis function of the RBF neural network, and the
Frontiers in Marine Science 05
activation function adopts the radial basis function. The Gaussian

function is the most widely used among the different radial basis

functions. It has the characteristics of radial symmetry, good

analytical performance, and any order of derivatives (Chen, 2017).

Thus, this paper uses the Gaussian function as the radial basis

function and expresses the RBF neural network (Figure 2) output

as follows:

yj =o
h

i=1
wijFi(‖x − ci‖) = :o

h

i=1
wi exp −

‖x − cij2
2d 2

i

� �
(‖x − cij)

Where: ‖x − ci‖  represents the Euclidean distance between the

input vector and the center of the radial basis function.

3.2.2 Time-lag correlation
Time-lag correlation analysis is a powerful tool for examining

the temporal relationship between two evolving processes,

allowing us to determine whether a specific correlation exists

over time. This method helps define the directional influence

between two signals, establishing a lead–follow relationship. In

this dynamic, the leading signal triggers a response, while the

following signal replicates it after a delay. To measure time-lag

correlation, a stepwise shifting of a time series vector is performed,

followed by iterative correlation computations between the two

signals. If the peak correlation appears at the center (offset = 0), it

indicates that the two time series are most strongly correlated at

the same time. However, if one signal precedes the other, the

correlation peak shifts to a different coordinate value, reflecting a

time-lagged relationship.The time-lag correlation coefficient

quantifies this relationship by comparing the data in one time

series with the corresponding values in another after shifting them

backward by several time steps (Arreola Hernandez et al., 2015).

This coefficient, often referred to as the lagged correlation

coefficient, provides valuable insights into the delayed

interactions between two time-dependent processes. The

mathematical formulation for computing the lagged correlation

coefficient is as follows:
FIGURE 1

Research framework.
FIGURE 2

RBF neural network structure diagram.
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rXY ,h =
on−h

t=1 (Xt − X)(Yt+h − Y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on−h

t=1 (Xt − X)2on−h
t=1 (Yt+h − Y)

q

Among them, rXY ,h   represents the h-order time-lag correlation

coefficient between the x and y sequences. n is the length of the time

series. �X and �Y are the mean values of the X and Y series, respectively.
3.3 Data description

The choice of variables significantly influences the performance

of machine learning models (Xu et al., 2021; Dong et al., 2023;

Afshari et al., 2022). Various strategies exist for variable selection,

including heuristic, nested, and greedy search methods. Therefore,

following the objective and scope of this research, we collected three

SCFI indices and eight port congestion indicators (Tables 1, 2). The

research dataset spans from January 1, 2016 to January 1, 2023. All

data for this research is sourced from Shanghai Shipping Exchange

and Clarksons—the SCFI data is from the Shanghai Shipping

Exchange. In addition, the Shanghai International Shipping

Exchange Center officially released SCFI for the first time in

December 2005. SCFI provides high-frequency time series data

reflecting fluctuations in spot freight rates in the Shanghai export

container transportation market. It includes freight rates (indices)

for 15 individual routes and a composite index. The comprehensive

SCFI is the weighted average of the freight rates of 15 routes. The

SCFI2 (Shanghai–New York) has the highest mean value (4361.41)

and the largest variation, reflecting the long-haul nature of the route

and external economic influences. Port congestion indicators also

show substantial fluctuations, particularly PCILA1 (Los Angeles)

and PCINY1 (New York), suggesting that U.S. ports experienced

more severe congestion volatility. These variations underscore the

necessity of predictive modeling to capture the complex dynamics

of freight rates and port congestion.
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This study focused on predicting and validating the changes in

spot freight rates for the combined SCFI and two Shanghai–U.S.

routes (Figure 3). SCFI1 is the spot fare for export container freight

from Shanghai to the west coast of North America (LA/LB ports,

etc.). SCFI2 is the spot fare for export container freight from

Shanghai to the east coast of North America (LA/LB ports, etc.).

Before 2020, the three SCFIs exhibited a stable trend, as indicated by

the graph. However, after 2020, all three SCFIs showed an upward

trend that halted in 2022 and reversed downward. Figure 4 shows

the port congestion data as the global container port demurrage

capacity. Likewise, before 2020, the cargo tonnage of congested

ships at container ports continued to increase, but after 2022, it

began to decline. This decline can be attributed to the gradual easing

of global supply chain disruptions, a slowdown in international

trade due to economic uncertainties and inflationary pressures, and

improved port operational efficiencies. Additionally, the

normalization of container freight rates reduced speculative

shipping demand, leading to a stabilization of cargo flows and a

decline in congestion-related tonnage.

The Port Congestion Index - Containerships at Shanghai

represents the vessel deadweight of congested ships at China’s

Shanghai container port, reflecting the number of ships

experiencing congestion at this major global trade hub. In

addition, our variables include the vessel deadweight of congested

ships and the number of congested ships at key international ports,

namely the U.S. West Coast ports (e.g., Long Beach Port), the U.S.

East Coast ports (e.g., New York Port), and Busan Port, South Korea

(Figures 4). These ports were selected due to their critical role in

global supply chains, serving as major transshipment hubs that

are highly interconnected with Shanghai’s shipping routes.

Busan Port was specifically included because it functions as a key

transshipment hub for container traffic between China, the U.S.,

and other international markets. Given its geographic proximity to

China and its strategic role in handling cargo volumes originating
TABLE 1 Research variables.

Type Variables Abbreviation Unit

Freight index

SCFI Comprehensive Index SCFI Index

SCFI Shanghai-WC America SCFI1 Index

SCFI Shanghai-EC America SCFI2 Index

Congestion data

Port Congestion Index PCI Million TEU

Port Congestion Index - Containerships at Shanghai (ships) PCISH1 Numbers

Port Congestion Index - Containerships at Shanghai (tonnage) PCISH2 Thousand TEU

Port Congestion Index - Containerships at Busan (ships) PCIBS1 Numbers

Port Congestion Index - Containerships at Busan (tonnage) PCIBS2 Thousand TEU

Port Congestion Index - Containerships at New York and New Jersey (ship) PCINY1 Numbers

Port Congestion Index - Containerships at New York and New
Jersey (tonnage)

PCINY2 Thousand TEU

Port Congestion Index - Containerships at Los Angeles/Long Beach (ships) PCILA1 Numbers

Port Congestion Index - Containerships at Los Angeles/Long
Beach (tonnage)

PCILA2 Thousand TEU
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from or destined for Shanghai, congestion at Busan can have

spillover effects on trade flows and supply chain efficiency in the

region. Figures 4 illustrate that among these ports, congestion at the

Port of Los Angeles fluctuated the most around 2022, highlighting

the dynamic nature of port congestion and its potential ripple

effects on global logistics.

In machine learning, correlation analysis is a common initial

technique for establishing relationships between variables and can

be key to enhancing the predictive accuracy of models. A

correlation heatmap provides a graphical representation of

numerical variable correlations, visually illustrating these

relationships. Each cell value represents the strength of a

correlation, with positive values indicating a positive relationship

and negative values showing a negative relationship. By analyzing

these correlations, we can determine the impact of independent

features on predictions. Generally, a Pearson correlation coefficient

greater than 0.7 indicates a strong positive correlation.

In our study, we employed correlation analysis as the primary

method for variable selection. According to statistical norms,

correlations below 0.3 are considered weak and unlikely to
Frontiers in Marine Science 07
provide meaningful predictive power. Therefore, we selected

variables with a correlation greater than 0.3 with the SCF

indicators as the independent variables for our model. This

approach helped ensure that only relevant features contributing

significantly to the predictive model were included.

Figure 5 depicts the correlation between dataset characteristics,

highlighting the selected variables used in the analysis.

Figure 5 highlights the correlation between different variables in

our dataset. While most correlations are positive, some negative

values are observed, indicating an inverse relationship between

certain port congestion indices. For instance, the negative

correlation between PCISH1 and PCIBS1 (-0.08) and PCISH2

and PCIBS1 (-0.16) suggests that when congestion in Shanghai

increases, some shipments may be rerouted to Busan, reducing

congestion there. Similarly, the negative correlation between

PCISH2 and PCIBS2 (-0.16) further supports this substitution

effect between major ports. These findings imply that port

congestion dynamics are influenced by cargo rerouting decisions,

regional economic conditions, and port management policies.
4 Result

Like any predictive modeling study, we divided the dataset

into training (in-sample) and testing (out-of-sample) epochs.

According to past practice, approximately 80% of the samples

comprise the training samples, and 20% are the testing samples.

The loss curve evaluates the model’s performance in three cases:

underfitting, excellent fitting, and overfitting—a decent fit exhibits

roughly similar training loss and validation loss curves. The loss

function used in this study is the Mean Squared Error (MSE),

which measures the average squared differences between predicted

and actual values. The abbreviations and their full terms used in

this study can be found in the Appendix. Figure 6 depicts the

change in the loss function of the training and test sets during the

RBF neural network training process. The loss function on the

training and test sets is considerable at the outset of training. As

the number of training sessions increases, the loss function swiftly

decreases. After approximately 200 epoch cycles, the RBF neural

network converged.
TABLE 2 Descriptive statistics for SCFI prediction data.

Variables Count Mean Std. Min. Max.

SCFI 2,550 1653.11 1397.34 400.43 5109.6

SCFI1 2,550 2820.1 2118.6 725 8,117

SCFI2 2,550 4361.41 3036.44 1,496 11,976

PCI 2,550 7.45 0.95 5.94 9.56

PCISH1 2,550 66.96 11.58 40.88 125.625

PCISH2 2,550 321.66 48.24 193.22 547.01

PCIBS1 2,550 39.67 4.31 23 61

PCIBS2 2,550 146.61 22.85 79.53 213.03

PCINY1 2,550 9.88 4.98 5.13 31.75

PCINY2 2,550 76.28 44.08 30.90 261.68

PCILA1 2,550 24.57 15.27 8.38 92.76

PCILA2 2,550 201.23 126.88 58.34 679.08
FIGURE 3

Chart of the Shanghai container freight index trend.
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FIGURE 4

Trend of cargo tonnage and number of congested ships in major container ports: Shanghai, Busan, Los Angeles, and N.
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4.1 SCFI forecasting

Table 3 presents the results of RBF neural network prediction of

SCFI, SCFI1, and SCFI2. Considering all port congestion variables, it

is evident that the RBF neural network model is an algorithm capable
Frontiers in Marine Science 09
of accurately predicting SCFI. Furthermore, SCFI, SCFI1, and SCFI2

have test set R2 values of 0.96, 0.93, and 0.94, respectively. Thus, the

model’s predicted results correspond well with the actual data.

Figures 7–9 illustrate the results of the SCFI training and test

sets, providing a visual comparison between actual and predicted
FIGURE 5

Correlation analysis chart.
FIGURE 6

The loss function of the training set and the test set.
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TABLE 3 SCFI’s forecast results.

Freight index
Training set Test set

MSE Normalization MSE R2 MSE Normalization MSE R2

SCFI 80,052.77 3.61E−03 0.96 86,012.70 3.88E−03 0.96

SCFI1 269,557.16 4.93E−03 0.94 298,823.73 5.47E−03 0.93

SCFI2 592,140.44 5.39E−03 0.94 599,955.17 5.46E−03 0.94
F
rontiers in Marine S
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FIGURE 7

SCFI’s forecast results.
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values. The X-axis represents the sample index, while the Y-axis

denotes the corresponding forecasted values. In these figures, the

purple line indicates the actual data, whereas the green line

represents the model’s predictions. The results demonstrate that

the predicted values closely align with the actual values in both the

training and test sets. This consistency suggests that the model

achieves a high level of fit and effectively generalizes to unseen data.

Overall, the constructed RBF neural network model exhibits strong

predictive accuracy and robust generalization performance, further

validating its effectiveness in forecasting SCFI trends.
Frontiers in Marine Science 11
To strengthen the reliability of the model’s results, we conducted

a comprehensive comparison between the RBF neural network and

other machine learning models. This study integrates multiple

machine learning approaches to train and evaluate the three key

indicators, ensuring a robust assessment of predictive performance.

The model was trained for 2000 iterations to optimize performance.

The results, presented in Table 4, demonstrate that, across all metrics,

the RBF neural network consistently outperforms alternative models,

exhibiting the highest accuracy and predictive capability for the

three indicators.
FIGURE 8

Prediction results of SCFI1.
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FIGURE 9

Prediction results of SCFI2.
TABLE 4 Model performance comparison.

Index Model
Train set Test set

MSE NMSE R2 MSE NMSE R2

SCFI LR 94405.89 4.32E-03 0.80 103940.08 4.57E-03 0.87

RF 94305.67 4.32E-03 0.82 92194.92 4.33E-03 0.91

SVM 91936.55 4.11E-03 0.83 106219.61 4.63E-03 0.83

GBRT 91874.40 3.88E-03 0.86 89935.99 4.20E-03 0.91

MLP 90581.24 3.81E-03 0.90 91788.41 4.30E-03 0.91

(Continued)
F
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4.2 Transfer effect

Figure 10 depicts the change in SCFI for the two routes from

Shanghai to the ports of Los Angeles and New York from 2016 to

2013. The figure shows that SCFI1 is substantially higher than

SCFI2 over the entire period. Before 2016, the SCFI fluctuations of

the two Shanghai-to-Los Angeles Long Beach Port and New York-
Frontiers in Marine Science 13
Port routes were relatively minor. We considered them to have

fluctuated around a particular value. In addition, the volatility

tendencies of SCFI1 and SCFI2 are highly similar. Table 4

displays the variations in the maximum and minimum values of

SCFI1 and SCFI2 around 2020. Figure 10 shows the location of two

famous container ports (Los Angeles Container Port and New York

Container Port) on the east and west coasts of the United States.
TABLE 4 Continued

Index Model
Train set Test set

MSE NMSE R2 MSE NMSE R2

SGD 86284.96 3.79E-03 0.90 87005.80 3.97E-03 0.93

XGBR 85611.75 3.67E-03 0.90 105028.96 4.60E-03 0.85

BP 84134.73 3.66E-03 0.95 96655.98 4.47E-03 0.90

RBF 80052.77 3.61E-03 0.96 86012.70 3.88E-03 0.96

SCFI1 LR 331935.41 6.04E-03 0.83 356894.66 6.33E-03 0.81

RF 315493.58 6.02E-03 0.84 377058.00 6.81E-03 0.75

SVM 300499.86 5.78E-03 0.86 355906.24 6.33E-03 0.87

GBRT 292333.26 5.61E-03 0.87 303031.77 5.71E-03 0.91

MLP 285085.37 5.52E-03 0.89 369881.59 6.79E-03 0.78

SGD 283854.63 5.41E-03 0.90 316402.85 6.02E-03 0.91

XGBR 283277.52 5.38E-03 0.90 318727.57 6.09E-03 0.91

BP 278547.90 5.33E-03 0.91 319037.22 6.18E-03 0.90

RBF 269557.16 4.93E-03 0.94 298823.73 5.47E-03 0.93

SCFI2 LR 700568.06 6.46E-03 0.82 639760.21 5.63E-03 0.86

RF 699000.66 6.15E-03 0.83 629123.70 5.63E-03 0.87

SVM 689030.18 6.11E-03 0.83 713654.09 5.65E-03 0.83

GBRT 681966.63 5.79E-03 0.86 727871.27 6.51E-03 0.78

MLP 670036.53 5.76E-03 0.87 726242.12 5.86E-03 0.79

SGD 668097.87 5.75E-03 0.90 646696.87 5.64E-03 0.84

XGBR 620862.54 5.53E-03 0.91 729522.16 6.54E-03 0.78

BP 595021.90 5.50E-03 0.91 621492.14 5.49E-03 0.89

RBF 592140.44 5.39E-03 0.94 599955.17 5.46E-03 0.94
FIGURE 10

The actual change curve of SCFI1 and SCFI2.
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4.2.1 Time-lag correlation results
After 2020, SCFI1 and SCFI2 exhibited exponential mutation

behavior owing to the pandemic. Between 2016 and 2020, the

average value of SCFI1 increased from 2,500.83 to 6,861.56, or

2.74 times the initial value. Additionally, the utmost value of the

SCIF1 index increased from 3,739 to 11,976, a 3.20-fold increase

over the original. Similarly, between 2016 and 2020, the mean

value of SCFI2 increased from 1,510.97 to 4,579.26, a 3.03-fold

increase. Additionally, the most significant value of SCIF2

increased from 2,606 to 8,117, a 3.11-fold increase. Around

2020, SCFI1 and SCFI2 more than tripled. In addition,

Figure 11 demonstrates that the level of synchronization

between SCFI1 and SCFI2 was comparatively high before 2020.

The changing trends of SCFI1 and SCFI2 are consistent after 2020,

but there is a time-delayed effect (Table 5).

We examined the hysteresis effect of the SCFI indices of the

two locations before and after 2020. We performed a lag

correlation analysis on the SCFI1 and SCFI2 data before and

after 2020 to confirm the time-lag relationship between SCFI1 and

SCFI2 during a period of heavy congestion. This study divided the

SCFI1 and SCFI2 data into two portions around 2020 and

conducted a lag correlation analysis on the data in both groups.

Figure 12 illustrates the correlation between the hysteresis
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correlation coefficient and the hysteresis order between SCFI1

and SCFI2 for the two periods surrounding 2020. Figure 12a

demonstrates that when the lag days between SCFI1 and SCFI2 are

0 before 2020, the correlation of the SCFI index of the two ports is

at its maximum level of 0.9, indicating that the SCFI of the two

ports is highly correlated. After 2020, there is still a substantial

correlation between SCFI1 and SCFI2, as shown in Figure 12b.

The correlation coefficient between SCFI1 and SCFI2 attained its

maximum value of 0.925 when SCFI1 data lagged by −14 days, i.e.,

when SCFI1 data were 14 days ahead of SCFI2 data.

4.2.2 Granger causality results
To further demonstrate the causal connection between the two

indices, a Granger causality test was conducted. The Granger test

requires a stationary time series. Therefore, this investigation

conducted an ADF test to determine the stationarity of SCFI1

and SCFI2 (Enders, 2008). The ADF statistic for the variable SCFI1

is -1.513 and the p-value is 0.527. As the p-value exceeds the 0.05

significance level, the null hypothesis cannot be rejected.

Consequently, SCFI1 is not stationary. The ADF statistic for the

variable SCFI2 is -1.189, and the p-value is 0.678%. In addition,

because the p-value exceeds 0.05, the null hypothesis cannot be

rejected. Consequently, SCFI2 is not stationary. The ADF statistic
TABLE 5 Actual changes in SCFI1 and SCFI2.

Freight
index

Time
Data
MAX

Data
Average value

SCFI1
Before 2020 3,739 2,500.83

After 2020 11,976 6,861.56

SCFI2
Before 2020 2,606 1,510.97

After 2020 8,117 4,579.26
FIGURE 11

Granger causality results.
TABLE 6 Unit root test.

Variable ADF p-value

SCFI1 -1.513 0.527

SCFI2 -1.189 0.678

SCFI1(-1) -3.566 ** 0.006 **

SCFI2(-1) -3.960 *** 0.002 ***
***denotes significance at the 1% level, **denotes significance at the 5% level.
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for the variable SCFI1(-1), which is the first difference of SCFI1, is

-3.566, and the p-value is 0.006. In this instance, the p-value is

less than 0.05, allowing us to reject the null hypothesis.

Consequently, SCFI1(-1) is stationary. The ADF statistic for the

variable SCFI2(-1), which is the first difference of SCFI2, is -3.960,

and the p-value is 0.002. Similarly, the p-value is less than 0.05,

allowing us to reject the null hypothesis. That is, SCFI2(-1) is is

stationary (Table 6).

In conclusion, the ADF test indicates that the variables SCFI1

and SCFI2 are not stationary. However, their initial differences

SCFI1(-1) and SCFI2(-1) are stationary. According to the results of

the lagged correlation analysis, the variables SCFI1 and SCFI2 had

the highest correlation When SCFI2 was lagged by 14 days. The

maximal lag order is therefore set to 20 and the Granger test is

conducted on the first-order difference data of SCFI1 and SCFI2. As

depicted in the figures results of Granger indicate, when the delayed

order of SCFI2 is 14, the first-order difference sequence of SCFI1

and SCFI2 has a causal relationship. F=1.8976, p=0.0231<0.05 is the

smallest among all orders. When the delayed order is 15, F = 1.7662

and p = 0.0347<0.05. However, the results are significantly more

significant if the delayed order is 14. This result is consistent with

the lagged correlation coefficient test results (Figure 11).
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5 Discussion and conclusion

The impact of port congestion on the freight market has caught

the industry’s attention. This study developed the RBF neural network

model to predict the dynamic changes in the transportation market in

a container port congestion environment. This study modeled and

predicted SCFI using congestion data from the Shanghai, Busan, New

York, and Los Angeles ports. Its objective is to enhance the

dependability and consistency of maritime transport system, thus

tackling the issues caused by overcrowding in the freight market and

guaranteeing durability of worldwide supply chains. This study

quantified the predictive influence of container port congestion on

the composite index SCFI. It also quantified the predictive impact of

container terminal congestion on SCFI1 and SCFI2. The study’s

findings indicate that the index of container port congestion can

explain and predict future changes in container transportation rates.

We also used hysteresis correlation analysis to investigate the “transfer

effect” of SCFI1 and SCFI2 freight rates during periods of severe port

congestion. Specifically, shifts in SCFI1 and SCFI2 lagged during

significant port congestion. During periods of extreme congestion,

changes in SCFI2 always follow changes in SCFI1 and follow the same

trend of change. Typically, this time-lag relationship occurs after 14

days. This result indicates that there will be a “transfer effect” of SCFI

over time between highly correlated routes during periods of severe

market fluctuations, particularly periods of significant port congestion.
5.1 Theoretical contributions

This study makes multiple contributions. First, container

transportation is one of the most rapidly expanding segments of

the global shipping industry (Jiang et al., 2017), contributing

hundreds of billions of dollars to the global economy annually

and boosting nations’ gross domestic product. Notably, container

transportation is a volatile industry susceptible to fluctuations in

business cycles and freight rates (Luo et al., 2009). However, there

are few empirical and modeling studies on freight volatility. Many

methods focus on the research of forecasting container trade

volume or port throughput. This research included a freight rate

forecast and trend analysis of SCFI. Therefore, this study

contributes to forming a body of knowledge about container

shipping freight rates.

Second, congestion is a widespread issue in various industries

and is particularly significant in container transportation logistics.

However, the literature has focused more on land and air freight

congestion than container transport. Few studies have quantified

port congestion impacts on shipping economics (Hirata and

Matsuda, 2022). In addition, port congestion and its effect on the

economics of the container transportation market is a relatively

unexplored area of study. Our research can function as pilot

research in this regard. For instance, discovered that port

congestion affects LPG seaborne trade freight rates. Similar to

previous findings, our results confirm that congestion at container

ports has the same effect on SCFI. Therefore, this study casts light

on the impact of port congestion on container freight rates and
FIGURE 12

Time-lag correlation results for SCFI1 and SCFI2.
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provides a method for predicting the shifting direction of SCFI. Our

research also contributes to developing an interdisciplinary body of

sc ient ific knowledge regarding port conges t ion and

shipping economics.

Third, as the availability of large datasets and predictive

algorithms increases, machine learning is acquiring popularity in

the maritime economy. However, container freight rate analysis has

not extensively used deep learning algorithms. Munim and

Schramm (2017) accurately determined container shipping freight

rates using the ARIMA model in the existing literature. In addition,

Koyuncu and Tavacioğlu (2021) examined container freight rates

using conventional econometric models. Although we concur with

the findings of these studies in container freight rate forecasting, we

have some reservations. Container freight indices time series are

highly complex, irregular, stochastic, and non-linear. Traditional

econometric models cannot attain acceptable accuracy in

forecasting. This study successfully used the RBF neural network

to develop a model with a high degree of accuracy. Therefore, this

research contributes to developing the machine learning knowledge

system in container shipping price prediction.

Lastly, our research reveals a “transferring effect” of SCFI in the

context of port congestion. Previous research indicated that

container port congestion would extend over time across multiple

dimensions, including time, space, and facilities (Xu et al., 2021). In

other words, congestion at one port creates a domino effect of

congestion at the next port (Jiang et al., 2017). Similar to the

“knocking effect” between ports, this study also discovered a

“transfer effect” between container route SCFI during port

congestion. In other words, our findings identified and quantified

the effect of SCFI transfer between container lines during port

congestion. This perspective, based on the principles of reliability

engineering and system stability, provides a thorough

comprehension of the complex dynamics within the container

shipping freight system during difficult circumstances.
5.2 Management contributions

Our research also provides policymakers with management

recommendations, giving governments, carriers, freight

forwarders, and shippers improved predictive models for

container freight rate volatility management. Amid port

congestion, decision-makers can rely on container freight rate

forecasts to make business decisions. First, the results of this

study’s container freight rate forecast are significant for

shipowners. During periods of high port congestion, shipowners

can make regular judgments regarding the sale, purchase, and

chartering of ships based on predicted trends in container freight

rates. According to this study’s results, shipowners can determine

the optimal time to purchase, sell, or lease vessels and enhance

corporate performance.

Second, based on the rare occurrence of significant port

congestion, this study’s findings can assist the shipping industry
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in observing changes in a shipping market experiencing a unique

crisis. It can serve as a reference for vessel planning and revenue

management. Further, this study can assist container transportation

companies in making swift and lucid decisions in the face of “rare

events” and recouping economic losses. Specifically, container

shipping companies can rapidly avoid risks in situations such as

freight rate fluctuations. With increasing freight rates, management

can seize the opportunity and win unsustainable market dividends

after the “rare event” period.

Third, when the uncommon occurrence of significant congestion

occurs, the long-term port congestion in Shanghai, Busan, Los

Angeles, and New York container ports reduces the market’s

tonnage supply and impacts port operations’ competitiveness. The

findings of this study provide port operations decision-makers with

management insights. When the SCFI of highly correlated routes

demonstrates an upward trend, port decision-makersmust establish a

coordination mechanism between ports based on the “transfer effect”

of the SCFI of the routes. In addition, decision-makers should

collaborate with ports in the same region to maximize the

utilization of inactive port berth resources. According to the results

of freight rate prediction models, port managers can rapidly organize

the port’s available resources and constantly prepare for the

possibility of congestion in the future.

Finally, the findings of this study provide a premise for

decision-making to assist government agencies in implementing

reasonable and practical emergency measures in response to such

infrequent port congestion events. To address the issues of

fluctuating freight rates and port congestion, the government

should actively promote the development of port infrastructure.

Based on the results of freight rate forecasts and the SCFI “transfer

effect,” government organizations can issue risk alerts in advance.

Government agencies must be able to provide complete protection

programs to shield container transport companies from market

demand shifts precipitated by freight rate fluctuations and reduce

the impact of container transportation market instability on the

local economy.
6 Limitation and future research

Although this study provides stakeholders in the container

transportation industry with a solid foundation for decision-

making, it has certain limitations. First, we began by developing

predictive models of SCFI using limited congestion data. However,

given that the global container transport system is highly

interconnected, the limited port congestion data may differ from

the predicted results. Therefore, we will acquire additional

congestion data to incorporate into the model. Second, the

integrated model may have superior fitting performance despite

the RBF neural network being an excellent deep-learning model.

Future research must establish additional comparison models to

enhance the effect of fit.
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Koyuncu, K., and Tavacioğlu, L. (2021). Forecasting Shanghai containerized freight
index by using time series models. Mar. Sci. Technol. Bull. 10, 426–434. doi: 10.33714/
masteb.1024663

Leachman, R. C., and Jula, P. (2011). Congestion analysis of waterborne,
containerized imports from Asia to the United States. Transportation Res. Part E:
Logistics Transportation Rev. 47, 992–1004. doi: 10.1016/j.tre.2011.05.010

Lee, T. C., Chang, Y. T., and Lee, P. T. (2013). Economy-wide impact analysis of a
carbon tax on international container shipping. Transportation Res. Part A: Policy
Pract. 58, 87–102. doi: 10.1016/j.tra.2013.10.002

Leonov, Y., and Nikolov, V. (2012). A wavelet and neural network model for the
prediction of dry bulk shipping indices. Maritime Economics Logistics 14, 319–333.
doi: 10.1057/mel.2012.10

Li, W., Asadabadi, A., and Miller–Hooks, E. (2022). Enhancing resilience through
port coalitions in maritime freight networks. Transportation Res. Part A: Policy Pract.
157, 1–23. doi: 10.1016/j.tra.2022.01.015

Li, J., and Parsons, M. G. (1997). Forecasting tanker freight rate using neural
networks. Maritime Policy Manage. 24, 9–30. doi: 10.1080/03088839700000053

Lin, H., Zeng, W., Luo, J., and Nan, G. (2022). An analysis of port congestion
alleviation strategy based on system dynamics. Ocean Coast. Manage. 229, 106336.
doi: 10.1016/j.ocecoaman.2022.106336

Liu, Y., Ning, C., Zhang, Q., Yuan, G., and Li, C. (2024). Research on ocean buoy
attitude prediction model based on multi-dimensional feature fusion. Front. Mar. Sci.
11, 1517170. doi: 10.3389/fmars.2024.1517170

Luo, M., Fan, L., and Liu, L. (2009). An econometric analysis for container
shippingmarket.Maritime PolicyManage. 36, 507–523. doi: 10.1080/03088830903346061

Ma, R., Zheng, X., Wang, P., Liu, H., and Zhang, C. (2021). The prediction and
analysis of COVID-19 epidemic trend by combining LSTM and Markov method. Sci.
Rep. 11, 17421. doi: 10.1038/s41598-021-97037-5

Ma, X., Zhang, L., Xu, W., and Li, M. (2024). AB-LSTM: a mesoscale eddy feature
prediction method based on an improved Conv-LSTM model. Front. Mar. Sci. 11,
1463531.

Mondello, G., Salomone, R., Saija, G., Lanuzza, F., and Gulotta, T. M. (2023). Life
Cycle Assessment and Life Cycle Costing for assessing maritime transport: a
comprehensive literature review. Maritime Policy Manage. 50, 198–218. doi: 10.1080/
03088839.2021.1972486

Montes, C. P., Seoane, M. J. F., and Laxe, F. G. (2012). General cargo and
containership emergent routes: A complex networks description. Transport Policy 24,
126–140. doi: 10.1016/j.tranpol.2012.06.022

Munim, Z. H., and Schramm, H.–J. (2017). Forecasting container shipping freight
rates for the Far East–Northern Europe trade lane. Maritime Economics Logistics 19,
106–125. doi: 10.1057/s41278-016-0051-7

Nielsen, P., Jiang, L., Rytter, N. G. M., and Chen, G. (2014). An investigation of
forecast horizon and observation fits influence on an econometric rate forecast model
in the liner shipping industry. Maritime Policy Manage. 41, 667–682. doi: 10.1080/
03088839.2014.960499

Orrell, D., and McSharry, P. (2009). System economics: Overcoming the pitfalls of
forecasting models via a multidisciplinary approach. Int. J. Forecasting 25, 734–743.
doi: 10.1016/j.ijforecast.2009.05.002

Peng, W., Bai, X., Yang, D., Yuen, K. F., and Wu, J. (2022). A deep learning approach
for port congestion estimation and prediction. Maritime Policy Manage., 1–26.
Frontiers in Marine Science 18
Rahman, S. A., and Adjeroh, D. A. (2019). Deep learning using convolutional LSTM
estimates biological age from physical activity. Sci. Rep. 9, 11425. doi: 10.1038/s41598-
019-46850-0

Regan, A. C., and Golob, T. F. (2000). Trucking industry perceptions of congestion
problems and potential solutions in maritime intermodal operations in California.
Transportation Res. Part A: Policy Pract. 34, 587–605. doi: 10.1016/S0965-8564(99)00042-7

Saeed, N., Nguyen, S., Cullinane, K., Gekara, V., and Chhetri, P. (2023). Forecasting
container freight rates using the Prophet forecasting method. Transport Policy 133, 86–
107. doi: 10.1016/j.tranpol.2023.01.012

Schramm, H.-J., and Munim, Z. H. (2021). Container freight rate forecasting with
improved accuracy by integrating soft facts from practitioners. Res. Transportation
Business Manage. 41, 100662. doi: 10.1016/j.rtbm.2021.100662

Shen, J., Ren, X., Feng, Z., and Nie, J. (2025). The impact of public environmental
concerns on port sustainability: evidence from 44 port cities in China. Front. Mar. Sci.
11, 1454242.

Shi, X., Jiang, H., Li, H., and Wang, Y. (2020). Upgrading port-originated maritime
clusters: Insights from Shanghais experience. Transport Policy 87, 19–32. doi: 10.1016/
j.tranpol.2019.11.002

Shoorkand, H. D., Nourelfath, M., and Hajji, A. (2024). A hybrid CNN-LSTMmodel
for joint optimization of production and imperfect predictive maintenance planning.
Reliability Eng. System Saf. 241, 109707. doi: 10.1016/j.ress.2023.109707

Shuaibu, U. (2019). The Economic Impact of Low Sulphur Compliance on Future Fuel
Cost and Container Freight Rates: A Case Study of Shanghai–Lagos (World Maritime
World University), 1121.

Sirshar, M., Paracha, M. F. K., Akram, M. U., Alghamdi, N. S., Zaidi, S. Z. Y., and
Fatima, T. (2022). Attention based automated radiology report generation using CNN
and LSTM. PloS One 17, e0262209. doi: 10.1371/journal.pone.0262209

Steinbach, S. (2022). Port congestion, container shortages and U.S. foreign trade.
Economics Lett. 213, 110392. doi: 10.1016/j.econlet.2022.110392

Talley, W. K., and Ng, M. (2016). Port multi-service congestion. Transportation Res.
Part E: Logistics Transportation Rev. 94, 66–70. doi: 10.1016/j.tre.2016.07.005

Tao, S., Du, L., and Li, J. (2024). Data mining-based machine learning methods for
improving hydrological data: a case study of salinity field in the Western Arctic Ocean.
Front. Mar. Sci. 11, 1490548. doi: 10.3389/fmars.2024.1490548

Tasdelen, A., and Sen, B. (2021). A hybrid CNN-LSTM model for pre-miRNA
classification. Sci. Rep. 11, 14125. doi: 10.1038/s41598-021-93656-0

Tavakoli, S., Khojasteh, D., Haghani, M., and Hirdaris, S. (2023). A review of the
progress and research directions of ocean engineering. Ocean Eng. 272, 113617.
doi: 10.1016/j.oceaneng.2023.113617

Tongzon, J. L. (2009). Port choice and freight forwarders. Transportation Res. Part E:
Logistics Transportation Rev. 45, 186–195. doi: 10.1016/j.tre.2008.02.004

Vega, L., Cantillo, V., and Arellana, J. (2019). Assessing the impact of major
infrastructure projects on port choice decision: The Colombian case. Transportation
Res. Part A: Policy Pract. 120, 132–148. doi: 10.1016/j.tra.2018.12.021

Wang, T., Tian, X., and Wang, Y. (2020). Container slot allocation and dynamic
pricing of time-sensitive cargoes considering port congestion and uncertain demand.
Transportation Res. Part E: Logistics Transportation Rev. 144, 102149. doi: 10.1016/
j.tre.2020.102149

Wang, Q., Zhang, H., Huang, J., and Zhang, P. (2023). The use of alternative fuels for
maritime decarbonization: Special marine environmental risks and solutions from an
international law perspective. Front. Mar. Sci. 9, 1082453. doi: 10.3389/fmars.2022.1082453

Weimar–Rasmussen, H. (2010). EconometricModeling and Forecasting of Container Freight
Rates. Department of Business Studies, Aarhus School of Business, University of Aarhus.

Wu, D., Yu, C., Zhao, Y., and Guo, J. (2024). Changes in vulnerability of global
container shipping networks before and after the COVID-19 pandemic. J. Transport
Geogr. 114, 103783. doi: 10.1016/j.jtrangeo.2023.103783

Xiao, W., Xu, C., Liu, H., and Liu, X. (2021). A hybrid LSTM-based ensemble
learning approach for China coastal bulk coal freight index prediction. J. Advanced
Transportation 2021, 1–23. doi: 10.1155/2021/5573650

Xu, W. (2021). Research on Shanghai export Container Freight Index Fluctuation
Based on Arma-Garch-X model (World Maritime University), 1622.

Xu, Y., Kohtz, S., Boakye, J., Gardoni, P., and Wang, P. (2023). Physics-
informed machine learning for reliability and systems safety applications: State of
the art and challenges. Reliability Eng. System Saf. 230, 108900. doi: 10.1016/
j.ress.2022.108900

Xu, B., Li, J., Liu, X., and Yang, Y. (2021). System dynamics analysis for the
governance measures against container port congestion. IEEE Access 9, 13612–13623.
doi: 10.1109/ACCESS.2021.3049967

Yang, H., Dong, F., and Ogandaga, M. (2008). “Forewarning of freight rate in
shipping market based on support vector machine,” in Traffic and Transportation
Studies, Aarhus, Denmark 295–303.

Yang, D., Wu, L., Wang, S., Jia, H., and Li, K. X. (2019). How big data enriches
maritime research–A critical review of Automatic Identification System (AIS) data
applications. Transport Rev. 39, 755–773. doi: 10.1080/01441647.2019.1649315

Yuan, C. (2014). Study on Volatility of China Containerized Freight Index Based on
GARCH Family Model (World Maritime University).
frontiersin.org

https://doi.org/10.1155/2014/460684
https://doi.org/10.3390/jmse10050593
https://doi.org/10.3390/jmse10050593
https://doi.org/10.1016/j.ocecoaman.2022.106230
https://doi.org/10.1080/03088839.2019.1708984
https://doi.org/10.1080/03088839.2019.1708984
https://doi.org/10.1016/j.trd.2017.04.037
https://doi.org/10.1080/03088839.2016.1237783
https://doi.org/10.1080/03088839.2016.1237783
https://doi.org/10.3390/app10041504
https://doi.org/10.1002/for.v40.8
https://doi.org/10.1016/j.eswa.2012.02.086
https://doi.org/10.33714/masteb.1024663
https://doi.org/10.33714/masteb.1024663
https://doi.org/10.1016/j.tre.2011.05.010
https://doi.org/10.1016/j.tra.2013.10.002
https://doi.org/10.1057/mel.2012.10
https://doi.org/10.1016/j.tra.2022.01.015
https://doi.org/10.1080/03088839700000053
https://doi.org/10.1016/j.ocecoaman.2022.106336
https://doi.org/10.3389/fmars.2024.1517170
https://doi.org/10.1080/03088830903346061
https://doi.org/10.1038/s41598-021-97037-5
https://doi.org/10.1080/03088839.2021.1972486
https://doi.org/10.1080/03088839.2021.1972486
https://doi.org/10.1016/j.tranpol.2012.06.022
https://doi.org/10.1057/s41278-016-0051-7
https://doi.org/10.1080/03088839.2014.960499
https://doi.org/10.1080/03088839.2014.960499
https://doi.org/10.1016/j.ijforecast.2009.05.002
https://doi.org/10.1038/s41598-019-46850-0
https://doi.org/10.1038/s41598-019-46850-0
https://doi.org/10.1016/S0965-8564(99)00042-7
https://doi.org/10.1016/j.tranpol.2023.01.012
https://doi.org/10.1016/j.rtbm.2021.100662
https://doi.org/10.1016/j.tranpol.2019.11.002
https://doi.org/10.1016/j.tranpol.2019.11.002
https://doi.org/10.1016/j.ress.2023.109707
https://doi.org/10.1371/journal.pone.0262209
https://doi.org/10.1016/j.econlet.2022.110392
https://doi.org/10.1016/j.tre.2016.07.005
https://doi.org/10.3389/fmars.2024.1490548
https://doi.org/10.1038/s41598-021-93656-0
https://doi.org/10.1016/j.oceaneng.2023.113617
https://doi.org/10.1016/j.tre.2008.02.004
https://doi.org/10.1016/j.tra.2018.12.021
https://doi.org/10.1016/j.tre.2020.102149
https://doi.org/10.1016/j.tre.2020.102149
https://doi.org/10.3389/fmars.2022.1082453
https://doi.org/10.1016/j.jtrangeo.2023.103783
https://doi.org/10.1155/2021/5573650
https://doi.org/10.1016/j.ress.2022.108900
https://doi.org/10.1016/j.ress.2022.108900
https://doi.org/10.1109/ACCESS.2021.3049967
https://doi.org/10.1080/01441647.2019.1649315
https://doi.org/10.3389/fmars.2025.1545471
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Su et al. 10.3389/fmars.2025.1545471
Zhang, X., Chen, M., Wang, M., Ge, Y., and Stanley, H. E. (2019). A novel hybrid
approach to Baltic Dry Index forecasting based on a combined dynamic fluctuation
network and artificial intelligence method. Appl. Mathematics Comput. 361, 499–516.
doi: 10.1016/j.amc.2019.05.043

Zhang, X., Xue, T., and Stanley, H. E. (2018). Comparison of econometric models
and artificial neural networks algorithms for the prediction of Baltic Dry Index. IEEE
Access 7, 1647–1657. doi: 10.1109/ACCESS.2018.2884877
Frontiers in Marine Science 19
Zhu, F., Ye, F., Fu, Y., Liu, Q., and Shen, B. (2019). Electrocardiogram generation
with a bidirectional LSTM-CNN generative adversarial network. Sci. Rep. 9, 6734.
doi: 10.1038/s41598-019-42516-z

Zou, W., Yang, Y., Yang, M., Zhang, X., Lai, S., and Chen, H. (2023). Analyzing
efficiency measurement and influencing factors of Chinas marine green economy: Based on
a two-stage network DEA model. Front. Mar. Sci. 10, 1020373. doi: 10.3389/
fmars.2023.1020373
frontiersin.org

https://doi.org/10.1016/j.amc.2019.05.043
https://doi.org/10.1109/ACCESS.2018.2884877
https://doi.org/10.1038/s41598-019-42516-z
https://doi.org/10.3389/fmars.2023.1020373
https://doi.org/10.3389/fmars.2023.1020373
https://doi.org/10.3389/fmars.2025.1545471
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Su et al. 10.3389/fmars.2025.1545471
Appendix List of Abbreviations Used in
the Study.

Abbreviation Full Term

SCFI Shanghai Containerized Freight Index

SCFI1 SCFI Shanghai–West Coast America Index

SCFI2 SCFI Shanghai–East Coast America Index

PCI Port Congestion Index

PCISH1
Port Congestion Index - Containerships at

Shanghai (ships)

PCISH2
Port Congestion Index - Containerships at

Shanghai (tonnage)

PCIBS1 Port Congestion Index - Containerships at Busan (ships)

PCIBS2
Port Congestion Index - Containerships at

Busan (tonnage)

PCINY1
Port Congestion Index - Containerships at New York/New

Jersey (ships)

PCINY2
Port Congestion Index - Containerships at New York/New

Jersey (tonnage)

PCILA1
Port Congestion Index - Containerships at Los Angeles/

Long Beach (ships)

PCILA2
Port Congestion Index - Containerships at Los Angeles/

Long Beach (tonnage)

RBF Radial Basis Function Neural Network

MSE Mean Squared Error

LR Linear Regression

RF Random Forest

SVM Support Vector Machine

GBRT Gradient Boosting Regression Tree

MLP Multi-Layer Perceptron

SGD Stochastic Gradient Descent

XGBR Extreme Gradient Boosting Regression

BP Backpropagation Neural Network

NMSE Normalized Mean Squared Error
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