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Introduction: The identification of recruitment areas and other essential fish

habitats of exploited stocks is a fundamental requirement for the development of

marine spatial planning and ecosystem conservation measures. Reducing

recruitment mortality is particularly relevant on the northern continental shelf

of the Iberian Peninsula and is one of the key prerequisites for the future

sustainability of trawl fisheries.

Methods: In this study, the distribution of nursery areas of four-spot megrim

(Lepidorhombus boscii) was analyzed using time series of scientific bottom

trawl survey data to assess whether recruitment areas are persistent over time.

Four environmental variables were considered as potential predictors of recruit

distribution, as they may influence habitat selection by this species: sea bottom

temperature, sea bottom salinity, bathymetry, and sediment type. Additionally

in a second stage and based on the spatial findings during this work, the

recruitment abundance index within the a4a stock assessment model currently

used to provide scientific advice for this species was divided into two

spatial areas.

Results: Spatial analyses revealed a specific depth preference for four-spot

megrim recruits, with higher abundance in shallower waters, particularly within

the 150 to 300 m depth range, respect deeper ones. More importantly, our

findings showed significant spatial-temporal variability in four-spot megrim

nursery areas. Furthermore, the results of the updated assessment model

showed differences in biological reference points (BRPs) compared to the

existing model.

Discussion: This suggests that static spatial management approaches may be

ineffective due to environmental variability and underscoring the importance of
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incorporating spatial structure into the assessment process. This approach

enables more accurate stock evaluations and more effective, sustainable

management, thus laying the groundwork for a potential implementation of

spatial stock assessment for this species.
KEYWORDS

Bayesian models, fisheries management, four-spot megrim, nurseries, spatial
assessment, recruits
1 Introduction

When evaluating the sustainability of a resource, it is essential to

consider all population compartments and developmental stages. The

success of these stages often depends on environmental conditions

and the level of exploitation at any given time. Furthermore, this

assessment must be conducted within a temporal framework and

across multiple levels (Colloca et al., 2015). The space-time dynamics

of all life stages are fundamental to the overall behavior of a species,

requiring a thorough understanding of these dynamics along with

their associated habitats (Pennino et al., 2022). Recruitment is one of

the most vulnerable phases for harvested species, making it critical to

identify the factors influencing its success to implement effective

management measures (Izquierdo et al., 2021; Paradinas et al., 2015).

For flatfish, high-quality nursery areas are essential and have a

direct impact on the success of recruits, ensuring good recruitment

(Florin et al., 2009). Due to the biology of these species, connectivity

and dispersion between spawning and nursery areas play a crucial

role in the recruitment process (Barbut et al., 2019). Additionally,

demersal fish face challenges in accessing favorable habitats that

support individual development. Thus, recruitment areas become

particularly critical when planktonic larvae transition to the

demersal state and require a favorable habitat to ensure a

successful settlement to the bottom (van der Veer et al., 2022).

During this process, connectivity, or the flow between populations,

plays a vital role (Barbut et al., 2019).

Despite the significance of the larval stage, there is limited

information available on the flatfish genus Lepidorhombus. While

some general patterns observed in other flatfish species apply,

specific research on the species under study is needed, given its

importance as a fishing resource in the south Europe. The four-spot

megrim (Lepidorhombus boscii) is a benthic flatfish commonly

found at depths of 100 to 450 meters in the Eastern North

Atlantic and the Mediterranean (Landa and Fontenla, 2016;

Sánchez et al., 1998). This species is a target for the trawl fleet in

Spanish Atlantic waters, often caught alongside other species in

mixed trawl fisheries (ICES advice, 2023; Punzón et al., 2010),

which complicate its management. Previous studies have

highlighted its particularly vulnerability to exploitation, as

juvenile individuals are highly susceptible to fishing gear due to

their distribution, likely influenced by their diet and associated
02
substrate (Abad et al., 2020; Fernández-Zapico et al., 2017; Sánchez

et al., 1998). Unlike many flatfish species, whose nursery areas are

located in shallow regions (van der Veer et al., 2022), facilitating

spatial management, Lepidorhombus juveniles are found at

greater depths.

Since the landing obligation was progressively implemented in

2015, discarding this species is no longer allowed, and juveniles

must be brought to port (EU, 2013). This regulation has encouraged

the adoption of technical measures to prevent unwanted capture,

such as using more selective fishing gear and establishing temporary

closed fishing areas. Some authors have proposed creating a

methodological framework to identify fish nurseries based on

their spatio-temporal persistence (Colloca et al., 2009). However,

recent observations suggest that these measures are insufficient

unless the fundamental role of connectivity is considered based in

a realist understating of the complexity of the spatial structure of

populations, along with the need for movement an exchange of

individuals information between different habitat patches to ensure

species long-term persistence (Roos et al., 2020; Cecino et al., 2021).

Currently, this species is assessed using a single stock model

structured by age. Each year, a length-age key derived from

sampling data is applied to catch data to reconstruct the

population structure (ICES, 2024). As a result, recruitment

become a critical component in the modeling process, and

ultimately in the whole population dynamics and the biological

reference points. The nursery size hypothesis suggests that the

annual recruitment of flatfish is limited by the size of the nursery

area. Identifying these areas allows to establish causal relationship

with the population sizes, as they are regulated by the capacity of the

nurseries (Wilson et al., 2016). Protecting these nursery areas

through fisheries-restricted areas (FRA) is a practical strategy for

sustainable resource management (Izquierdo et al., 2021).

Increasingly, it is becoming evident that stock assessment

frameworks must incorporate the ecosystems complexity and the

interrelationships between their components, where the spatial

dimension and environmental variables both local and regional

can be decisive (Kerametsidis et al., 2024).

Within this context, the primary objective of this study is to

identify the nursery areas of four-spot megrim (Lepidorhombus

boscii) by employing Bayesian spatiotemporal models that

incorporate environmental variables (i .e . , Sea Bottom
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Temperature, Sea Bottom Salinity, bathymetry and type of

sediment). These models enable a detailed analysis of the species’

distribution patterns over time and space, providing essential

information for sustainable management and the protection of

critical habitats. As a secondary objective, this study aims to

determine the potential impact of incorporating spatial

information into current single stock assessment models after

identifying nursery areas and their spatial and temporal

persistence. By addressing these objectives, this research seeks to

contribute valuable insights into the sustainable management of

four-spot megrim and provide a framework for improving fisheries

management in data-limited settings.
2 Materials and methods

2.1 Study area and four-spot megrim data

Four-spot megrim recruitment data are scientific and

independent of commercial fishing. These data were collected

during the SP-NSGFSQ4 scientific survey conducted by the

Spanish Oceanographic Institute in autumn (September to

October) from 1993 to 2020. The survey is carried out on the

northern continental shelf of the Iberian Peninsula, which has a

total area of almost 18,000 km2. The seafloor type is mainly
Frontiers in Marine Science 03
composed of rocky or sandy substrates on the inner shelf (<100

m depth), while the outer shelf is made up of muddy bottoms in the

western zone and rocky bottoms in the eastern zone.

This bottom-trawl survey performs a stratified sampling design

based on depth with three bathymetric strata: 70-120 m, 121-200 m

and 201-500 m. In addition, extra hauls at greater depths are

commonly performed. For this study, sampling locations up to

600 m depth were included. During the surveys, each sampling

stations involved 30 minutes of trawling hauls at a speed of 3 knots.

Approximately 115 hauls were conducted annually across the three

bathymetric strata, resulting of 3328 hauls over the study period

(Figure 1). Sampling was performed using a baka 44/60 gear and

adhered to the protocol established by the International Bottom

Trawl Survey Working Group (IBTSWG) of ICES (ICES, 2017).

Only four-spot megrim recruits, defined as age-0 individuals,

were considered in this study. Since the length-age key is

estimated annually, this information was used to determine the

length range of recruits for each year. Accordingly, age-0

individuals were classified as follows: those ≤8 cm from 1986 to

1998 and from 2004 to 2016, those ≤7 cm from 2017 to 2020, and

those ≤9 cm from 1999 to 2003.The total number of individuals

caught per 30 minutes trawl was used as abundance index. A

presence/absence variable was created for recruits in each haul,

where presence was defined as abundance values >0, and absence

as abundance equal to 0.
FIGURE 1

Map of the study area showing the sampling locations of four-spot megrim recruits from 1993 to 2020. Black dots represent all hauls conducted,
while bubbles indicate hauls with the number of individuals categorized into four ranges: 1-47,48-94, 95-141 and 142-188. Bathymetric lines mark
the 300- and 600-meters depth contours.
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2.2 Environmental variables

Four environmental variables were considered as potential or

known predictors of recruit distribution, as they may influence the

habitat selection of this species. These include two oceanographic

variables: Sea Bottom Temperature (SBT in °C) and Sea Bottom

Salinity concentration (SBS in PSU), and two topographic variables:

bathymetry (in meters) and type of sediment.

SBT and SBS values were collected during the study with a CTD

(conductivity, temperature and depth) device, which was deployed

after each fishing haul to gather data throughout the water column.

Sediment type was determined through spatial analysis of data

obtained with dredges, conducted at sampling points arranged in a

grid to comprehensively cover the study area.

As is a standard practice, all covariates were explored for

collinearity, outliers, and missing values before being included in

the models (Zuur et al., 2010) (see Supplementary Figure S1).

Correlation was assessed using Spearman’s correlation, while

collinearity was evaluated using Generalized variance-inflation

factors (GVIF) (Fox and Weisberg, 2011). To enhance

visualization and interpretation, the explanatory variables were

standardized by subtracting the mean and dividing by the

standard deviation (Gelman, 2008).
2.3 Modelling nursery areas

Exploratory analysis revealed two main characteristics of the

four-spot megrim recruit abundance data: strong spatial and

temporal dependence and high proportions of zeros since it is

absent in a large number of hauls (see Supplementary Figure S2). To

address these features, we implemented a hierarchical Bayesian

hurdle spatial‐temporal model, which is highly suitable for such

data. Indeed, these models account for spatial-temporal

autocorrelation, incorporate a component to capture an excess of

zeros, and effectively integrate the uncertainties associated to the

sampling process (Pennino et al., 2019). In particular, these models

combine two types of components: (1) modeling presence/absence

to estimate an idea of the relative occurrence of recruits, Yst, and (b)

modeling the abundance to approximate the absolute abundance,

Zst. For both processes s is the spatial location, and t is the temporal

index. As is common in these cases, a Bernoulli distribution was

used to model Yst, while a Gamma distribution was applied to

model Zst. The latter process depends on the former as follows:

Yst ∼ Ber(pst)

Zst ∼ Gamma(mst,  f)

logit(pst) = a(Y) + f(ds) + g(t) + Ust(Y)

log(mst) = a(Z) + f(ds) + h g(t) + q  Ust(Z)

where pst represents the probability of occurrence at location s

at time t, and mst and f denote the mean and dispersion of the

abundance, respectively. The linear predictors includes: a(Y) and
Frontiers in Marine Science 04
a(Z), which represent the intercepts of each variable; f() a second

order random walk (RW2) function to fit non-linear relationships

for environmental variables (Fahrmeir and Lang, 2001); g(t) the

temporal trend fitted through a RW2 effect over the years; and Ust

(Y) and Ust (Z), which represent the spatial-temporal structure of

the two processes. Note that the terms g(t) and Ust are shared

between both predictors by using the scale parameters h and q.
Three different spatial-temporal structures, namely opportunistic,

persistent or progressive, were tested in this study following

Paradinas et al., 2017. Opportunistic structures indicate that a

species changes the spatial distribution each year without

following a specific pattern. On the contrary, persistent structures

describe a species with a stable spatial distribution that remains

consistent year after year. Finally, progressive structures identify a

species that modifies its spatial distribution in a correlated manner

from one year to the next. The progressive structure contains an

autoregressive parameter, rt, which controls the level of persistence in

the spatial effect. This parameter ranges from 0 to 1, where values close

to 0 indicate more opportunistic behaviors, while values close to 1

reflect more persistent distributions over time (Izquierdo et al., 2021).
2.4 Bayesian inference

Following Bayesian reasoning, the parameters are treated as

random variables, and prior knowledge must be incorporated

through corresponding prior distributions. In particular, a vague

zero‐mean Gaussian prior distribution with a variance of 100 was

assigned to all of the parameters involved in the fixed effects. For the

hyperparameters of the spatial terms and the r parameters of the

RW2 functions, PC priors (Fuglstad et al., 2018) were used to

describe prior knowledge. Following Izquierdo et al., 2021 and

Pennino et al., 2022, who implemented similar models for other

species in the same area of study, these priors were set as follows: if

the prior probability of the spatial range was smaller than 0.5, it was

set at 0.05, if the probability of the spatial variance was larger than

0.6, it was also set at 0.05, and if the probability that the precision of

the RW2 effects was larger than 0.5, it was set at 0.01.

Inference was performed using the integrated nested Laplace

approximation (INLA) methodology (Rue et al., 2009) and software

in R (R Development Core Team, 2022).
2.5 Model selection

Model selection was based on two different measures: (a) the

Watanabe‐Akaike information criterion (WAIC) (Watanabe, 2010)

and Log-Conditional Predictive Ordinates (LCPO) (Roos and Held,

2011). A lower WAIC value indicated a better fit, while LCPO

assessed the model’s predictive power, with lower values

representing better predictive performance.

Model selection was performed as a subsequently process: (1)

testing all the environmental variables to determine whether they

should be shared or not shared between the occurrence and

abundance processes.; (2) the best model (based on the lower
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WAIC and LCPO) was used to evaluate the three spatial-temporal

structures (i.e., opportunistic, persistent and progressive) Using the

best model (based on the lowest WAIC and LCPO values) to

evaluate the three spatiotemporal structures (i.e., opportunistic,

persistent, and progressive).; (3) once the spatial-temporal

structure was selected, a shared RW2 effect for the year was

added to the final model to extract the abundance index.
2.6 Model evaluation

INLA performs an internal cross-validation, which consists on a

leave-one-out cross-validation process. This process generates a

failure vector for each observation, with values ranging from 0 to 1.

A value of 0 indicates that the predictive measure for a particular

observation is reliable, whereas a value of 1 indicates it is not reliable

(Blangiardo and Cameletti, 2015).
2.7 Current stock assessment model

This stock is assessed with assessment for all - a4a (Millar and

Jardim, 2019), a non-linear catch-at-age model implemented in R

(R Core Team, 2022) and FLR framework (Kell et al., 2007). The

model is run using ADMB (Fournier et al., 2012), allowing for rapid

application with low parameterization requirements (ICES, 2024).

The model is composed of five sub-models, each based on different

structural assumptions. The first sub-model addresses fishing

mortality at age, where age is treated as a factor, with any ages

greater than 6 being capped at 6, and year is also considered as a

factor. The second sub-model defines the initial age structure, where

age is again treated as a factor. The third sub-model focuses on

recruitment, with year as a factor, and fishing mortality is freely

estimated for each year. The fourth sub-model involves a list of

models for abundance indices and catchability-at-age, where

catchability is modeled using a logistic function. Finally, the fifth

sub-model models the observation variance of catch-at-age and

abundance indices, using the default value of the a4aSCA function.

An FLStock object is required as input data. This object includes

various components such as catches, (landings and discards),

weights-at-age, natural mortality (M), maturity, harvest before

spawning and mortality (ICES, 2024). The commercial catch data

(comprising international catches, ages, and length frequencies from

catch sampling) are available for Spain and Portugal from 1986 to

2022. Two survey indices are provided: the Spanish SP-NSGFSQ4

(1988 - 2022) and the Portuguese NepS (FU 2829) (1997 - 2018). The

maturity ogive is assumed to be constant and natural mortality is set

to a value of 0.2 (ICES, 2023).
3 Results

3.1 Spatial modelling results

Out of 3328 samples collected in the study area, four-spot

megrim recruits were present in 674 of these stations. The total
Frontiers in Marine Science 05
abundance recorded per sample ranged from a minimum of 0 to a

maximum of 188 individuals.

According to the model selection scores (Table 1), the

occurrence and abundance distributions of four-spot megrim

recruits were mainly influenced by the bathymetry variable. This

effect of bathymetry was most pronounced when it was not shared

between the occurrence and abundance processes, suggesting that

their bathymetric ranges differ. Models that treated bathymetry as

not shared effect for occurrence and abundance, recorded a lower

WAIC and LPCO compared to the others (Table 1). Among the

different spatio-temporal structures, the progressive structure had

the one the lowest WAIC and LPCO values (Table 1).

Since bathymetry was the only relevant variable included in the

final model, the original scale units were used to facilitate

interpretation of its partial effect. Figure 2 shows that there is an

optimal bathymetric range between 150 and 300 m for both the

occurrence and abundance of four-spot megrim recruits, with

abundance gradually decreasing in deeper waters.

Although the spatio-temporal structure was selected, the

temporal correlation parameter in the final model was close to 1

in both processes (0.97 for the occurrence and 0.96 for abundance

process). This suggest that while recruits change their distribution

in space, these changes are highly correlated between years.

The temporal trend of the year smoothed effect for four-spot

megrim abundance shows a clear pattern of change over time, with

the abundance of recruits varying considerably throughout the entire

time series (Figure 3). The same trend is observed in the year effect for

four-spot megrim occurrence (see Supplementary Figure S3).

To better identify the main abundance hot-spots areas

throughout the entire time-series, four time-steps were averaged

(Figure 4). The mean of the posterior distributions of the spatial

effects reveals a clear increasing pattern in the abundance of the

species in the western part of the Iberian Peninsula from 1993 to

2020 (Figure 4). Indeed, from the begging of the time series, there

appears to have been shift in the distribution from the eastern part
TABLE 1 Comparison of the main four-spot megrim models based on
WAIC and LCPO scores and the failure vector.

Model WAIC LCPO Failure

Bathymetry shared 6445.65 0.79 0

Bathymetry not shared 6426.15 0.78 0

SSS shared 7688.83 0.90 0

SSS not shared 7691.54 0.90 0

SST shared 7491.52 0.88 1

SST not shared 7489.18 0.88 1

Type of sediment shared 7678.47 0.90 0

Type of sediment
not shared

7675.15 0.90 0

progressive 5816.03 0.76 0

opportunistic 7688.83 0.79 0

persistent 7491.52 0.90 0
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FIGURE 3

Smoothed (RW2) year effect predicted for the abundance of four-spot megrim on the linear predictor log-scale. Shaded regions represent the
approximate 95% credibility interval. Note that the year term is shared in both predictors (occurrence and abundance) by the scale parameter h = 0.86.
FIGURE 2

Smoothed (RW2) depth effects predicted for the occurrence and abundance of four-spot megrim on the linear predictor log-scale. Shaded regions
represent the approximate 95% credibility interval.
FIGURE 4

Spatio-temporal mean posterior distribution maps for the abundance of the four-spot megrim grouped by year steps. Cold colors represent areas of
low abundance whereas warm colors indicate areas where abundance is high. Note that the spatio-temporal term is shared in both predictors
(occurrence and abundance) by the scale parameter q=0.47.
Frontiers in Marine Science frontiersin.org06
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of the study area (Cantabrian Sea) to the western one (Figure 4).

The standard deviation (sd) of the posterior distributions of the

spatial effects remained consistent over the study period (see

Supplementary Figure S4). It is also important to note that since

the spatio-temporal structure is shared between the occurrence and

abundance processes, the spatial effect is the same for both cases

(Supplementary Figure S5).

Overall, four hotspots were identified. The main hotspot (1) is

located north of Peñas Cape, where high abundance was observed

throughout most of the time series, with a slight decrease noted in

the final years. A similar pattern was seen in the smaller hotspot (2)

located in the northeast near Ajo Cape. Another important hotspot

(3) appeared in the northwest of Estaca de Bares cape (off La

Coruña), displaying almost no abundance from 1993 to 1998,

followed by a steady increase through 2017-2020. A small hotspot

(4) was also found in deeper waters to the southwest of Finisterre

Cape (off Vigo), where it was present in the first two time-periods

but gradually increased and moved closer to the coast over the past

two decades. These shifts demonstrate a progressive movement of

the spatial abundance hot-spots throughout the time series

(Supplementary Figures S6A–C).
3.2 Spatial approach in single stock
assessment results

The results indicate that the study area is divided into two zones

with different dynamics concerning the nursery areas over time. As

a first step, an attempt has been made to include this spatial

information into the assessment model. The nurseries in the

Cantabrian area tends to remain stable, with a slight decline in

abundance over time, while those in the Galicia area show a

progressive increase. The abundance index, expressed in number

of individuals per age in the survey, is used to calibrate the model.

This index is particularly effective precisely for younger stock ages,

including the recruitment age (ICES, 2024). Since this index

represents the total area of distribution of the species in the study

area and is stratified, a preliminary approach involves dividing it

into the two defined zones (Figure 5) to incorporate the spatial

effect, reflecting the strength of recruitment by area.
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This variation in the model input data in the current assessment

model does not result in significant changes in the model outcomes

of Spawning stock biomass and Fishing mortality compared to

those previously (Supplementary Figure S7). However, when

recalculating the biological reference points (BRPs) of the stock

following the ICES procedure (ICES, 2024), differences are observed

(Table 2). These differences are evident when comparing the current

values to those obtained in this study. For example, the MSY Btrigger
has decreased from 3375 t in the study to 2932 t in the current

values, indicating a slight reduction in the threshold below which

the stock may face a low probability of sustainable exploitation.

Similarly, the FMSY, which represents the fishing pressure that

maximizes sustainable yield, shows a small decrease from 0.194 in

the study to 0.176 in the current model, suggesting a slightly lower

optimal fishing mortality rate. Lastly, the Blim, the spawning stock

biomass threshold below which reproductive capacity could be

reduced, has also decreased from 2672 t in the study to 2321 t in

the current values. These recalculated values, while reflecting a

similar trend, suggest that the updated spatial data or input

parameters may lead to more conservative reference points,

potentially affecting future stock management strategies.
4 Discussion

In this study, we aimed to identify a methodology for locating

the nursery areas of the four-spot megrim and assessing their

persistence in space and time. These areas are essential for

maintaining a healthy population and for managing the

resource to ensure its sustainability (Paradinas et al., 2015).

Additionally, this methodology provides valuable spatial

information that, when included in the stock assessment model,

enhances the precision of the results used to inform scientific

advice on recommended catch levels for the stock (Punt, 2019;

Booth, 2000). The findings of this study are inherently

constrained by the temporal scope of the annual oceanographic

survey. However, this time frame offers a valuable opportunity to

examine annual recruitment dynamics, as the majority of

spawning occurs in April, enabling the effective capture of

zero-age individuals using the employed fishing gear.
FIGURE 5

Abundance indices (number of individuals/30 minutes) from SP-NSGFSQ4 survey. Orange line is Cantabrian area and blue line is Galician area.
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An important challenge with this species is that mature

individuals do not migrate to shallow areas for reproduction,

resulting in a significant gap in biological knowledge in the

spawning areas and early life stages dispersion that results in the

spatiotemporal variability observed in the nursery areas. The inability

to study the development of eggs and larvae under laboratory

conditions further challenge our capacity to understand drifting

pathways and survival of early life stages. In contrast, other flatfish

species are influenced by variables such as temperature regimes

(Dunlop et al., 2022) and high freshwater inflows during the

spawning season, which are important for recruitment success, as

they occur in coastal or estuarine areas (Morrongiello et al., 2014).

The distributions of occurrence and abundance for four-spot

megrim recruits were primarily influenced by the bathymetry

variable. This influence is most effective when the occurrence and

abundance processes do not share the same bathymetric range,

suggesting that these processes driving occupancy and strength on

aggregations have a different bathymetric preference. The optimal

bathymetric range for the occurrence and abundance for four-spot

megrim recruits lies between 150 and 300 meters, which is

consistent with the species’ known bathymetric preference

(Fernández-Zapico et al, 2017; Sánchez et al, 1998). This range

also aligns with findings from another study on undersized four-

spot megrim (individuals smaller than 20 cm), whose preferred

habitat spans from 100 to 350 meters (Abad et al., 2020). In that

study, the abundance of these undersized four-spot megrims was

primarily explained by depth, thought other factors such as SBT,

SBS and spatial and temporal effects also played a role (Abad et al.,

2020). As a species that reproduces in deep waters, it is logical that

bathymetry emerges as a key variable influencing the distribution of

recruits and the location of nurseries, as demonstrated in previous

studies (Izquierdo et al., 2021).

For both occurrence and recruit abundance, the results revealed

a significant variability throughout the time series. The predicted

trend observed in the graph aligns with the recruitment values

obtained from the model used to assess this stock, showing

consistency in the peaks of recruit abundance (ICES, 2024). It is

well known that recruitment is a highly dynamic process, with

external factors from local to regional scale playing a crucial role in

determining success or failure, which explains its high variability
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(Hidalgo et al., 2019; Zimmermann et al., 2019; Duffy-Anderson

et al., 2005; Cardinale and Arrhenius, 2000). Therefore, a more

comprehensive investigation of habitats is necessary, incorporating

additional variables known to significantly affect the distribution of

individuals in other flatfish species. These include mesoscale and

hydrodynamic processes that play critical roles in larval dispersal

(Barbut et al., 2019), along with a better description of the static

properties of the substrate of the preferred nursery areas and how

they are connected among populations subunits. While our model

identifies spatiotemporal variations in nursery areas, it is important

to acknowledge that the limited number of variables included in the

analysis may not fully capture all factors influencing recruits

distribution. Future studies should explore additional

environmental and ecological variables, as well as potential

interactions between them, to better understand the drivers of

these spatial changes.

The spatiotemporal analysis of nurseries revealed four well-

defined hotspots within the study area and timeframe. These

hotspots align with those identified in previous research on the

distribution of commercially sized and undersized individuals of

this species (Abad et al., 2020). Overlap was observed, particularly

in the case of undersized individuals, as these hotspots also

encompass age-zero recruits, along with some areas where

commercial-sized and fully mature individuals are present. Thus,

a spatial ban on nurseries would not only protect the recruits but

also provide protection for a portion of the spawners, offering dual

benefit for the population. A different temporal dynamic of the

hotspot groups emerged in our analyses, where the two located in

the eastern area appear stable over time with a decrease at the end of

the period while the two in the western area show an upward trend,

with a notable increase in the last period, are key factors for

consideration in fishery management. This spatial and abundance

shift highlights the importance of adopting dynamic and adaptive

stock management strategies, which have been advocated in several

studies as a means to achieve more effective and sustainable

exploitation in the long term. Given this significance, future

research could benefit from complementing the analyzed

approach with mechanistic studies aimed at explaining the

specific causes of these spatial changes. Furthermore, during the

implementation of the landing obligation, it was emphasized that

minimizing discards by avoiding high-discard areas benefits both

the resource and the fishing industry (Guillen et al., 2018).

Management measures informed by updated spatial data, such as

temporary spatial closures, could play a significant role in

preserving exploited populations. These measures ensure their

sustainability while supporting the economic viability of fisheries,

as dynamic scenarios may require fewer permanently closed areas

compared to traditional closures (Vigo et al., 2024). Since

improving protection is easier than increasing productivity,

priority areas for protection should be those with high

connectivity, as these are crucial to sustain an efficient pathway

between the spawners spawning areas and the nurseries. By

integrating population dynamics and fishing effort into a

spatiotemporal model, area-based fisheries management tools

could be effectively evaluated (Radici et al., 2023; Booth, 2000).
TABLE 2 Comparison of biological reference points.

BRP Definition

This
study
values

Current
values

MSY Btrigger
A low biomass that is encountered
with a low probability if a stock is
exploited at FMSY

3375 t 2932 t

FMSY
Fishing pressure that gives the
maximum sustainable yield in the
long term

0.194 0.176

Blim
Spawning stock biomass below
which there may be reduced
reproductive capacity

2672 t 2321 t
Current values refer to the ones used in the official stock assessment in ICES.
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Despite the growing understanding of the importance of spatial

information in the dynamics of exploited populations, it is currently

not incorporated into almost any stock assessment model used by

the major international scientific organizations dedicated to

providing advice. While spatial structure is crucial in population

assessments, models that integrate this information generally

perform better. These models present new challenges and

proposals that differ from traditional approaches and their

application in fisheries management remain limited, particularly

their extensive data requirements including knowledge the spatial

populations structure and rates of subunits exchange movement

and directions (Cadrin et al., 2020). However, in the last years

several spatially explicit stock assessment models have been

developed (e.g. Goethel et al., 2015; Cao et al., 2020; Thorson

et al., 2021), along with good practices and recommendations

opening a realistic platform for a future and more widespread

implementation (Goethel et al., 2023).

Incorporating spatial structure into stock assessments with

precision can enhance model accuracy, reduce the risk of

misinterpreting stock status, and help avoid shortcomings in

fisheries management (Cadrin, 2020; Goethel et al., 2023). The

stock of four-spot megrim in the Atlantic region of the Iberian

Peninsula is assessed using the a4a model. While this model does

not directly incorporate spatial information, it is important to

evaluate how such information could impact the results of the

stock assessment. Specifically, analyzing the influence of varying

trends in recruitment hotspots across the two different areas is

crucial. This analysis could incorporate spatial effects into future

management measures or lead to the proposal of more efficient

alternative. In addition, future studies can also explore influence of

the rates of exchange and direction between putative population

subunits of the species.

The incorporation of spatial information into the model, in the

form of two different abundance indices based on the area, yielded

different results. When comparing the results from the assessment

model used annually with those that included these two indices, the

differences are not significant. However, a slight increase was

observed in some values, such as fishing mortality (F) and the

biomass of the spawning stock (SSB) in the assessment year. Despite

this, these changes did not result in a substantial shift in the annual

advice on recommended catches for the stock. However,

recalculating the biological reference points (BRPs) of the stock

revealed differences in the values, showing an upward trend in Blim,

FMSY and MSY Btrigger, which affect management measures.

Previous studies have shown that failing to incorporate the

correct spatial structure when calculating BRPs can lead to biased

stock status indicators, overexploitation or missed opportunities for

designing management measures that optimize performance

(Goethel and Berger, 2017; Goethel et al., 2024). Furthermore,

changes driven by climatic variations that affect productivity—

and consequently, BRPs based on long-term fish stock

productivity (O’Leary et al., 2020)—highlight the importance of

continually improving stock assessment models. These
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improvements will contribute to more accurate harvest control

rules and more effective fisheries management.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Ethics statement

The manuscript presents research on animals that do not

require ethical approval for their study.
Author contributions

EA: Conceptualization, Data curation, Formal analysis,

Investigation, Methodology, Resources, Writing – original draft,

Writing – review & editing. FI: Conceptualization, Data curation,

Formal analysis, Investigation, Methodology, Resources, Writing –

original draft, Writing – review & editing. JL: Data curation,

Investigation, Resources, Writing – review & editing. FV: Data

curation, Investigation, Resources, Writing – review & editing.

MH: Conceptualization, Funding acquisition, Investigation, Project

administration, Resources, Supervision, Writing – review & editing.

MP: Conceptualization, Funding acquisition, Investigation,

Methodology, Project administration, Resources, Supervision,

Writing – original draft, Writing – review & editing.
Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. The authors thank the

funding for the following projects in the different sections of this study:

National Program of collection, management and use of data in the

fisheries sector and support for scientific advice regarding the

Common Fisheries Policy, co-funded by the European Union

through the European Maritime Fisheries and Aquaculture Fund

(EMFAF), COCOCHA research project Grant PID2019-110282RA-

100 funded byMCIN/AEI/10.13039/501100011033, FRESCO research

project PID2022-140290OB-I00 funded by MCIN/AEI/10.13039/

501100011033/and by “ERDF A way of making Europe”, Ministry

of Science, Innovation and Universities—State Research Agency.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1545819
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Abad et al. 10.3389/fmars.2025.1545819
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fmars.2025.1545819/

full#supplementary-material

SUPPLEMENTARY FIGURE 1

Smoothed relationships and correlation between the response variable and

the environmental covariates.

SUPPLEMENTARY FIGURE 2

Number of sampling hauls by year where the four-spot megrim was present

and absent.

SUPPLEMENTARY FIGURE 3

Smoothed (RW2) year shared effect predicted for the occurrence of four-spot
megrim on the linear predictor log-scale. Shaded regions represent the
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approximate 95% credibility interval. Note that the year term is shared in both

predictors (occurrence and abundance) by the scale parameter h = 1.088.

SUPPLEMENTARY FIGURE 4

Spatio-temporal mean posterior distribution maps for occurrence of four-
spot megrim grouped by year steps. Cold colors represent areas of low

presence whereas warm colors indicate areas where presence is high. Note
that the spatio-temporal term is shared in both predictors (occurrence and

abundance) by the scale parameter q=0.627.

SUPPLEMENTARY FIGURE 5

Spatio-temporal standard deviation (sd) posterior distribution maps for the
occurrence and abundance of four-spot megrim grouped by year steps. Cold

colors represent areas of low uncertainty whereas warm colors indicate areas
where uncertainty is high.

SUPPLEMENTARY FIGURE 6

(A) Spatio-temporal mean posterior distribution maps for the abundance

of four-spot megrim by year. Cold colors represent areas of low
abundance whereas warm colors indicate areas where abundance is

high. Note that the spatio-temporal term is shared in both predictors
(occurrence and abundance) by the scale parameter q=0.627. (B) Spatio-
temporal mean posterior distribution maps for the abundance of four-spot

megrim by year. Cold colors represent areas of low abundance whereas
warm colors indicate areas where abundance is high. Note that the spatio-

temporal term is shared in both predictors (occurrence and abundance) by
the scale parameter q=0.627. (C) Spatio-temporal mean posterior

distribution maps for the abundance of four-spot megrim by year. Cold
colors represent areas of low abundance whereas warm colors indicate

areas where abundance is high. Note that the spatio-temporal term is

shared in both predictors (occurrence and abundance) by the scale
parameter q=0.627.

SUPPLEMENTARY FIGURE 7

Comparative results of the assessment models for Spawning stock biomass
and for fishing mortality. Orange lines are the results of this study and blue

lines are the results of the current assessment in ICES.
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