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Ships often face various risks when sailing at sea, ranging from harsh natural

environments to complex traffic conditions. To reduce the impact of these risks

on ships and crews, this paper proposes a navigation risk assessment method

that integrates computational intelligence (CI) techniques, such as fuzzy logic,

with Bayesian networks (BNs) and utility theory. Firstly, a navigation risk

assessment system is established using maritime data and expert knowledge,

which evaluates risks from a spatial perspective by considering factors such as

safeguard and accident conditions across different regions. Secondly, a fuzzy

logic-based numerical and expert data transformation method is proposed to

derive the prior probabilities of risk factors in BNs. The weighted fuzzy rule base is

used to capture the dependencies among the risk factors. Finally, the probability

distribution of navigation risk is determined by combining the prior probability

and the dependencies, which are converted into risk index values through utility

theory. Taking the grid-based navigation risk assessment of the South China Sea

as an example, the effectiveness of this method is verified. The results of the study

provide theoretical support for navigation risk assessment based onmulti-source

data and provide a reference for formulate maritime regulatory policies.
KEYWORDS

navigation safety, risk assessment, computational intelligence, multi-source data,
Bayesian network
1 Introduction

Maritime transport, as the primary mode of global trade, accounts for over 80% of

global trade volume due to its advantages, such as large capacity, low cost, and high

efficiency (Goerlandt and Montewka, 2015; Xie et al., 2021; European Maritime Safety

Agency, 2024). With the expansion of fleet size and the increasing number of vessels,
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maritime security has become an increasingly pressing issue.

According to a safety report released by Allianz, there were a

total of 27,821 marine casualties and accidents over the past

decade (Allianz Global Corporate & Specialty Company, 2024).

These shipping accidents not only result in direct economic losses

and casualties but may also cause significant environmental

pollution and have long-lasting effects on the marine ecosystem.

In recent years, the rapid development of smart ship technology has

provided new solutions for the modernization of the shipping

industry. Smart ships achieve autonomous navigation, real-time

monitoring, and energy consumption management by integrating

sensor technology, automation technology, data analysis, and

artificial intelligence algorithms (Wang et al., 2023; Wang et al.,

2024). These new technologies provide a more efficient means for

marine environmental monitoring and scientific research. However,

the complex and changeable navigation environment is still the key

factor that affects the ship’s performance and safe navigation, and

also the main cause of shipping accidents. Therefore, there is an

urgent need to develop a scientific and effective navigation risk

assessment method to assist decision-makers in allocating resources

more effectively and improving maritime safety.

Industry experts have conducted extensive studies on ship

navigation risks, covering qualitative, quantitative, and semi-

quantitative assessment methods. Depending on the quality and

availability of data, a variety of risk assessment methods suitable for

different scenarios have been proposed. For instance, when data is

limited or unavailable, qualitative methods are often used to assess risk

(Li et al., 2021a), but the assessment results are highly subjective and

difficult to quantify accurately. In contrast, when data is sufficient and

valid, quantitative methods can accurately quantify and predict risks (Li

et al., 2021b). However, quantitative methods often ignore factors that

are unstructured or difficult to quantify, resulting in insufficient

applicability of assessment results. When multiple data sources are

involved, the semi-quantitative method is considered to be a reasonable

option (Yu et al., 2021; Li et al., 2022). By combining qualitative and

quantitative data, it can make up for the shortcomings of a single

method to a certain extent and provide more comprehensive risk

assessment results. Ship navigation environment modelling involves

multi-dimensional, heterogeneous and complex data, including large-

scale quantitative data such as wind, waves, and visibility, as well as

small sample qualitative data related to operational safety and

preventive measures. The heterogeneity and uncertainty of these data

present significant challenges for traditional risk assessment methods.

To address these challenges, researchers have proposed various

advanced Cl techniques, including fuzzy logic, evolutionary

algorithms, and neural networks. These CI techniques are

designed to emulate human information processing and

reasoning mechanisms, enabling them to tackle problems that

traditional mathematical modelling approaches cannot effectively

solve. BNs are a critical tool for probabilistic reasoning and risk

assessment, capable of effectively integrating multi-source data

through probabilistic inference mechanisms to uncover the

dependencies among risk factors. BNs are closely connected with

CI techniques. For instance, integrating CI methods such as fuzzy

logic and evolutionary algorithms with BNs can significantly
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enhance the accuracy of maritime risk assessment. However, ship

navigation risk assessment faces several challenges: (1) The

difficulty of integrating multi-source information, which leads to

incomplete data acquisition and hampers the full capture of key risk

influencing factors (RIFs); (2) The limitations of traditional

methods in handling data uncertainty and ambiguity, which affect

the accuracy and reliability of assessment results; (3) The inability of

traditional BNs to capture nonlinear dependencies between risk

factors, which limits their application in complex scenarios.

Based on the analyses presented above, this paper proposes a

computational intelligence-based risk assessment method for ship

navigation that integrates the advantages of BNs, fuzzy logic, and

utility theory. This method aims to comprehensively and systematically

evaluate the risks associated with ship navigation in the South China

Sea. The paper makes the following three contributions:
(1) A ship navigation risk assessment system is proposed,

focusing on ‘nature, traffic, safeguard, and accident’

factors across regions. Unlike traditional models, this

approach evaluates risks spatially, offering a more region-

specific and accessible assessment.

(2) A novel expert data transformation method is introduced.

Building on the traditional similarity aggregation method,

this approach considers expert weights and credibility, and

introduces the weakest exemplar function to mitigate the

uncertainty accumulation in the fuzzy computation

process, thereby enhancing the reliability of expert

data transformation.

(3) A weighted fuzzy rule base is used to capture the

dependencies between risk factors in the BN model. This

method not only overcomes the limitations of the Monte

Carlo method in terms of accuracy and the heavy workload

associated with expert scoring methods, but also broadens

the applicability of BNs.
The rest of the paper is organized as follows: Section 2 reviews

ship navigation risk assessment and the use of BN and CI methods.

Section 3 outlines the methodology for the risk assessment model. A

case study is presented in Section 4, and Section 5 concludes

the paper.
2 Literature review

In recent years, research on ship navigation safety assessment

has become a focus, attracting widespread attention from scholars

around the world. Ship navigation safety assessment is a complex

systematic project involving multiple risk factors, including

humans, ships, environment and management. The strong

interdependencies between these factors complicate the risk

assessment process. To assess maritime risks rationally and

effectively, the IMO introduced the Formal Safety Assessment

(FSA) method (Wang et al., 2019), designed to support decision-

making for maritime stakeholders. Driven by the FSA method,

traditional risk analysis methods such as quantitative assessment
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(e.g., Fault Tree Analysis, Incident Tree Analysis, etc.) and

qualitative assessment (e.g., Human Factors Analysis and

Classification System (HFACS), Root Cause Analysis) are widely

used in ship navigation risk assessment. Chen et al. (2013) applied

the HFACSmethod to systematically investigate and classify human

factors in maritime accidents. Senol and Sahin (2016) proposed a

real-time, continuous fuzzy fault tree analysis model to address

complex and ambiguous maritime accidents. Zhang et al. (2019)

used both HFACS and fault tree models to identify and classify

collision risk factors for icebreakers in ice-covered waters. However,

traditional methods have certain limitations in quantifying risks

and revealing the causal relationships between risk factors.

To this end, scholars have proposed advanced methods such as

BN to solve the above defects. As a powerful tool for probabilistic

inference, BNs excel in uncertainty quantification and error

diagnosis, and have been successfully applied safe navigation at

sea. In the absence of extensive historical data, expert knowledge

becomes a crucial source for constructing BN models. Experts

define the network structure and conditional probability

distributions by analysing the causal relationships between

influencing factors. This expert-driven approach is particularly

suited for small-scale problems or scenarios where domain-

specific knowledge is abundant. For example, Li et al. (2024)

utilized expert knowledge to develop a BN model for assessing

the collision risk of maritime autonomous surface ships at sea. Fu

et al. (2023) combined expert judgment, fuzzy sets, and BNs to

propose an innovative risk management framework for maritime

transport systems, enhancing the efficiency and competitiveness of

inland navigation in the Yangtze River Estuary. With the

advancement of big data technology, it has become feasible to

automatically learn BN model structures and parameters from

historical data. The data-driven BN modelling approach can

uncover hidden dependencies in large, heterogeneous datasets,

reducing the need for manual intervention. For instance, Fan

et al. (2020) integrated human factors into the causal analysis of

maritime accidents and applied a data-driven BN method to assess

maritime accident risks. The results identified key human factors

contributing to various types of accidents and provided targeted

recommendations to mitigate related human errors. Jiang et al.

(2020) introduced a BN structure learning method based on the

improved K2 algorithm to analyse the causes of maritime accidents

along major routes of the Maritime Silk Road. This method

automatically uncovers causal relationships between variables

from accident data and constructs a BN model that accurately

reflects real-world conditions.

Recent studies have shown that CI also has potential in

maritime risk assessment. CI is a branch of artificial intelligence

that uses techniques such as fuzzy logic, neural networks, and

evolutionary algorithms to solve complex, uncertain, and dynamic

problems (Iqbal et al., 2020; Lazarowska, 2024). In terms of ship

navigation safety, CI methods are particularly suitable for dealing

with the inherent uncertainty and complexity associated with the

marine environment. For example, fuzzy logic has been used to

model the uncertainty of multi-ship collision risk (Shi et al., 2022).

Evolutionary algorithms have been used to optimize ship routes and
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reduce the risk of accidents in complex navigation areas (Pan et al.,

2021). These studies have shown that CI can effectively supplement

traditional risk analysis methods and thus enhance the maritime

safety decision-making process.

BN is an important probabilistic reasoning and risk assessment

method that is intrinsically linked to CI. CI methods such as fuzzy

logic and neural networks are integrated with BN to significantly

improve the accuracy of maritime risk assessment. Fuzzy logic can

be used to handle the uncertainty inherent in risk events, while

neural networks are able to discover hidden patterns in large data

sets. This synergy between BN and CI techniques makes risk

analysis in the maritime sector more comprehensive and robust.

For instance, Yu et al. (2021) integrated multi-source data using

BNs, fuzzy logic, and evidential reasoning (ER) methods to assess

the overall risk of ships in the coastal waters of the South China Sea.

This hybrid approach is more effective in handling the complexities

of maritime environments and the dynamic nature of risk factors.

However, these assessments are typically conducted at the macro

level, focusing on specific accident types or geographic areas. There

is a growing need for a new method that can assess ship navigation

risks at a finer resolution and allow for the comparison and analysis

of risks across different grid sections of maritime regions.

Overall, CI provides a powerful set of tools to improve ship

navigation safety through improved risk assessment models.

Techniques such as fuzzy logic, neural networks, and evolutionary

algorithms complement traditional risk assessment methods such

as BNs and can better capture the complexity and uncertainty of the

marine environment. Both expert-driven and data-driven BN

modelling approaches offer distinct advantages and limitations,

and should be flexibly selected or combined based on the specific

characteristics of the problem at hand. Due to the unique nature of

maritime data and the challenges associated with accessing expert

knowledge, there is a relatively limited body of research on gridded

maritime risk assessments at the micro level. This constitutes a

significant research gap, and addressing it could provide valuable

insights for decision-makers in emergency resource allocation.

Furthermore, it could contribute to advancing both the theoretical

foundations and practical applications of BNs.
3 Navigation safety
assessment methods

To address the navigation safety issues, this paper proposes a

novel risk assessment method, illustrated in Figure 1 as a flowchart.

Firstly, a navigation risk evaluation system is established to identify

risk influence factors. Second, a data-driven BN model is

constructed as the core of the method. On the one hand, prior

probabilities of the BN root nodes are derived through the

transformation of multi-source data; on the other hand,

conditional probability tables (CPTs) for the BN are generated

using a weighted fuzzy rule-based approach. Finally, a utility

function is designed to calculate clear and quantitative navigation

risk values.
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3.1 Establishing the evaluation system

The initial phase in implementing the proposed methodology

involves the development of a comprehensive navigation risk

assessment system. This system is designed to identify variables

that may compromise the safety of ship navigation and to establish

their hierarchical relationships. In this study, navigation risk is

defined as the interplay between the likelihood of events that could

lead to casualties, economic losses, environmental pollution, or

disruptions in navigation, and the severity of their potential

consequences (Yu et al., 2021). It is widely acknowledged that

integrating a thorough literature review with expert insights is

essential to ensure the robustness and validity of the evaluation

framework. The process begins with the identification of potential

variables influencing navigation safety through an exhaustive analysis

of existing scholarly work on navigation risk (Wang et al., 2019; Pan

et al., 2021; Li et al., 2022; Li et al., 2022). Subsequently, five industry

experts are consulted to validate and ensure the reliability of the

selected variables. These experts are chosen based on their extensive

professional backgrounds and practical experience inmaritime safety,

shipping management, and related disciplines, thereby guaranteeing

the representativeness and authority of their contributions. Detailed

profiles of the selected experts are provided in Appendix A. Finally,

leveraging both the literature analysis and expert feedback, a novel

ship navigation risk assessment framework is established, as

illustrated in Table 1.

Traditional ship navigation risk assessment models typically

encompass four dimensions: natural conditions, traffic conditions,

human factors, and management practices. In contrast, this study

evaluates risks from a spatial perspective, introducing two new

dimensions—safeguard conditions and accident conditions—that

focus on the navigation environment and response capabilities in

different regions. By integrating both quantitative indicators, such
Frontiers in Marine Science 04
as wind and wave conditions, and qualitative indicators based on

expert evaluations, like operational safety and preventive measures,

this approach offers a more comprehensive risk assessment

framework. The next section will detail the methodologies used to

process these diverse types of indicator data.
3.2 Data-driven BN model construction

3.2.1 Multi-source data transformation
For numerical indicators, this study proposes a method to

convert individual data points into a priori probabilities

associated with the root nodes. Without loss of generality, the

indicator X is classified into M states (S1, S2,⋯ SM) based on expert

judgment, and the corresponding thresholds (TV1,TV2,⋯TVM)

are determined for these states. When an observed value x falls

within the interval (TVK ,TVK+1), the affiliation of observation x in

states Sk and Sk+1 can be calculated in two ways.

If X is a profit indicator, that is, larger values are given priority,

where

bSk =
TVk+1 − x

TVk+1 − TVk
 and bSk+1 = 1 − bSk (1)

If X is a cost indicator, that is, smaller values are given priority,

where

bSk =
x − TVk+1

TVk − TVk+1
 and bSk+1 = 1 − bSk (2)

Generally speaking, it is difficult to directly obtain the threshold

of indicator data. Therefore, most studies use the maximum value

max (TVk) and the minimum value min (TVk) of the indicator in

the database to replace the threshold (Fan et al., 2023). The specific

calculation process is as follows.
FIGURE 1

Proposed three-step assessment method.
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TVk(m) =
max (TVk) −min (TVk)

M − 1
� (m − 1) + min (TVk) m

= 1,⋯,M (3)

The aforementioned method is well-suited for ideal scenarios

where the dataset is small, and the data distribution is relatively

uniform. However, when the data distribution is uneven, the

quantile method offers significant advantages over the equal-

interval method for calculating thresholds. The process for

determining thresholds using the quantile method is outlined as

follows.

TVK (m) = Quantile
m − 1
M − 1

� �
,  m = 1, 2,⋯,M (4)

where TVK(m) denotes the boundary value of the mth interval

and Quantile(p) denotes the value of the percentile p.

For the expert-based indicator, this study introduces a data

transformation method to estimate the prior probabilities of the

root node. The detailed procedure is outlined as follows.
Frontiers in Marine Science 05
3.2.1.1 Fuzzification of probability space

Due to the uncertainty and incompleteness of the information,

experts are unable to directly provide a precise probability value for

the root node. However, qualitative language terms can be used to

express the likelihood of the root node. In this paper, with reference

to industry standards and practical experience, a five-level

evaluation scale is adopted to represent expert judgment

regarding the probability of the root node. Given its simplicity

and efficiency, a triangular membership function is employed to

address the uncertainty in expert judgments. Based on inductive

reasoning and expert evaluations, membership and non-

membership functions that describe the possibility of navigation

safety risks are developed (see Table 2). Through the mapping

relationship shown in Table 2, expert qualitative assessments can be

converted into quantitative intuitionistic fuzzy numbers (IFNs).
3.2.1.2 Determine expert weights

Due to differences in educational background, work experience,

etc., the judgement of different experts on the same indicator may

be biased. Therefore, the reliability of expert judgement is crucial to

the assessment results. In this paper, the influence of four standard

factors, namely, title, sea service time, highest degree, and

influencing factors, on the reliability of expert judgement is

considered. Based on the personal information of the experts (see

Appendix A) and the scoring criteria shown in Table 3, the score of

each expert is calculated and normalised by Equation 5 to finally

determine the weight of each expert.

w(Qk) =
qk

o
n

k=1

qk

(5)

where qk denotes the composite score of the k-th expert.

3.2.1.3 Aggregate expert opinions

In the intuitionistic fuzzy environment, the traditional

similarity aggregation method (Turna, 2024) is improved and the

opinions of different experts are aggregated by the Tw operator in

the following steps:

Evaluating Similarity: If the opinions of experts Q1 and Q2 are

expressed in terms of ~E1 = (a1, b1, c1; a
0
1, b

0
1, c

0
1) and ~E2 = (a2, b2, c2;

a02, b02, c02), respectively, then EV(~E1) and EV(~E1) represent the

expected evaluated values of ~E1 and ~E2, respectively, and EV(~E1)

can be defined as:
TABLE 2 IFNs corresponding to navigation risk.

Navigation risk IFNs

Very low risk (VLR) (0, 0, 0.2; 0, 0, 0.25)

Low risk (LR) (0.05, 0.25, 0.45; 0, 0.25, 0.5)

Medium risk (MR) (0.3, 0.5, 0.7; 0.25, 0.5, 0.75)

High risk (HR) (0.55, 0.75, 0.95; 0.5, 0.75, 1)

Very high risk (VHR) (0.8, 1, 1; 0.75, 1, 1)
TABLE 1 Criteria and descriptions for the assessment of ship
navigation risks.

Components Criteria Descriptions

Natural
conditions (AA)

Dangerous water depth
rate (a1)

Proportion of areas with
water depths within

20 metres

Average frequency of high
winds (a2)

Frequency of strong winds
exceeding 12 metres

per second

Average frequency of big
waves (a3)

Frequency of sea states
with wave heights over

6 metres

Average visibility (a4)
Average visibility within

the sea area

Traffic
conditions (BB)

Average time density of
ships (b1)

Total vessel activity time
within the maritime area
per unit time and space

Navigation warning
frequency (b2)

Number of navigation
warnings issued

Operational safety (b3)
Overall operational safety
status of vessels in the

sea area

Safeguard
conditions (CC)

Fastest response time (c1)
Minimum response time
from sea grid centres to
emergency facilities

Average port distance (c2)
Average distance between
the centre of the sea grid
and the five nearest ports

Preventive measures (c3)
Preventative measures for
accidents and safety risks

within the sea area

Accident
conditions (DD)

Weighted Shipping
Accidents (d1)

Weighted counts of
maritime accidents based

on incident severity

Piracy and armed robbery
frequency (d2)

Number of pirate attacks
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EV(~E1) =
a1 + a01 + 4b1 + c1 + c01

8
(6)

Similarly, EV(~E2) can be defined as:

EV(~E2) =
a2 + a02 + 4b2 + c2 + c02

8
(7)

Then the similarity function between expert Q1 and expert Q2

can be defined by the following equation:

S(~E1, ~E2) =
EV(~E1)=EV(~E2), if  EV(~E1) ≤ EV(~E2)

EV(~E2)=EV(~E1), if  EV(~E1) > EV(~E2)

(
(8)

Evaluating weighted agreement: The weighted agreement of

expert Qk can be defined by the following equation:

WA(Qk)  =  on
j=1,j≠kw(Qk)� S(~Ej, ~Ek)

on
j=1,j≠kw(Qk)

(9)

where w(Qk) is the weight of the expert Qk.

Determination of relative agreement: The relative agreement of

each expert Qk can be calculated as follows:

RA(Qk) =
WA(Qk)

on
k=1WA(Qk)

(10)

Calculation of consistency coefficient: The consistency

coefficient is calculated by combining the expert weights and

relative consistency as follows:

CC(Qk) = bw(Qk) + (1 − b)RA(Qk) (11)

Aggregate expert opinions: Considering the TW operator,

combined with the consistency coefficient aggregation expert

opinion, it is calculated as follows:

RAG = o
n

k=1

(⊕TW
)CC(Qk)~Ek (12)

F
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Defuzzification: The purpose of defuzzification is to obtain the

probability of an event, which will be used as the prior probability of

the root node in the evaluation model. Common defuzzification

methods include the centroid method, weighted average method,

centre method, and mean maximum membership method

(Varghese and Kuriakose, 2012). Since the centroid method is

simple and efficient, this method is selected in this paper to

obtain the fuzzy probability score (FPS) of any IFN ~E(a, b, c; a0, b0,
c0). The calculation formula is as follows:

S =
(c − a)(a + b + c) + (c0 − a0)(b − 2c0 − 2a0) + 3� (c02 − a02)

3� (c − a + c0 − a0)
(13)
3.2.2 Weighted fuzzy rule base
In this step, a weighted rule approach is proposed to capture the

dependencies of the root node with other nodes. The generic IF-

THEN fuzzy rule base is shown below:

Rk : IF A
k
1 and A

k
2 ⋯ and Ak

n,  THEN (bk
1 ,C1), (b

k
2 ,C2),⋯, (bk

m,Cm)
n o

(14)

where Rk denotes the kth rule, Ak
n (IF part) denotes the nth

cause variable, Cm (THEN part) denotes the mth outcome

variable, bk
m denotes the confidence level assigned to Cm, and n

and m represent the total number of cause and outcome

variables, respectively.

To facilitate data collection, this paper sets the number of

language levels to be consistent with the total number of outcome

variables in the fuzzy rule base. Literature (Fan et al., 2023) uses an

equivalent method to define the rules between nodes and converts

them into CPT. The CPT established using the equivalence method

cannot reflect the variability of different influencing factors and

ignores the influence of expert judgement reliability. To this end,

industry experts should define the rules between nodes based on

their work experience and normalize them according to the expert

weights determined in section 4.2. Taking ‘natural conditions’ as an

example, the CPT established is shown in Table 4.
TABLE 3 Scoring criteria for expert profiles.

Criterion Description Score Criterion Description Score

Title Professor 5 Sea service time ≥18 5

Associate professor/Senior engineer 4 13-17 4

Lecturer/Engineer 3 8-12 3

Assistant lecturer/Assistant engineer 2 3-7 2

Worker 1 ≤2 1

Highest degree Doctor's degree 4 Impact factor ≥15 4

Master’s degree 3 10-14 3

Bachelor’s degree 2 5-9 2

Other 1 ≤4 1
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3.3 Determining navigation risk levels

The last step of implementing the method is to obtain a clear

risk value. The assessment results obtained based on the BN model

are distributed. For decision makers, the distributed assessment

results cannot be directly used to rank the risk levels of the sea area.

To solve this problem, we use the utility function to convert the

distributed risk assessment results into specific risk values, thereby

ranking the overall risk level of the sea area. The final navigation

risk value can be calculated using the following formula:

Navigation risk = o
3

Z=1

pZUZ (15)

where pZ(z ∈ (low,medium, high)) denotes the marginal

probability of the three states and UZ denotes the value of utility

in the three states (Ulow = 33,Umedium = 66,Uhigh = 99).
4 Case study

4.1 Study area and data

The South China Sea is a region with busy trade and frequent

accidents, so it has been selected as the study area for this paper.

According to international conventions, coastal countries have the

responsibility to provide search and rescue services. The South

China Sea mainly includes China, the Philippines, Laos and other

countries. To facilitate data collection and result analysis, the study

defines the scope of the South China Sea area within a rectangular

boundary. The coordinates of the top-left corner of the rectangle are

20°0′0″N, 110°0′0″E, and the coordinates of the bottom-right

corner are 9°0′0″N, 120°0′0″E, as shown in Figure 2. Based on

this, the region is further divided into a grid, with each grid square

having a side length of one degree of longitude and one degree of

latitude. The grid is numbered horizontally from left to right with

letters A to J, and vertically from top to bottom with numbers 1 to

11. This grid-based approach allows for more precise spatial

analysis of the South China Sea area.
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This paper collects or summarizes data sets of 12 risk indicators

from multiple channels such as international organizations and

commercial companies. The data sets used are shown in Table 5.

After preliminary screening and cleaning of the data sets, the initial

values of various risk indicators in the South China Sea are finally

obtained. Due to space limitations, this paper only presents the

initial values of various risk indicators in the South China Sea A1 to

A5 areas. The specific data are shown in Table 6. It can be seen that

the effective integration of multi-source data is a huge challenge.
4.2 Application of BN model

4.2.1 Results of navigation risk assessment
The South China Sea gridded navigation assessment process

involves the use of a weighted rule-based BN model, as described in

Section 3. As an example, the discretisation process of numerical

indicator data is presented in the calculation of the ‘average time

density of ships’ indicator. The calculation shows that the average

value of selected areas in the South China Sea fluctuates between

0.051 and 24.097. According to Equations 1, 3, and 4, the equal

interval method and quantile method are used to perform data

transformation. The results are shown in Table 7.

As can be seen from the table, both the quantile method and the

equal interval method are able to categorise the indicator data, but

their classification results are significantly different. Obviously, the

classification results obtained based on the quantile method are

better, which is due to the fact that the quantile method can

effectively deal with non-uniformly distributed data. This method

effectively avoids the influence of extreme values on the

classification results by dividing the data into equal parts.

Therefore, it is more appropriate to choose the quantile method

to determine the indicator thresholds in this study. Taking A1 sea

area as an example, the results of the discretization of numerical

indicators are shown in Table 8. Here, the input information is

treated as the prior probability of the root node.

Next, the discretisation process of expert-based indicator data is

introduced. Taking the A1 sea area as an example, the evaluation

information given by five experts on the risk indicator ‘operational
TABLE 4 CPT for Natural conditions node using weighted method.

Rule
no.

Parent nodes in IF part Child nodes in THEN part

Water depth Wind speed Wave height Visibility Low Medium High

1 Low Low Low Low 0.89 0.11

2 Low Low Low Medium 0.77 0.23

3 Low Low Low High 0.6 0.1 0.3

4 Low Low Medium Low 0.69 0.31

…

78 High High Medium High 0.21 0.79

79 High High High Low 0.21 0.10 0.69

80 High High High Medium 0.29 0.71

81 High High High High 0.12 0.88
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safety’ is {VHR, VHR, HR, HR, MR}, and the aggregation

calculation process of the root node ‘operational safety’ is shown

in Appendix B. As can be seen from the table, the prior probability

of this node is (LR0.185; HR0.815). Similarly, the prior probabilities

of expert-based indicators in other sea areas can be obtained.
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Then, combined with the evaluation system established in Section

3.1, the risk assessment model of ship navigation is constructed. The

model contains a total of 17 nodes, including 12 root nodes, 4

intermediate nodes and 1 target node, as shown in Figure 3.

Finally, based on the a priori probabilities and dependencies of

the nodes, the BN model with weighted rules is used to synthesise

the input data and transform the results into belief degrees. Taking

A1 sea area as an example, the result of navigation risk assessment is

shown in Figure 4.

Figure 4 shows the results for navigation risk in sea area A1,

where the low risk confidence level is 51%, and the medium and

high risk confidence levels are 9.1% and 39.9%, respectively. At this

point, relying solely on distributional probabilities is not sufficient

to rank the level of navigation risk. Therefore, it is necessary to

combine the utility function to simplify the decision-making

process. The value of navigation risk can be calculated by

Equation 15 and used to determine the risk level. Using the same

method, the navigation risk of other South China Sea grids can also

be assessed. Due to space limitation, this paper only shows the

distribution of navigation risk from A1 to A5 sea area in the South

China Sea, as represented in Figure 5.

Located at the north-western end of the selected area of the

South China Sea, sea area A1 deserves attention with a high

navigation risk score of 62.4 and a risk rating of medium risk.

The two influencing factors of intensive ship traffic flow and high

frequency of navigation warnings give it a high risk score for traffic

conditions. In addition, poor natural conditions (especially water

depth) and frequent shipping accidents make it a serious challenge

for navigation safety in the A1 region, and these challenges

highlight the need for a maritime regulatory mechanism. In

contrast, the overall navigation risk score of A5 is 38.2, the lowest

among the five areas. This advantage is due to the good natural

conditions such as water depth, wind speed, wave height and
TABLE 5 Sources of the datasets.

Data Source Period
Output
(criteria)

Bathymetry https://www.gebco.net/ 2023
Dangerous water

depth rate

10-m
wind speed

https://www.ecmwf.int/
2017-
2023

Average frequency of
high winds

Significant
wave height

https://www.ecmwf.int/
2017-
2023

Average frequency of
big waves

Low
cloud cover

https://www.ecmwf.int/
2017-
2023

Average visibility

Traffic flow
https://

globalmaritimetraffic.org/
2017-
2023

Average time density
of ships

Navigation
warning

https://www.msa.gov.cn/
2017-
2023

Navigation
warning frequency

Shipyard
https://

www.shiplocation.com/
2023 Fastest response time

Port http://ports.com/ 2023 Average port distance

Shipping
accidents

https://gisis.imo.org/
2017-
2023

Weighted
Shipping Accidents

Piracy and
armed
robbery

https://gisis.imo.org/
2017-
2023

Piracy and armed
robbery frequency

Others expert knowledge
Operational safety/
Preventive measures
FIGURE 2

Grid-based study area in the South China Sea.
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visibility. The dense distribution of harbours and ship repair yards

around A5, which is located near the South China Sea countries

such as China, the Philippines and Laos, also effectively ensures the

safety and operational efficiency of ships in the sea area. Finally, the

overall risk distribution in the selected sea areas is characterised by a

higher risk at and near the boundary, due to the high density of

ships in the harbour area, which makes them prone to navigation

risks such as collision avoidance and groundings. The risk of the

central area of the selected sea area and its vicinity is the second

highest, mainly because it is far away from the port and has harsh

natural conditions, which challenges the timeliness and

effectiveness of maritime rescue, which is often overlooked in

previous studies. Therefore, it is particularly important to

establish an emergency support mechanism in the open seas.

4.2.2 Model validation and
performance comparison

Verification plays a crucial role in the BN model, serving as the

foundation for its accuracy. In this study, the accuracy of the model

is verified using the three-axiom method (Fan et al., 2023). The

three axioms are defined as follows: Axiom 1: A minor increase or

decrease in the prior subjective probability of any parent node

results in a corresponding rise or fall in the posterior probability of

the child node; Axiom 2: When the subjective probability

distribution of each parent node changes, its effect on the child
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node remains unchanged; Axiom 3: The cumulative effect of

changes in the evidence probabilities is always greater than the

effect derived from any subset of the evidence.

Based on the above three axioms, the model is verified to

analyse the impact of different risk factors on the navigation risk

value. We selected intermediate nodes related to the target node for

verification, including natural conditions, traffic conditions,

safeguard conditions and accident conditions. Assign a 5%

probability to each intermediate node and observe the final

navigation risk results. For example, if the probability of the

intermediate node ‘natural conditions’ being in the ‘high’ state

increases by 5%, the corresponding probability of the ‘low’ state will

decrease by 5%. The final distribution of navigation risk probability

is as follows: (low, 50.1%; medium, 9.1%; high, 40.8%). According to

Equation 15, the navigation risk value is:

33*50:1%+66*9:1%+99*40:8% ≈ 62:9 (16)

Next, calculations are performed for different risk

combinations, and the results are shown in Table 9.

Firstly, a subjective probability of 5% is assigned to the

intermediate node ‘natural condition’, and the risk value increases

to 62.9 (i.e., combination #2 in Table 9), satisfying Axiom 1.

Secondly, 5% of the subjective probability is reallocated to the

intermediate node ‘traffic conditions’, and the risk value is increased

to 63.7 (i.e., combination #3 in Table 9). From the results of
TABLE 7 Index conversion results using different approach.

Sea
area

Equal-interval: Low
risk (0.051)

Medium
risk (12.074)

High
risk (24.097)

Quantile: Low
risk (0.101)

Medium
risk (0.171)

High
risk (0.274)

A1 0 0 1 0 0 1

A2 0.910 0.090 0 0 0 1

A3 0.983 0.017 0 0 0.221 0.779

A4 0.989 0.011 0 0 0.828 0.172

A5 0.981 0.019 0 0 0 1
TABLE 6 Criteria values reflecting the characteristics of sea areas A1 to A5.

Criteria Unit A1 A2 A3 A4 A5

Dangerous water depth rate Percentage 0.246 0.035 0 0 0

Average frequency of high winds Percentage 0.035 0.087 0.093 0.079 0.071

Average frequency of big waves Percentage 0.009 0.030 0.037 0.032 0.029

Average visibility KM 8.433 9.025 9.025 9.150 9.150

Average time density of ships Hours per km 24.097 1.138 0.251 0.189 0.280

Navigation warning frequency Number of warning 4 1 34 1 0

Fastest response time HR 14.333 14.067 10.733 8.000 6.667

Average port distance NM 47.2 89.2 137 161.4 165.2

Weighted Shipping Accidents Number of accidents 3 3 9 0 0

Piracy and armed robbery frequency Number of piracy 0 0 0 0 0
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combinations 2 and 3, it can be seen that the change of the

subjective probability distribution of the parent node has the

same impact on the child nodes, which supports Axiom 2.

Finally, the results from combinations 2, 6, 12, and 16 show that

the degree of influence increases as the subset of evidence increases,

a finding that confirms Axiom 3. Therefore, the construction of the

BN-based risk assessment model is accurate.

In order to further verify the accuracy of the results of the

constructed BN model, we adopt the advanced risk assessment

method of ER. A more detailed derivation of this method can be

found in (Zhao et al., 2020). First, a hierarchical structure based on

the ER model is constructed to ensure that all risk factors and their

dependencies are consistent with the BN model. Next, the nodes are

assumed to have the same marginal probability and are given the
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same weight. Finally, natural conditions (AA=(69.7%,LR), (0.3%,

MR) and (30.0%,HR)), traffic conditions (BB=(15.4%,LR), (0.0%,

MR) and (84.6%,HR)), safeguard conditions (CC=(44.8%,LR),

(45.1%,MR) and (10.1% HR)) and accident conditions (DD=

(69.0%,LR), (0.0%,MR) and (31.0%,HR)) are entered into the ER

model as the four pieces of evidence and calculate using the ER-

based software programme IDS (Yang and Xu, 2002), the results of

which are shown in Figure 6.

It can be seen from the results that although the belief degree of

‘medium risk’ state in navigation risk is slightly different, the results

obtained by ER model are highly consistent with those obtained by

BN model. This shows that the BN model and its results are

accurate. Compared with ER model, BN model is simpler in

operation and has stronger scalability. Therefore, BN-based

navigation risk assessment is appropriate and necessary.

4.2.3 Sensitivity analysis
Sensitivity analysis is a commonly used method for assessing

model uncertainty. In this study, we constructed a BN-based risk

assessment model to identify RIFs that have a significant impact on

‘navigation risk’ in order to develop targeted risk mitigation

measures. This paper uses the mutual information method to

perform sensitivity analysis. The calculation method of the

mutual information value is described in detail in the literature

(Yu et al., 2021). The mutual information value is a statistical metric

used to assess the extent of mutual dependence or information

exchange between two nodes. A higher mutual information value

indicates a stronger correlation between the nodes and a greater

level of information sharing. For example, the sensitivity results for

the A1 sea area are presented in Table 10.

The top six RIFs in terms of importance in the A1 area are

safeguard conditions, natural conditions, accident conditions, traffic

conditions, operational safety and fastest response time, with
FIGURE 3

BN structure.
TABLE 8 Discretization of the numerical indicator for sea area A1.

Criteria Discretization Criteria Discretization

Dangerous
water

depth rate

(HR, 1) Navigation
warning
frequency

(HR, 1)

Average
frequency of
high winds

(LR,1) Fastest
response time

(LR,
0.019;MR0.981)

Average
frequency of
big waves

(LR,
0.988;MR0.012)

Average
port distance

(LR, 1)

Average
visibility

(LR,1) Weighted
Shipping
Accidents

(HR, 1)

Average time
density
of ships

(HR, 1) Piracy and
armed
robbery
frequency

(LR, 1)
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safeguard conditions achieving the highest value of 0.12 in the risk

assessment model, making it the most important risk factor in the

A1 area. Further, the lack of safeguard conditions scenario is

simulated using the BN model developed in this paper.

Incorporating evidence of changing safeguard conditions (0.0 per

cent low risk, 0.0 per cent medium risk and 100.0 per cent high

risk), the marginal probability of navigation risk changes to (42.0

per cent low risk, 0.1 per cent medium risk and 57.9 per cent high
Frontiers in Marine Science 11
risk), and the value of risk increases from 62.9 to 71.2, with a change

in risk rating from medium risk to high risk.

Since there may be differences in the sensitivity results of

navigation risks in different gridded sea areas, we continue to

calculate the mutual information values of navigation risks in other

gridded sea areas, and the results are shown in Figure 7. Where blue

colour indicates the most important RIFs in the sea area and orange

colour indicates the top three RIFs in the sea area.
FIGURE 5

Navigation risk Distribution in A1-A5 areas.
FIGURE 4

The BN model created for navigation risk assessment.
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As can be seen from Figure 7, in the selected waters of the South

China Sea, natural conditions is considered the most important factor

affecting navigation safety, accounting for 77.3%, followed by safeguard

conditions, accounting for 18.2%. In addition, in the selected waters of

the South China Sea, 95.5% of the areas regard natural conditions as the

top three important RIFs, safeguard conditions and traffic conditions

account for 76.4% and 69.1% respectively.

Based on the above experimental results, we put forward some

suggestions to improve the level of navigation safety in the South China

Sea: (1) Due to the high risk of adverse natural conditions, abnormal

natural conditions such as wind and waves should immediately trigger

an alarm. Therefore, real-time observation of weather and sea

conditions is extremely important and helps improve maritime traffic
Frontiers in Marine Science 12
safety. (2) Sea areas far from ports have poorer security conditions, and

the consequences of accidents are more serious. Therefore, it is

recommended that countries along the South China Sea strengthen

cooperation and jointly establish an efficient maritime supervision

mechanism to reduce the risk of accidents at open seas.
5 Conclusions and future work

Ship navigation risk assessment is a complex systematic project,

characterised by data diversification, factor non-linearity, information

uncertainty, etc. These characteristics bring great challenges to

navigation safety assessment. To address these issues, this paper

integrates BNs, fuzzy logic, and utility theory to develop an advanced

method for assessing ship navigation safety. The South China Sea, a sea

of busy trade and frequent accidents, is selected as a case study, and the

following important findings are obtained:
(1) Among the selected grid areas in the South China Sea, the

E4 area has the highest navigation risk, with a risk level of

71.0 and a high risk level, while the J7 area has the lowest

navigation risk, with a risk level of 33.4 and a medium

risk level.

(2) The overall risk distribution in selected areas of the South

China Sea is not uniform. In general, the risk is higher at
TABLE 9 BN model validation under different risk combinations.

No.

Risk factors Degree of
belief distribution

Risk value Variation

Natural conditions Traffic conditions Safeguard conditions Accident conditions Low Medium High

1 51.0% 9.1% 39.9% 62.4 0.0

2 + 50.1% 9.1% 40.8% 62.9 0.5

3 + 48.9% 9.1% 42.0% 63.7 1.3

4 + 50.8% 9.1% 40.1% 62.5 0.1

5 + 50.2% 9.1% 40.7% 62.9 0.5

6 + + 48.0% 9.1% 42.9% 64.3 1.9

7 + + 49.9% 9.1% 41.0% 63.1 0.7

8 + + 49.3% 9.1% 41.6% 63.5 1.1

9 + + 48.6% 9.1% 42.2% 63.8 1.4

10 + + 48.1% 9.1% 42.8% 64.3 1.9

11 + + 50.0% 9.1% 40.9% 63.0 0.6

12 + + + 47.7% 9.1% 43.1% 64.4 2.0

13 + + + 47.2% 9.1% 43.7% 64.8 2.4

14 + + + 49.1% 9.1% 41.8% 63.6 1.2

15 + + + 47.9% 9.1% 43.0% 64.4 2.0

16 + + + + 47.0% 9.1% 43.9% 65.0 2.6
fro
‘+’ represents a 5% shift in each factor's probability towards maximum navigation risk.
TABLE 10 Sensitivity analysis results of the top six RIFs in A1 sea area.

RIFs Mutual information value

Safeguard conditions 0.120

Natural conditions 0.063

Accident conditions 0.043

Traffic conditions 0.028

Operational safety 0.004

Fastest response time 0.003
ntiersin.org

https://doi.org/10.3389/fmars.2025.1547305
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Qu and Wang 10.3389/fmars.2025.1547305

Fron
and near the boundary, second highest at and near the

centre, and lower in other areas.

(3) ‘Natural conditions’ is considered the most important

factor affecting navigation safety in most of the sea areas

with a high percentage of 77.3%, followed by ‘Safeguard

conditions’ with 18.2%.

(4) There are also differences in the key RIF of ship navigation

risk in the gridded waters of the South China Sea. The

common influencing factors are ‘Natural conditions’,

‘Safeguard conditions’, ‘Traffic conditions’, ‘Accident

conditions’ and ‘Fastest response time’ in order.
tiers in Marine Science 13
In summary, while the proposed method offers a valuable tool

for assessing ship navigation risks, several limitations should be

considered, which also suggest directions for future research:
(1) The model’s accuracy depends on the quality and

completeness of the data, and future work could focus on

integrating real-time and more diverse data sources to

improve reliability.

(2) As finer gridding increases computational complexity (Fan

et al., 2023), future research could explore hybrid approaches

by integrating BNs with CI techniques, such as deep learning,

to optimize efficiency and scalability.
FIGURE 7

Sensitivity analysis results in the study area.
FIGURE 6

Aggregation results using different approach.
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(3) The current model is based on the South China Sea, and future

studies should validate the approach in other maritime regions

and incorporate real-time environmental changes for more

dynamic assessments.
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Appendix
APPENDIX A Experts’individual profile and decision weight.

Expert Title Highest
degree

Service
time
at sea

Impact
Factor

Score Weight

Q1 Professor Doctor’s
degree

25 30 18 0.254

Q2 Professor Doctor’s
degree

17 20 17 0.239

Q3 Associate
professor

Doctor’s
degree

10 12 14 0.197

Q4 Senior
engineer

Doctor’s
degree

12 8 13 0.183

Q5 Lecturer Master’s
degree

6 3 9 0.127
F
rontiers in
 Marine Sci
ence
APPENDIX B Aggregate calculation and probability conversion of root
node ‘operational safety’.

~E1 VHR (0.8, 1, 1; 0.75, 1, 1) EV(~E1) 0.94

~E2 VHR (0.8, 1, 1; 0.75, 1, 1) EV(~E2) 0.94

~E3 HR (0.55, 0.75, 0.95; 0.5, 0.75, 1) EV(~E3) 0.75

~E4 HR (0.55, 0.75, 0.95; 0.5, 0.75, 1) EV(~E4) 0.75

~E5 MR (0.3, 0.5, 0.7; 0.25, 0.5, 0.75) EV(~E5) 0.5

EV(~E1) = (0:8 + 0:75 + 4� 1 + 1 + 1)=8 ≈ 0:94

S(~E1, ~E2) 1 S(~E2, ~E4) 0.795

S(~E1, ~E3) 0.795 S(~E1, ~E2) 0.530

S(~E1, ~E4) 0.795 S(~E1, ~E2) 1

S(~E1, ~E5) 0.530 S(~E1, ~E2) 0.667

S(~E2, ~E3) 0.795 S(~E1, ~E2) 0.667

S(~E1, ~E2) = EV(~E1)=EV(~E2) = 1

WA(Q1) 0.786 w(Q1) 0.250

WA(Q2) 0.787 w(Q2) 0.2472

WA(Q3) 0.790 w(Q3) 0.1704

WA(Q4) 0.803 w(Q4) 0.1165

WA(Q5) 0.580 w(Q5) 0.2159

WA(Q1) =
1� 0:2472 + 0:795� 0:1704 + 0:795� 0:1165 + 0:530� 0:2159

0:2472 + 0:1704 + 0:1165 + 0:2159
≈ 0:786

RA(Q1) 0.210 CC(Q1) 0.230

RA(Q2) 0.210 CC(Q2) 0.229

RA(Q3) 0.211 CC(Q3) 0.191

RA(Q4) 0.214 CC(Q4) 0.165

RA(Q5) 0.155 CC(Q5) 0.185

RA(Q1) =
0:786

(0:786 + 0:787 + 0:790 + 0:803 + 0:580)
≈ 0:210

CC(Q1) = 0:5� 0:250 + 0:5� 0:210 = 0:230

(Continued)
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APPENDIX B Continued

Aggregated INFs (0.772,0.818,0.856;0.761,0.818,0.886)

FPS: 0.815

Prior probabilities(LR 0.185;HR 0.815)
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