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Research on fishing vessel
recognition based on vessel
behavior characteristics from
AIS data
Xiao Han1, Yang Zhou1,2,3*, Jianjun Weng1,2, Lijia Chen1,2,3

and Kang Liu1,2

1School of Navigation, Wuhan University of Technology, Wuhan, China, 2Hubei Key Laboratory of
Inland Shipping Technology, Wuhan University of Technology, Wuhan, China, 3State Key Laboratory
of Maritime Technology and Safety, Wuhan University of Technology, Wuhan, China
The Automatic Identification System (AIS) is one of the most important navigation

assistance systems and plays a pivotal role in vessel monitoring. However, some

fishing vessels disguise themselves as other vessel types during fishing bans to

engage in illegal fishing activities, causing significant damage to marine ecosystem.

To address this challenge and accurately identify vessel types, a BP-AdaBoost

classification algorithm is developed by integrating backpropagation (BP) neural

networks with ensemble learning techniques. The proposed algorithm leverages the

AdaBoost method to combine multiple BP neural network weak classifiers into a

strong classifier, effectivelymitigating the slow convergence rate and susceptibility to

local optima inherent in BP neural networks. By configuring the output nodes of the

BP neural network to match the number of target classes, the AdaBoost algorithm

achieves robust multi-class classification functionality. Historical AIS data are

analyzed to extract static features, vessel behavior features, and temporal features

for vessel classification. To minimize model overfitting, the Maximal Information

Coefficient algorithm is employed to assess feature importance, and optimal feature

combinations are determined through systematic feature selection experiments.

Experiments are conducted using AIS data from the Pearl River Estuary in China,

targeting the classification of cargo ships, fishing vessel, tanker, and passenger ships.

The performance of the proposedmethod is comparedwith othermachine learning

algorithms. The results demonstrated classification accuracies of 90.8% for cargo

ships, 95.6% for fishing vessels, 97.5% for tankers, and 98% for passenger ships, with

an overall classification accuracy of 95%. Additionally, the BP-AdaBoost algorithm

exhibited superior performance across other classification evaluation metrics.

Specifically, the proposed algorithm outperformed the BP neural network by 4.5%

and the support vector machine by 12.6% in overall classification accuracy. These

findings indicate that the BP-AdaBoost algorithm is capable of effectively identifying

vessel types based on historical trajectory data, providing a solid foundation for

combating illegal fishing, detecting abnormal vessels, and identifying irregular

vessel behaviors.
KEYWORDS

AIS data, fishing vessel recognition, vessel classification, trajectory feature, BP-
AdaBoost algorithm
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1 Introduction

With the continuous increase in the number of fishing vessels

and the advancement of fishing technologies, the intensity of fishing

in coastal waters escalates, leading to significant marine ecological

damage and a shortage of fishery resources (Pham et al., 2014).

Against this backdrop, illegal fishing activities have a huge impact

on marine ecological protection. China has makes significant efforts

to restore coastal fishery resources and regulate fishing activities, the

most important of which is the close monitoring of fishing vessels

through the Automatic Identification System (AIS). AIS is a new

navigation assistance system that the International Maritime

Organization (IMO) mandates for all Class A vessels (Sheng and

Yin, 2018), enabling identification, positioning, and collision

avoidance among ships. It encompasses dynamic, static,

navigational, and safety information. However, the information in

AIS faces the challenge that the vessel types reported may not

accurately reflect the true types of the vessels; some vessels

intentionally conceal their true type when engaging in smuggling,

illegal fishing, or other unlawful activities. If vessel types can be

derived from historical AIS data, then the corresponding prior

knowledge of a particular vessel type can be applied to maritime

traffic management. Therefore, accurately identifying vessel types

enhances the situational awareness of relevant authorities and holds

significant value in areas such as maritime surveillance, disguise

identification, vessel behavior pattern mining, and anomaly

detection, especially in the fight against illegal fishing.

Although high-resolution remote sensing images can provide

rich detail, they also present challenges such as high computational

demands and long processing times. Additionally, image

compression may lead to data loss, which can affect the accuracy

of vessel classification. In contrast, AIS data has clear advantages.

AIS data is transmitted in real-time through shore-based or satellite

communication networks, allowing global users to access trajectory

information promptly. The cost of data acquisition is low, and its

coverage is extensive. AIS data has become an important source for

maritime traffic management, and many maritime studies have

been conducted around it. Therefore, AIS data offers certain

feasibility and advantages in the research of vessel target

classification and identification.

From the current research on AIS data-based vessel

classification, two categories can be identified according to their

focuses of vessel features, being the static features and the dynamic

information. The first category is based on static vessel features,

such as size and tonnage, and uses traditional algorithms like KNN

(Damastuti et al., 2019) and Random Forest (Zhong et al., 2019) for

classification. These methods can achieve vessel classification with

fewer features, but relying solely on static features cannot effectively

reflect the vessel’s motion state, limiting its practical value and

resulting in lower classification accuracy. The second category

mainly utilizes dynamic vessel features, including speed, course,

and trajectory, to extract vessel characteristics, and employs

techniques such as ensemble learning (Luo et al., 2023),

traditional machine learning (Sheng et al., 2017; Huang et al.,

2019; Zhou et al., 2019)), and deep learning for classification

(Guo and Xie, 2022; Kong et al., 2022; Wang et al., 2022;
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Yang et al., 2022; Guan et al., 2023; Xing et al., 2023; Zhu et al.,

2023). These methods reflect the vessel’s motion state and use

trajectory information for vessel classification. While they can

achieve better classification, some studies extract features that are

overly complex and highly correlated, leading to redundant

features. These redundant features can decrease training efficiency

and lower classification accuracy. Additionally, some studies focus

only on binary classification, limiting the practical value of binary

classification methods. Therefore, using either static or dynamic

features cannot fully reflect vessel information; combining both

types of features is necessary to better capture the information.

Furthermore, when extracting vessel features, it is important to

consider the correlation between features to avoid redundancy.

Most methods used in feature-based classification are primarily

machine learning and ensemble learning techniques, with little

application of neural network methods. BP neural networks are

widely applied in the transportation field, including trajectory

prediction (Ma et al., 2020), traffic flow forecasting (Chi et al.,

2008), and behavior analysis (Zhang et al., 2019), achieving good

results in classification problems in other domains (Li, 2015; Shi

et al., 2020; Cao et al., 2023). However, in the field of vessel

classification, the application of BP neural networks is limited,

and neural networks or ensemble learning methods are generally

used separately, with few instances of combining these

two approaches.

Regarding the analysis of fishing vessel activities, compared to

other types of vessels, the behavioral characteristics offishing vessels

are quite distinct (Pham et al., 2014; Huang et al., 2019; Guan et al.,

2023; Xing et al., 2023). On one hand, the activities of fishing vessels

exhibit a clear spatiotemporal pattern. Spatially, their activities are

mainly concentrated in areas rich in fishery resources, such as

fishing zones or fishing ports. Temporally, fishing vessels are most

active outside the closed fishing seasons and during the peak fishing

seasons. On the other hand, fishing vessels also show significant

differences in behavior compared to other vessel types. There are

two main types of vessel behavior: First, due to operational area

restrictions, fishing vessels often repeatedly move in the same area

to conduct fishing activities. In this case, the vessel’s course changes

frequently, and its speed is relatively low. Second, when fishing

vessels are either heading to their operating areas or returning to

port after completing their fishing tasks, their course changes

become less frequent, and their speed tends to increase. Thus, to

identify and classify the fishing vessels, especially the non-fishing

vessels engaged in illegal fishing activities, their behavior features

can be recognized.

The contribution of this research is trifold: (1) Based on the

consideration of vessel behavior features, an 18-dimensional feature

set was developed, incorporating static features, vessel behavior

features, and temporal features. This enriched the variety of features

input into the classifier and distinguished among four types of

vessels: cargo ships, fishing vessels, tankers, and passenger ships. (2)

By utilizing the multi-node characteristics of BP neural networks,

the output nodes of the BP neural network are set to correspond to

the number of categories, allowing the AdaBoost algorithm to

address multi-class classification problems. This approach

improves the slow convergence speed of BP neural networks and
frontiersin.org
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their tendency to get stuck in local optima. (3) The BP-AdaBoost

method is used for vessel target classification, along with the MIC

algorithm for feature selection, providing new insights for vessel

target classification.

This article is structured as follows: Section 2 introduces the

research area with the collected AIS data and the preprocessing

steps. In Section 3, an overview of the proposed methodology is

given followed by detailed description of the research approach,

with the experimental analysis presented in Section 4. Section 5

concludes the article and provides an outlook on the research.
2 Research area and data description

The research area and the collected data used in this research

are introduced in detail in this section.
2.1 Research area

To investigate the distinctive behavior of fishing vessels, the

waters in the Pearl River Estuary in China is selected, which

includes several important hub ports (see Figure 1). The research

area covers a spatial range of 22°30′ to 22°43′ N and 113°30′ to 114°
00′ E. Due to the rich nutrients in this area, the fishery resources are

abundant. The main fishing ground in this area is the Pearl River

Estuary Fishing Ground, located in the northern part of the South

China Sea, with coordinates ranging from 20°45’ to 23°15’ N and

112°00’ to 116°00’ E. The area covers approximately 74,300 square

kilometers and is one of the important inshore fishing grounds in

the South China Sea. It is a fishing ground for trawl, shrimp trawl,

purse seine, gillnet, and longline fishing operations.
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2.2 AIS data

According to the guidelines by IMO, AIS data should include three

categories of information: (1) static data, including the unique vessel

identifiers (MMSI), vessel name, call sign, length, width, and vessel

type; (2) dynamic data, referring to trajectory and status information

generated during the vessel’s navigation, including latitude, longitude,

speed, and course; (3) navigational data, describing the navigational

state of vessel, including draft, status, and destination.

The time intervals for different types of data vary. For static and

navigational data, the message is reported generally every 6 minutes

or updated immediately when queried. However, the update of

dynamic data is usually less than 3 minutes, with specific intervals

determined by the vessel’s current heading and speed. Currently,

AIS equipment have been installed on most vessels in navigable

waters, providing their real-time status.

The collected dataset in this research covers the time span from

August 16, 2023, to November 16, 2023 in the research area. The

dataset contains a total of 15,921,338 records, featuring various

types of vessels. However, due to the limited amount of data for

other vessel types, such as tugs, high speed crafts, law enforcement

vessels, etc., this research focuses on the behavior of the main four

types of vessels in the area, being cargo ships (2,263,519 records),

fishing vessels (1,957,002 records), tankers (2,795,298 records), and

passenger ships (8,902,264 records). The trajectories of these four

types of vessels are shown in Figure 2.

Generally comparing the trajectories, it can be observed that the

density of cargo ship trajectories is high and concentrated,

indicating that these vessels primarily transport goods on fixed

routes between ports. Similarly with fixed routes, the trajectories of

passenger ships are concentrated and regular with little variation

between voyages. The trajectories of tankers are wider and have a
FIGURE 1

Location of the research area in Pearl River Estuary.
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larger distribution range, suggesting that tankers have high

requirements for the width of shipping lanes and tend to avoid

areas with dense ship traffic to ensure safety. However, only for the

trajectories of fishing vessels, they are randomly distributed,

indicating that their activities are greatly influenced by the

distribution of fishery resources. Thus, the behavior of fishing

vessels presents strong flexibility.
Frontiers in Marine Science 04
2.3 Data preprocessing

To proceed with the vessel behavior analysis and vessel

classification, the collected AIS data is preprocessed by the

following three steps.

(1) Missing value removal. Some trajectory data lack critical

static information, such as vessel length, width, MMSI, and vessel
FIGURE 2

Trajectories overview of four types of vessels in the research area. (Different colors indicate the trajectories of different vessels according to their
MMSI number.) (A) Cargo ships, (B) Tankers, (C) Fishing vessels, (D) Passenger ships.
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type. Since this data cannot be repaired, records with missing values

were removed.

(2) Outlier removal. After removing the messages with missing

values, it is necessary to address outliers in the collected data. In this

experiment, the main outliers to be fixed include the ship’s speed

and position. The defined outliers include sudden increases or

decreases in data values, trajectory points that deviate from the

expected path, and gaps in the trajectory. The outliers at the

beginning or end of a trajectory segment are removed directly,

which does not affect the quality for analysis. If outliers are found

within a segment, linear interpolation is used to replace them with

the average of the two surrounding points. If multiple consecutive

outliers are present, they are treated as missing values and corrected

using linear interpolation based on the fitted trajectory curve,

considering the spacing between trajectory points. This paper uses

the speed value and the time interval between two adjacent data

points to determine whether there are missing values. First, the

value of speed indicates the status of the ship. For instance, when

the speed is mostly around 0.1 kn during a trajectory segment, the

ship is not indeed sailing on its own, in which the speed is probably

caused by wind and current. Thus, these data are removed. In this

paper, the threshold of speed during data removal is set as 1 kn.

Additionally, if the time interval between two adjacent data points is

greater than 3 minutes and less than 10 minutes, missing values are

considered to exist between them. The information of ship’s

position and speed will be checked. If more than five points of

incorrect position or speed appear consecutively within the same

trajectory segment, this segment will be removed.

(3) Trajectory segmentation. After processing the AIS data,

trajectories are segmented according to the vessel’s navigational

status. Since this information in the collected data is mostly missing,

the vessel’s navigational status is defined according to the speed.
Frontiers in Marine Science 05
Once the speed exceeds 1 knot, it is deemed as an underway vessel.

Only the segments including underway vessels are retained, and

trajectory segments with fewer than 100 data points are removed.

After preprocessing the AIS data, this paper keeps 8,200 sets of

ship data, including 2,000 sets for cargo ships, tankers, and

passenger ships, and 2,200 sets for fishing vessels.
3 Research approach

This paper combines the concepts of ensemble learning with BP

neural networks and the AdaBoost algorithm, using AdaBoost to

combine n BP neural networks into a strong classifier. By improving

the BP neural network, the classification of cargo ships, fishing

vessels, tankers, and passenger ships is achieved. The overview of

the proposed methodology is shown in Figure 3.
3.1 Behavior feature extraction

To accurately reveal the differences in behavior trajectories

among various types of vessels, five main features are extracted

from the AIS data: spatial feature, COG (Course of Ground), SOG

(Speed over Ground), static feature, and temporal feature. These

features can be used to identify vessel types.

3.1.1 Spatial feature
In this paper, the spatial feature of ship trajectory is described

from two aspects, being the sailing distance and the longitude and

latitude span. Due to the operational characteristics of vessels, cargo

ships and tankers do not require multiple round trips to ports

within a certain period of time, such as one day. Thus, their voyages
FIGURE 3

Overview of the proposed methodology.
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usually cover a large span of latitude and longitude with a relatively

short sailing distance, compared to fishing vessels and passenger

ships. In contrast, fishing vessels and passenger ships frequently

travel between several certain docks or fishing grounds in one single

day due to their operational demands, leading to a small span of

latitude and longitude, but with a longer sailing distance.

Based on the Haversine formula for spherical distance

calculation, the sailing distance can be computed as follows:

d = 2r   *sin
−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin

Dj 0

2

� �2

+cosj 0
1*cosj 0

2( sin
Dg 0

2
)2

s

where d represents the distance between two trajectory points; r

is the radius of the Earth, take 6371.393 km; Dj′=| j 0
1− j 0

2|, D g ′=|
g 0

1− g 0
2|, (j 0

1, g 0
1) and (j 0

2, g 0
2)refers to the positions of the two

trajectory points, expressed in radians.

The longitude span and the latitude span are:

j LON _ SPAN j = j LONMAX − LONMIN j

j LAT _ SPAN j = j LATMAX − LATMIN j
where LONMAX and LATMAX are the maximum values of

longitude and latitude in a trajectory segment, LONMIN and LA

TMIN are the minimum values of longitude and latitude in the same

trajectory segment.
3.1.2 Course over ground
To extract COG features, this study design a method to

determine whether a vessel is turning, as described in

Algorithm 1. First, the COG change between each data point is

calculated. Points with COG changes exceeding a certain threshold

are marked as potential turning points. Next, n consecutive

potential turning points are marked as a potential turning

segment. Finally, the COG changes within the potential turning

segment are checked against the threshold criteria, and those that

meet the criteria have all their potential turning points marked as

actual turning points.
Fron
1. Initialization:

threshold_COG_change = X1

threshold_consecutive_points = n

threshold_segment_change = X2

Input: COG_list, speed_list

possible_turning_points = [], turning_points = []

2. Identify possible turning points:

For i from 0 to length(COG_list) - 1:

I f a b s ( C O G _ l i s t [ i ] - C O G _ l i s t [ i + 1 ] ) >

t h r e s h o l d _ C O G _ c h a n g e :

possible_turning_points.append(i)

3. Group consecutive points into possible

turning segments:

For i from 0 to length(possible_turning_points) - n + 1:
tiers in Marine Science 06
If possible_turning_points[i + n - 1] -

possible_turning_points[i] == n - 1:

segment_change = sum(abs(COG_list

[possible_turning_points[j]] - COG_list

[possible_turning_points[j+1]]) forjinrange(i,i+

n))

If segment_change > threshold_segment_change:

turning_points.extend(possible_turning_points[i:i

+ n])

4. Extract features:

max_turn_angle = max(abs(COG_list[turning_points

[i]] – COG_list[turning_points[i+1]])

for i in range(1, len(turning_points)))

avg_turn_speed = mean(speed_list[tpt] for tpt

in turning_points)

avg_COG_change = mean(abs(COG_list[i] –COG_list

[i-1])

for i in range(1, len(COG_list)))

5 . O u t p u t : O u t p u t m a x _ t u r n _ a n g l e ,

avg_turn_speed, avg_COG_change
Algorithm 1. COG feature extraction algorithm.

The extraction is primarily divided into the following four steps:

Step 1: Initialize thresholds: 1) threshold COG change: This

threshold determines whether the COG change is significant

enough to mark a point as a potential turning point. It is set to a

COG change of at least 0.8 between two consecutive data points. 2)

threshold consecutive points: This threshold establishes the

required number of consecutive potential turning points to mark

a potential turning segment, set to at least 10 consecutive turning

points. 3) threshold segment change: This threshold confirms the

turning segment by evaluating the total COG change within that

segment, set to a minimum change of 5 degrees.

Step 2: Mark potential turning points: Iterate through each

heading data point and calculate the COG change between the

current point and the previous one. If the change exceeds threshold

COG change, mark the point as a potential turning point.

Step 3: Mark potential turning segments: Identify n consecutive

potential turning points, ensuring they are continuous (i.e., the

index difference between adjacent points is 1). These points are then

labeled as a potential turning segment.

Step 4: Confirm turning segments: For each potential turning

segment, calculate the total COG change within the segment. If this

change exceeds threshold segment change, confirm it as an actual

turning segment and mark all points within it as turning points.

The method extracts the maximum turning angle, average

turning speed, and the average change of COG over the entire

trajectory segment. These variables comprehensively describe the

feature of ship behavior in the aspect of course control.
3.1.3 Speed over ground
Different types of vessels exhibit varying speed distributions. By

analyzing these speed differences, one can preliminarily assess vessel

behavior, providing classification features for vessel target
frontiersin.org
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classification. To describe the speed over ground, the minimum,

maximum, upper quartile, median, lower quartile, mean and

standard deviation of the speeds are extracted.

3.1.4 Static feature
Static features primarily reflect the size of the vessels. Generally,

fishing vessels and passenger ships are smaller, while cargo ships

and tankers are larger. In this study, the aspect ratio of the vessel is

used to represent its size:

Aspect  Ratio   =   L=W

where L is the length of the ship andW is the width of the ship.

3.1.5 Temporal feature
Temporal features primarily consist of time-related attributes,

including acceleration and COG change rate. Generally, cargo ships

and tankers exhibit slow speed changes and low COG change

frequencies, while fishing vessels and passenger ships, due to their

operational characteristics, frequently change direction and

experience rapid speed variations.

The acceleration and the rate of COG change are calculated by

a =
Dv

Dt

C =
COGdif f

Dt

where a is the acceleration; Dv is the velocity difference between

the upper and lower data points; Dt is the data collection interval; C

is the rate of COG change; COGdiff is the difference between the

upper and lower data points for the Course of ground.
3.2 Feature importance selection

Maximal Information Coefficient (MIC), is proposed by Reshef

et al. (2011) to measure the degree of association between two

variables, X and Y, regardless of whether the relationship is linear or

nonlinear. It is commonly used in machine learning for feature

selection. Its value ranges from 0 to 1, with higher values indicating

stronger correlations between variables. MIC quantifies the strength

of dependence between variables, offering a consistent metric across

various types of associations. Compared to commonly used feature

selection methods like Pearson correlation and threshold

correlation, MIC handles nonlinear data more effectively, offers

lower computational complexity, and provides better robustness.

Therefore, MIC possesses two main advantages for this research.

Firstly, the MIC metric is versatile, which can identify both linear and

nonlinear functional relationships (including exponential and

periodic), as well as non-functional relationships. Secondly, the MIC

metric is balanced. For functionally or non-functionally related

variables with the same noise level, MIC yields similar values. Thus,

MIC can be used to compare the strength of the same relationship

over time as well as different relationships across contexts.
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3.3 Vessel classification based on
behavior features

To address issues like slow convergence rate and susceptibility

to local optima inherent in BP neural networks, the AdaBoost

algorithm is used to improve the BP neural network, combining

weak classifiers into a strong classifier through the concept of

ensemble learning. The two main optimization challenges are

primarily addressed. Firstly, it integrates BP neural networks with

the AdaBoost algorithm, capitalizing on the BP networks’ capability

for multi-output nodes to enable AdaBoost to tackle multi-class

classification tasks. Secondly, instead of merely measuring

classification errors when assessing the learning outcomes against

the desired classification results, the paper calculates the

classification error rate. This rate is then utilized to refine the

weights of the training samples and the influence of weak classifiers,

which in turn enhances the accuracy of the classification process.

When solving a multi-classification problem using the BP-

AdaBoost algorithm, assume that the given multi-class dataset is

T = (x1, y1), (x2, y2),…, (xn, yn)f g, xi ∈ Rn, and the sample data is

yi ∈ ½1, 2,…, n�, and the specific improvement of the BP- AdaBoost

algorithm is as follows:

1. Calculate the weights of the training data input to the first

weak classifier Di:

Di = (w1,1,…,w1,i,…,w1,n) =
1
n
, i = 1, 2,…, n

2. Train the BP neural network using the training dataset to

obtain weak classifiers. The output of these weak classifiers can be

expressed by the following equation:

Gn(x) : x → 1, 2,…,Kf g
where N represents the number of categorized species, n = 1, 2

,…, N(3) Calculate the classification error rate en of the weak

classifier output Gn(x):

en =
1
no

n

i=1
I(Gn(xi) ≠ yi)

where yi is the expected classification result.

4. Calculate the weights of the generated weak classifiers in the

final strong classifier an:

an =
1
2
ln

1 − en
en

+ ln   (K − 1)

5. Update the sample data weights Dn+1 and calculate the output

of the next weak classifier.

Dn+1 = (wn+1,1,⋯,wn+1,i,⋯,wn+1,m)

wn+1,i =
wn,i

Zn
exp½−anf iGn(xi)�

When the prediction is correct, fi= 1; when the prediction is

wrong, fi= -1.

where Zn is the normalization coefficient, which ensures that the

sum of the distribution weights equals 1 while keeping the weight

ratios unchanged. Its mathematical expression is as follows:
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zn =o
n

i=1
wn,iexp( − anf Gi(xi))

6. Normalize the data results, and the outputs of the N weak

classifiers are combined to obtain a strong classifier h(x)

h(x) = sign o
M

n=1
an*f (an,Gn(x))

� �

where Sign denotes the sign function, which is used to convert

the result of the weighted sum into the final classification decision;

M is the total number of base classifiers; an is the weight of the nth

base classifier, which denotes the importance of that classifier; and

Gn(x) is the nth base classifier that produces a classification result

for input x.

To evaluate the proposed classifier, Accuracy, Precision, Recall

and F1 − score are used as classification metrics in this research.

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 − score =
2� Precision� Recall
Precision + Recall

where, TP, FP,TN , FN denote True positive, False positive,

False negative, and True negative, respectively.
4 Experimental analysis

The proposed vessel classification method is tested using the

collected dataset in the research area as described in Section 2. 70%

of the data serves as the training set, while the rest is for testing. In

the experiments of this paper, the BP neural network has 4 nodes in

the output layer and 15 nodes in the hidden layer. The number of

nodes in the input layer is determined by the number of input

features. The maximum number of iterations is set to 500, the error

threshold is set to 1e-3, and the learning rate is 0.01. The network

weights and biases for the input and output layers are optimized

using the ant colony optimization algorithm. The classification

results are presented in this section, followed by a comparative

analysis with the SVM and BP single classifier models.
4.1 Behavior feature extraction
and selection

Analyzing the vessel behavior in the research area by the

proposed method in Section 3.1, the behavior features are

extracted. The feature distribution for various types of ships, and

their numbering in feature selection are shown Figures 4–8.
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4.1.1 Spatial feature
In the Spatial feature shown in Figure 4, fishing vessels and

passenger ships have the longest sailing distance. This is due to their

operational feature, as passenger ships frequently travel back and

forth between ports each day, resulting in a sailing distance

significantly greater than that of other vessels. The distribution of

tankers and cargo ships is similar, but tankers show a tighter

distribution. In longitude span, fishing vessels have the largest

span, while tankers have the largest latitude span.

4.1.2 Course over ground
In the COG feature in Figure 5, fishing vessels exhibit the

highest frequency of heading changes, which is again due to their

operational characteristics, as they need to maneuver repeatedly

within the same fishing grounds to catch fish. In terms of turning

angles, fishing vessels have the largest turning angles, while

passenger ships maintain their maximum turning angles over a

larger range. Additionally, since passenger ships are faster than

other types of vessels, they rank first in average turning speed.

4.1.3 Speed over ground
Kernel density estimation (KDE) is a non-parametric

statistical method that estimates the probability distribution by

placing a kernel function around each data point and summing

these kernels. The KDE plot addresses a fundamental data

smoothing issue, allowing for inference about the population

based on a limited sample. The KDE distribution plot enables

visualization and assessment of the distribution of feature

variables in both the training and testing datasets. The KDE

distributions of Speed over Ground among four types of vessels

are presented in Figure 6.

The kernel density plot of speed reveals that the speed of most

fishing vessels is below 7.5kn, as their speeds will remain low

because they are carrying out fishing operations; the speed

distributions of cargo ships and tankers are similar, but the

average speeds of tankers are greater than that of cargo ships, and

the speeds of tankers are more stable; the speeds of passenger ships

are mainly distributed in two intervals, below and above 20kn,

where the speeds of ships over Ships above 20kn generally have

smaller sizes and low drafts, and passenger ships below 20kn have

larger sizes and deeper drafts. The detailed Speed over Ground is

shown in Figure 7.

It can be observed that the speed over ground reveals that

passenger ships significantly outpace other types of vessels. Among

the four types of ships, fishing vessels have the slowest speeds, while

the speed distributions of cargo ships and tankers are similar, with

the tanker being slightly faster than the cargo ship.

4.1.4 Static and temporal features
From Figure 8, it can be seen that in the distribution of static

features, the distributions of cargo ships and tankers are similar,

with tankers having a larger aspect ratio than cargo ships, while

passenger ships and fishing vessels have smaller aspect ratio. In the

distribution of temporal features, passenger ships have the largest
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maximum and average accelerations. In terms of average COG

change rate and maximum COG change rate, fishing vessels

rank first.

Analyzing the behavior features from an integrated perspective,

passenger ships and fishing vessels exhibit similar behaviors, while
Frontiers in Marine Science 09
cargo ships and tankers are relatively comparable. Fishing vessels

are characterized by slower speeds, higher turning frequencies, and

longer sailing distances. In contrast, passenger ships have the fastest

speeds and the greatest sailing distances. Cargo ships and tankers

are larger in size, with the main differences being speed and COG;
FIGURE 4

Distribution of spatial feature. (Box 1 represents cargo ship, box 2 represents fishing vessel, box 3 represents tanker, and box 4 represents passenger
ship.). (A) Sailing distance, (B) Longitude span, (C) Latitude span.
FIGURE 5

Distribution of COG. (Box 1 represents cargo ship, box 2 represents fishing vessel, box 3 represents tanker, and box 4 represents passenger ship.).
(A) Average change in COG, (B) Average turning speed, (C) Maximum turning angle.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1547658
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Han et al. 10.3389/fmars.2025.1547658
tankers are generally faster than cargo ships, have more stable COG,

and their sailing distances are also slightly greater.

Applying the MIC algorithm to assess the feature importance,

the results are shown in Figure 9. The features are ordered as

follows: sailing distance, longitude span, latitude span, average

change in COG, average turning speed, maximum turning angle,

minimum speed, upper quartile of speed, median speed, lower

quartile of speed, maximum speed, mean of speed, standard

deviation of speed, ship aspect ratio, average acceleration of ship,

maximum acceleration of ship, Average COG_change rate of ship

and Maximum COG_change rate of ship.

Figure 9A shows that the feature with the highest MIC value is

Average COG_change rate of ship. For fishing vessels, their COG

changes rapidly, resulting in a higher average rate than other ship

types. The second and third rankings are the average change in

COG and the maximum turning angle, indicating that COG-related

features contribute more to classification than those related to

other information.

Using the MIC algorithm, 16 features are retained: sailing

distance, longitude span, latitude span, average change in COG,

average turning speed, maximum turning angle, minimum speed,

upper quartile of speed, median speed, lower quartile of speed,

maximum speed, mean of speed, standard deviation of speed, ship

aspect ratio, average COG_change rate of ship, Maximum

COG_change rate of ship, while the remaining two features are

removed, i.e., average acceleration of ship and maximum

acceleration of ship, simplifying the computational complexity.

From Figure 9B, we can observe that the model’s accuracy is

highest when the number of features is 16. It is important to note

that the model’s classification accuracy refers to the ratio of

correctly classified samples to the total number of samples in the
Frontiers in Marine Science 10
test set, providing a direct evaluation of the model’s classification

performance. Although the analysis suggests that the top 16 features

form the best combination, considering the impact of different

feature combinations on the model’s classification accuracy and the

differences in training efficiency, this study will optimize the best

feature combination and its corresponding classification model

from five schemes: top 10 features, top 12 features, top 14

features, top 16 features, and all 18 features.
4.2 Classification results and analysis

Using the 18 original features and the selected features, this

paper constructs the BP-AdaBoost model to classify the four types

of vessels and analyzes the classification results. To obtain the

optimal model under different feature combinations, the number of

weak classifiers needs to be determined first. Taking 16 features as

an example, Figure 10 displays the bar chart showing the

relationship between the number of weak classifiers and accuracy

under various conditions.

Figure 10 shows that the classification accuracy is highest when

the number of weak classifiers is set to 10; thus, this study uses 10 as

the number of weak classifiers.

The experimental results for the five combination schemes are

presented in Table 1. From Table 1, it can be seen that the classification

accuracy for the top 16 feature variables reaches near its maximum,

with cross-entropy and gradients also close to their minimum values.

However, as the number of features increases, the accuracy shows only

slight improvements or remains unchanged. Since all feature variables

in the combination are used for model training, increasing the number

of features inevitably raises model complexity and training time. This
FIGURE 6

The Speed over Ground distributions of four types of vessels. (A) Cargo Ship, (B) Fishing vessel, (C) Tanker, (D) Passenger Ship.
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indicates that redundant feature variables do not contribute to

classification accuracy and instead prolong training time, reducing

the efficiency of vessel classification. Overall, the BP-AdaBoost method

based on feature selection achieves classification accuracy comparable

to that of the original features, while demonstrating better classification

efficiency for cargo ships, passenger ships, fishing vessels, and tankers.

After training, the optimal BP-AdaBoost model and the best

feature combination are obtained. The prediction results for the test
Frontiers in Marine Science 11
set appear in a confusion matrix, an effective visual tool for

evaluating the performance of classification algorithms in

supervised learning. As shown in Figure 11, the overall

predictions for each category align along the diagonal of the

confusion matrix, which indicates that the BP-AdaBoost model

accurately identifies the vessel types.

In the selected area, cargo ships and fishing vessels, as well as

tankers and cargo ships, are easily confused. This is mainly because
FIGURE 7

Distribution of SOG. (Box 1 represents cargo ship, box 2 represents fishing vessel, box 3 represents tanker, and box 4 represents passenger ship.).
(A) Minimum speed, (B) Lower quartile of speed, (C) Median speed, (D) Upper quartile of speed, (E) Maximum speed, (F) Mean of speed, (G) Standard
deviation of speed.
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tankers and cargo ships generally follow the same routes, with

similar SOG and COG, leading to some tankers being misidentified

as cargo ships. Fishing vessel operates mainly in two states: the

fishing state, where they have slower speeds and higher turning

rates, and the non-fishing state, where their speeds increase and

COG changes decrease. This behavior can resemble that of a cargo

ship, resulting in some fishing vessels being misclassified as a

cargo ship.

To further compare the classification performance of the

preferred features and the original features, Precision, Recall, F1 −

score, and AUC curve are used as evaluation metrics. The evaluation

results are listed in Table 2.

Overall, the preferred feature group performs better, accurately

identifying different types of vessels with an overall classification
Frontiers in Marine Science 12
accuracy of 95.5%. The precision metrics for passenger ships, cargo

ships, fishing vessels, and tankers all exceed 90%, and both the F1 −

score and recall also exceed 90%. The AUC values for all four vessel

types exceed 0.98, indicating that the classifier performs well.

Compared to the original feature set, the overall accuracy increases

by 3.8%. This demonstrates that removing redundant features

enhances the model’s classification accuracy both overall and locally.

Locally, after removing the redundant features of maximum

acceleration and mean acceleration, the classification accuracy for the

four types of vessels improved to varying degrees. After feature

selection, the classification accuracy for cargo ships increased by

11.6%, and the recall for tankers improved by 10%. This indicates a

reduction in cargo ships being misclassified as tankers, suggesting that

the classification accuracy of vessels improved after feature selection.
FIGURE 8

Distribution of static and temporal features. (Box 1 represents cargo ship, box 2 represents fishing vessel, box 3 represents tanker, and box 4
represents passenger ship.). (A) Ship Aspect Ratio, (B) Average acceleration of ship, (C) Maximum acceleration of ship, (D) Average COG_change rate
of ship, (E) Maximum COG_change rate of ship.
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4.3 Comparative analysis

To further evaluate the method proposed in this chapter,

multiple comparative experiments are conducted, including SVM

and BP single classifier models commonly used for classification

tasks in machine learning. To ensure consistent feature counts, both

SVM and BP neural networks exclude features average acceleration

of ship and maximum acceleration of ship, while the model testing

results are presented in Table 3.

From the perspective of overall accuracy, the BP-AdaBoost model

based on the best feature combination outperforms the other two

models in classification accuracy, with an improvement of 12.6% over

SVM and 4.5% over the BP neural network. Next, precision, recall,

and F1-score are used to quantitatively evaluate the test results. The

comparison shows that the BP-AdaBoost model effectively performs
Frontiers in Marine Science 13
ship target classification across the four ship types, achieving an

overall accuracy of 95.5%. Additionally, the BP neural network

performs excellently in identifying tankers and passenger ships,

with classification accuracies exceeding 93%. However, the

classification performance for cargo ships and fishing vessels is

weaker, with precision around 87%. This is due to the similarities

in movement patterns between cargo ships and other types, leading to

some confusion in classification. By analyzing recall, it is found that

the recall for fishing vessels and passenger ships is higher than that for

cargo ships and tankers, indicating that more samples are

misclassified as cargo ships and tankers. In contrast, the SVM

model performs well in classifying fishing vessels, tankers, and

passenger ships, with classification precision exceeding 86%, but

struggles with classifying cargo ships, with precision only around

57%. The recall for cargo ships and tankers are only 73.2% and 66.5%,
FIGURE 9

The selection results of feature importance and the relationship between the number of features and accuracy. (A) Feature importance selection,
(B) Relationship between feature count and accuracy.
FIGURE 10

The relationship between the number of weak classifiers and accuracy.
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TABLE 1 Comparison of classification accuracy and efficiency for different feature combinations.

Number of features Cross-entropy Gradient Training time (s) Accuracy

10 0.118 0.0425 178 82.1%

12 0.0764 0.0152 183 89.3%

14 0.0882 0.0222 171 89.1%

16 0.0486 0.0236 177 95.5%

18 0.0547 0.0206 193 91.7%
F
rontiers in Marine Science
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FIGURE 11

Confusion Matrix of preferred features and original features. (Category 1 is for cargo ship, category 2 is for fishing vessel, category 3 is for tanker, and
category 4 is for passenger ship.). (A) preferred features, (B) original features.
TABLE 2 Classification and recognition effect of each type of ship target.

Ship type Preferred features Original features

Precision Recall F1 − score AUC Precision Recall F1 − score AUC

Cargo ship 90.8% 92.4% 91.6% 0.984 79.2% 89.5% 84.0% 0.976

Fishing vessel 95.6% 95.6% 95.6% 0.993 93.0% 93.9% 93.4% 0.99

Tanker 97.5% 95.1% 96.3% 0.995 98.0% 85.1% 91.1% 0.992

Passenger ship 98.0% 98.8% 98.4% 0.99 96.5% 99.1% 97.8% 0.992

Accuracy 95.5% 91.7%
frontie
TABLE 3 Indicators of Comparative Experiments.

Ship Type BP-AdaBoost SVM BP

Precision Recall F1 − score Precision Recall F1 − score Precision Recall F1 − score

Cargo ship 90.8% 92.4% 91.6% 57% 73.2% 64.1% 87.3% 87.5% 87.4%

Fishing vessel 95.6% 95.6% 95.6% 90.8% 95.1% 92.9% 87.0% 93.2% 89.9%

Tanker 97.5% 95.1% 96.3% 86.8% 66.5% 75.3% 96.5% 85.1% 90.4%

Passenger ship 98.0% 98.8% 98.4% 96.2% 99.5% 97.8% 93.7% 99.5% 96.5%

Accuracy 95.5% 82.9% 91.0%
rsin.org

https://doi.org/10.3389/fmars.2025.1547658
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Han et al. 10.3389/fmars.2025.1547658
respectively, suggesting that cargo ships are easily confused with

tankers. The experimental results show that traditional machine

learning algorithms perform poorly in multi-type ship classification.

From the experimental results, the proposed BP-AdaBoost

classification model effectively achieves rapid ship classification on

a small dataset, accurately distinguishing between passenger ships,

cargo ships, fishing vessels, and tankers. To improve the confusion

between certain ship types, incorporating additional COG features,

temporal features, and a more diverse sample library would help

further enhance the model’s performance. Applying the proposed

method using AIS data, the vessels engaged in fishing activities can be

recognized based on their behavior features. Comparing the

recognition results to their marked vessel types, the vessels

potentially involved in illegal fishing activities can be identified.

This way, the fishing activities can be better monitored and the

marine resources are expected to be better protected.
5 Discussion

To classify ship types using historical AIS data, a BP-AdaBoost

classification algorithm is proposed, effectively categorizing cargo

ships, fishing vessels, tankers, and passenger ships. The process start

with AIS data preprocessing, where entries with critical missing

data are removed and anomalies are corrected. Static, behavioral,

and temporal features of the ships are analyzed and extracted. The

MIC algorithm is then employed for feature selection, identifying

five feature combinations for classification experiments. The BP-

AdaBoost algorithm achieve an optimal feature combination of 16

dimensions, with an overall classification accuracy of 95.49% for the

four ship types: cargo ships at 90.8%, fishing vessels at 95.6%,

tankers at 97.5%, and passenger ships at 98%. Compared to

standalone BP neural network and SVM classification models,

BP-AdaBoost outperform them in precision, recall, and other

metrics. The classification accuracy is 4.5% higher than that of

the BP neural network and 12.6% higher than the SVM model. The

results show that this method can effectively detect abnormal vessels

that may forge or improperly transmit AIS messages to evade

monitoring. This has significant implications for maritime

supervision, environmental stability, and combating illegal fishing,

proving the effectiveness of the proposed method.

In the future, the behavior of more vessel types can be

investigated with VMS data, remote sensing imagery, or radar

images to enhance ship target recognition accuracy. Thus, the

vessels engaged in fishing activities can be more accurately

recognized to identify illegal fishing activities and protect the

fishery resources.
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