
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Salvatore Antonio Biancardo,
University of Naples Federico II, Italy

REVIEWED BY

Xinqiang Chen,
Shanghai Maritime University, China
Yuanyuan Wang,
Dalian Maritime University, China
Xinjian Wang,
Dalian Maritime University, China
Qiang Luo,
Guangzhou University, China

*CORRESPONDENCE

Jianchuan Yin

yinjianchuan@gdou.edu.cn

RECEIVED 15 January 2025
ACCEPTED 30 May 2025

PUBLISHED 25 June 2025

CITATION

Xu G, Yin J, Zhang J and Wang N (2025)
Maritime man-overboard search based on
MOB-Detector with modulated deformable
convolution and bi-directional feature fusion
network.
Front. Mar. Sci. 12:1547747.
doi: 10.3389/fmars.2025.1547747

COPYRIGHT

© 2025 Xu, Yin, Zhang and Wang. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 25 June 2025

DOI 10.3389/fmars.2025.1547747
Maritime man-overboard search
based on MOB-Detector with
modulated deformable
convolution and bi-directional
feature fusion network
Guokang Xu1, Jianchuan Yin1,2*, Jinfeng Zhang3 and Nini Wang4

1Naval Architecture and Shipping College, Guangdong Ocean University, Zhanjiang, China,
2Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching,
Zhanjiang, China, 3School of Navigation, Wuhan University of Technology, Wuhan, China, 4College of
Mathematics and Computer, Guangdong Ocean University, Zhanjiang, China
Introduction: Maritime transport is vital for global trade and cultural exchange,

yet it carries inherent risks, particularly accidents at sea. Drones are increasingly

valuable in marine search missions. However, Unmanned Aerial Vehicles (UAV)

operating at high altitudes often leave only a small portion of a person overboard

visible above the water, posing challenges for traditional detection algorithms.

Methods: To tackle this issue, we present the Man-Overboard Detector (MOB-

Detector), an anchor-free detector that enhances the accuracy of man-

overboard detection. MOB-Detector utilizes the bi-directional feature fusion

network to integrate location and semantic features effectively. Additionally, it

employs modulated deformable convolution (MDConv), allowing the model to

adapt to various geometric variations of individuals in distress.

Results: Experimental validation shows that the MOB-Detector outperformed its

nearest competitor by 8.6% in [Metric 1 AP50] and 5.2% in [Metric 2 APsmall],

demonstrating its effectiveness for maritime search tasks. Furthermore, we

introduce the ManOverboard Benchmark to evaluate algorithms for detecting

small objects in maritime environments.

Discussion: In the discussion, the challenge faced by the MOB-Detector in low-

visibility environments is discussed, and two future research directions are

proposed: optimizing the detector based on the Transformer architecture and

developing targeted data augmentation strategies.
KEYWORDS

man-overboard, modulated deformable convolution, bi-directional feature fusion
network, anchor-free detector, maritime search and rescue, small object detection
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1 Introduction

With 70 percent of the Earth’s surface covered by oceans,

maritime transport plays a crucial role as a vital link connecting

nations, facilitating global trade, fostering economic growth, and

promoting cultural exchange (Chen et al., 2022). Despite its

significant contributions to international development, the

maritime industry faces inherent risks, with maritime accidents

posing a persistent threat. In recent years, the frequency of marine

incidents has been notable, with 23,814 casualties reported between

2014 and 2022, averaging 2,646 per year (European Maritime Safety

Agency (EMSA), 2023). Factors such as adverse weather conditions,

collisions, and grounding incidents can lead to accidents at sea,

potentially resulting in individuals going overboard (Chen S. et al.,

2023). The time lapse between an accident and the initiation of

emergency responses may cause those overboard to drift away from

the scene amid turbulent waters, emphasizing the urgency and

complexity of maritime rescue operations. Prompt and efficient

rescue efforts are paramount in safeguarding the lives of ship

occupants, mitigating casualties, and addressing the challenges

posed by maritime emergencies.

With the rapid development of drone-related technologies,

drone search and rescue operations are gradually becoming a

prominent player in maritime rescue missions. Drones possess

the ability to swiftly locate and identify individuals in distress at

sea. Leveraging their outstanding flexibility, portability, and

extensive operational capabilities, drones can quickly reach

targeted search areas, providing prompt assistance to those in

peril, and significantly enhancing rescue efficiency and survival
Frontiers in Marine Science 02
rates. Despite facing challenges in computing power and storage

space, optimization and lightweight processing of algorithms for

detecting people overboard are gradually overcoming these

obstacles, bringing forth more possibilities and prospects for the

development of drone search and rescue operations (Bai et al., 2022;

Zhu et al., 2023; Zhang et al., 2023). In UAV sea search and rescue,

the detection algorithm of people in the water is undoubtedly the

key link. Currently, mainstream target detection algorithms are

based on deep learning convolution neural networks, which are

realized by feature learning from raw input data (Lei et al., 2022; Liu

et al., 2024; Wang et al., 2024). These detection algorithms convert

images or video frames into more abstract and high-dimensional

feature representations. By analyzing and reasoning about these

features, the algorithms can determine the target class and locate its

position in the image or video frame. Traditional target detection

algorithms typically perform well and accurately when dealing with

surface targets. However, on the vast sea surface, the person

overboard exposes only a small part of their body (head,

shoulders, and arms), which makes them occupy fewer pixels in

the image, thus increasing the difficulty of extracting effective

feature information from the backbone network (Zhang et al.,

2021; Li et al., 2021). In addition, the high altitude at which the

UAVs fly and the complexity of the marine environment (including

issues such as occlusion, blurring, and light reflection from the sea

surface) further increase the difficulty of detection.

To address these issues, this study introduces a MOB-Detector

based on anchor-free detection networks specifically designed for

locating man-overboard, as illustrated in Figure 1. Within the realm

of current detection networks, they are typically categorized into
FIGURE 1

Multi-stage maritime rescue process: UAV-based man-overboard target scanning, MOB-detector detection, and dynamic search and rescue
mission execution.
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two groups: the anchor-frame detection network exemplified by

SSD (Liu et al., 2016), Mask R-CNN (He et al., 2017), Faster R-CNN

(Ren et al., 2016), etc, and the anchor-free detection network

represented by approaches of CenterNet (Zhou et al., 2019),

CornerNet (Law and Deng, 2018), RepPoints (Yang et al., 2019),

etc. Anchor-Frame detection networks and anchor-free detection

networks employ distinct strategies in target detection, differing in

their approach to object boundaries, candidate region generation,

and model training methodologies. Anchor-Frame detection

networks rely on a predefined set of frames with specific

proportions and sizes as the foundation for target detection,

achieved through regressing the position and class of these

anchors. Conversely, most anchor frame-based detection models

necessitate manual configuration of various anchor frames of

different sizes and aspect ratios, as fixed anchor frames may not

adequately cater to objects of varying scales. In comparison, the

anchor-free detector predicts the object’s position and category

directly on the feature map, circumventing intricate anchor frame

computations and demonstrating heightened adaptability,

particularly advantageous in detecting small and irregularly

shaped objects (Tong et al., 2020).

MOB-Detector incorporates a Bi-directional Feature Pyramid

Network (BiFPN) (Tan et al., 2020). This novel module enhances

the typical feature fusion process (Lin et al., 2017a) by

implementing a bi-directional feature transfer structure. By

repeatedly integrating top-down, bottom-up, and lateral

connection pathways, it enables efficient information exchange

among various levels of features, facilitating the comprehensive

capture of rich semantic details at higher levels and precise spatial

information at lower levels (Chen X. et al., 2023). MOB-Detector

employs MDConv (Zhu et al., 2019). MDConv is an improved

convolution operation (Dai et al., 2017). Introducing learnable

offsets enhances the model’s ability to adapt to geometric

variations resulting from changes in scale, pose, and viewpoint.

This enables the network to more effectively process man-

overboard or features of various scales, irregular shapes, and

perspectives in marine rescue scenarios. However, deformable

convolution may have a receptive field that extends beyond the

region of interest, resulting in features influenced by the image

content and background. MDConv addresses this limitation by

adding additional convolutional layers with offset learning

capabilities and incorporating a modulation mechanism, thereby

enhancing its ability to focus on relevant regions of interest. To

demonstrate the effectiveness and efficiency of the research-

proposed anchor-free detector, ablation experiments and

comparisons with other state-of-the-art detector algorithms will

be performed. In addition, this paper introduces the ManOverboard

benchmark, a novel benchmark designed for detecting and

recognizing small targets at sea. Based on this benchmark, this

paper conducts ablation and comparison experiments. The

experimental results show that the anchor-free detector has the

capability of detecting a target person overboard. The following are

the main contributions of this paper:
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1. A detection method called MOB-Detector is proposed,

which is based on anchor-free detection networks. The

MOB-Detector is designed to significantly strengthen the

capability of detecting man-overboard from high-altitude

UAV platforms.

2. The MOB-Detector is equipped with a BiFPNmodule. This

design combines top-down and bottom-up pathways,

allowing for effective information exchange across various

feature levels. This integration enhances the ability to

capture rich semantic details at higher levels and precise

spatial information at lower levels, thereby facilitating

comprehensive object detection.

3. The MOB-Detector utilizes the MDConv, which introduces

an adaptive convolution kernel position adjustment

mechanism. This allows deformable convolutions to

effectively handle complex and unknown geometric

transformations, thereby enhancing the model’s capacity

to learn complex object invariance.

4. This paper first introduces the ManOverboard benchmark.

To validate the effectiveness of MOB-Detector, the

experiments evaluated its performance based on the

ManOverboard benchmark by performing ablation and

comparison experiments. These experiments demonstrate

the enough capability of MOB-Detector in the field of

maritime rescue and search.
The remainder of this paper is arranged as follows: Section 2

introduces the related methods of the model, namely, BiFPN and

MDConv. Section 3 presents the architecture of MOB-Detector.

Section 4 is the details of the ManOverboard benchmark and

experiments. Section 5 is the conclusion.
2 Methods

2.1 Bi-directional feature pyramid network

Most target detection algorithms, such as Region-CNN (R-

CNN) (LeCun et al., 1998), Fast R-CNN (Girshick, 2015), etc., rely

only on the final feature map output for direct prediction, which has

limitations when dealing with objects of different sizes. Multi-scale

feature fusion can effectively alleviate the influence of limiting the

detection capability of targets at different scales in the network

model due to the lack of rich semantic information and precise

location information in the final generated features after the input

information has gone through multiple convolution layers, pooling

layers, and activation functions.

The single-stage detector (SSD) (Liu et al., 2016) is proposed to

predict objects of different sizes at six different scales of feature

maps. As depicted in Figure 2A, the bottom layer feature retains

more spatial information, which is used to detect relatively small

targets. In contrast, the top layer feature preserves rich semantic

information and is responsible for detecting larger objects. SSD does
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not reuse the features computed at each layer. In contrast, as shown

in Figure 2B, Lin et al. (2017) proposed an FPN structure: a bottom-

up line, a top-down line, and lateral connections. Leveraging the

distinctive traits of high-level and low-level features, they

established connections between high-level features with low

resolution and high semantic content and low-level features with
Frontiers in Marine Science 04
high resolution and low semantic information through top-down

and bottom-up lateral connections, ensuring that features at all

scales are enriched with semantic details.

In contrast to the unidirectional information flow of FPN and

path aggregation network (PANet) (Liu et al., 2018), BiFPN

employs bi-directional cross-scale connections and weighted

feature fusion to efficiently facilitate information exchange

between features at different levels (Chen X. et al., 2023). This

approach aids in capturing rich semantic details comprehensively

and acquiring precise spatial information at lower levels. This

involves inputting a sequence containing features from multiple

scales~Pin = (Pinl1 , P
in
l2
,…), where Pinli represented input features at the

layer li, and then after aggregation transformation f() obtaining a

new column of multi-scale features ~Pout = f (~Pin).

Firstly, it eliminates nodes with only one input edge. Secondly,

when the original input and output nodes are at the same level, an

extra edge is added for cost-effective feature fusion. Thirdly, each bi-

directional layer is considered an independent feature network layer

and repeats the same bi-directional layer to achieve advanced

feature fusion. Finally, given that the contribution of different

input features to the output features often varies across different

resolutions, BiFPN proposes adding weight to each input feature.

This allows the network to learn the importance of features of

varying sizes. Building on this concept, the network employs Fast

Normalized Fusion. The formula is shown in Equation 1:

O=oi
wi

e+ojwj
·Ii (1)

where wi is a learnable weight at level i,  wi ≥ 0, e=0.0001 is a

small value to avoid numerical instability and Ii represent the i stage
of the input feature.

For a special example, as depicted in Figure 3, we discuss the

two fused features at level 5 for BiFPN. The formula is shown in
B

A

FIGURE 2

(A) Multi-scale feature fusion in SSD: utilizing hierarchical
convolutional feature maps from the VGG backbone for object
detection across multiple resolutions. (B) Multi-scale feature fusion
in FPN: a top-down pathway with lateral connections for enhanced
object detection across multiple scales.
Head

Repeated Bi-FPN Layers

P1

P2

P3

P4

P5

P6

P7

FIGURE 3

Structure and feature fusion diagram for BiFPN: bidirectional multi-scale feature fusion with cross-scale connections and weighted
feature aggregation.
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Equations 2 and 3:

Ptd
5 = Conv

w1 · P
in
5 + w2 · Resize(P

in
6 )

w1 + w2 + e

� �
(2)

Pout
5 = Conv

w0
1 · P

in
5 + w0

2 · P
td
5 + w0

3 · Resize(P
out
4 )

w0
1 + w0

2 + w0
3 + e

� �
(3)

where Conv is the convolution operation, Resize is the operation

of resolution matching, Ptd
i is the intermediate feature at the i stage

of the top-down pathway and   Pout
i is the intermediate feature at

the i stage of the down-up pathway.
2.2 Modulated deformable convolution

As shown in Figure 4, MDConv introduces two-dimensional

offsets at the regular grid sampling positions of standard

convolution, allowing the sampling points of the convolution

kernel to move into irregular areas flexibly. Additionally, it

incorporates a modulation factor that assigns a weight (ranging

from [0, 1]) to each sampling point, dynamically controlling its
Frontiers in Marine Science 05
contribution to the output features. Specifically, when the

modulation factor approaches 1, the feature value at that

sampling point is fully retained; conversely, when it approaches 0,

the feature value is suppressed or even ignored. This mechanism

effectively addresses the issue in Deformable Convolution where the

spatial sampling range may extend beyond the region of interest.

When the sampling area of Deformable Convolution exceeds the

object region, the modulation factor can adjust weights to mitigate

interference from irrelevant areas, thereby enabling a more precise

focus on the object region. In maritime man-overboard search

tasks, since different locations at sea may correspond to objects with

different scales and attitudes, such as lifebuoys, lifeboats, or man-

overboard, the MOB-Detector, which incorporates MDConv, can

flexibly adjust the size of the scale or the receptive field to achieve

more accurate detection. Through the mechanism of MDConv, the

MOB-Detector can adaptively adjust the position and weight of the

sampling points to better capture targets with different scales

and poses.

Considering a convolutional kernel that includes K sampling

points, let us define wk and pk as the weights and preset offsets for

the k-th sampling position, respectively. The notation x(p) and y(p)

is used to represent the feature value at position p in the input
Conv 3N

2N

N
Offset field

Modulation scalar field

Input feature map x Output feature map y

Offset

Modulation scalar

FIGURE 4

Modulated deformable convolution (3x3): adaptive receptive field for feature extraction based on modulation scalars and convolution offsets.
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feature map x and the output feature map y, respectively. The

MDConv can consequently be represented in Equation 4:

y(p) =oK
k=1wk · x(p + pk + Dpk) · Dmk   (4)

where Dpk and Dmk represent the adjustable offset and

modulation factor for the k-th position, respectively. The

modulation scalar Dmk is constrained within the interval [0, 1],

whereas Dpk is a real number that can take any value within an

unbounded range. Given   p + pk + Dpk are small values, bilinear

interpolation is utilized in the calculation of x(p + pk + Dpk). Both
Dpk and Dmk are derived by applying a distinct convolutional layer

to the identical input feature map x. This particular convolutional

layer mirrors the current layer in terms of spatial dimensions and

the number of filters. The output consists of 3K channels, where the

initial 2K channels are associated with the learned offset Dpkf gKk=1
and the subsequent K channels are processed through a sigmoid

layer to determine the modulation factors Dmkf gKk=1.
3 MOB-Detector

3.1 Fully convolutional one-stage object
detection

Tian et al. (2019) introduced a fully convolutional single-stage

target detector (FCOS) that does not rely on predefined anchor

frames or proposal regions, but solves the target detection problem in
Frontiers in Marine Science 06
a pixel-by-pixel prediction manner. By eliminating the predefined set

of anchor frames, FCOS completely avoids the complex computation

associated with anchor frames during the training process and

achieves an anchor-free and proposal-free solution. The

architecture of FCOS consists of a Backbone, FPN, and Head, as

depicted in Figure 5. Unlike conventional FPN architectures, feature

maps P6 and P7 are generated by applying a convolutional layer on

P5 and P6. In addition, the multi-level prediction of FPN is utilized to

limit the range of bounding box regressions at each level, allowing

objects of different sizes to be assigned to different feature layers,

which greatly solves the problem of ambiguity due to overlap in

ground-truth boxes.

The head consists of three branches: Classification, Center-ness,

and Regression, where Classification and Center-ness share the

same feature map. Center-ness is a metric that measures the

distance from a point within the ground-truth box to the center

of the bounding box. Score ranking is computed by multiplying the

predicted centrality by the corresponding classification score, which

greatly suppresses low-quality prediction borders produced by

locations far from the target center. The center-ness formula is

shown in Equation 5:

centerness∗ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
min(l∗, r∗)
max(l∗, r∗)

� min(t∗, b∗)
max(t∗, b∗)

s
: (5)

where l *, t *, r *, and b * are the distances from the position to

the four sides of the enclosing box, respectively. It denotes a 4D

vector t* = (l*, t*, r*, b*).
FIGURE 5

The architecture of the FCOS network: a fully convolutional one-stage network comprising backbone, neck, and head components.
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3.2 The architecture of MOB-Detector

MOB-Detector is an efficient and lightweight maritime man-

overboard detector. MOB-Detector is an improvement on the

anchor-free network FCOS. As shown in Figure 6, this detector

comprises three key components: backbone, neck, and head.

Backbone: Unlike the FCOS backbone, the MOB-Detector

utilizes the ImageNet (Deng et al., 2009) pre-trained EfficientNet-

B0 as its backbone network. EfficientNet-B0 is the base model of the

EfficientNet series (Tan and Le, 2019), and its core design is inspired

by MobileNetV2’s Inverted Residual Block (Sandler et al., 2018). It

introduces the Mobile Inverted Bottleneck Convolution (MBConv)

module, which combines Depthwise Separable Convolution and the

Squeeze-and-Excitation module, improving feature extraction while

significantly reducing computation. Compared to ResNet-50 and

other traditional networks, EfficientNet-B0 requires fewer FLOPs

and fewer parameters for the same accuracy, giving it an advantage

in situations where UAV computing resources are limited.

Neck: The neck of the MOB-Detector is composed of two

repeated BiFPN layers, which extract multi-scale features from

levels 3 to 7 {P3, P4, P5, P6, P7} of the backbone network. These

layers iteratively apply top-down, bottom-up, and lateral

connections to achieve weighted feature fusion, enhancing the

representation of multi-scale features through bi-directional

cross-scale interactions. Specifically, the BiFPN takes the features

output from the P4 layer of the backbone network and processes

them through a modulatable deformed convolutional layer, rather

than a standard convolutional layer, for input into the

neck network.
Frontiers in Marine Science 07
Head: In the head, the structure of FCOS is followed, including

the classification branch, the regression branch, and the

centerness branch.

Loss Function: A location (x, y) on the feature map falls within

any ground-truth box, and its class label c*matches the class label of

that ground-truth box, it is classified as a positive sample.

Otherwise, it is labeled as a negative sample, with its class label c*

set to 0 (background class). In the regression, each position is

associated with a 4D vector t* = (l*, t*, r*, b*). If a location falls

within multiple object bounding boxes simultaneously, the

bounding box with the smallest area is selected as the regression

target for that location. The loss function comprises three

components: classification loss, regression loss, and center-ness

loss. The classification loss is computed using Focal Loss (Lin et

al., 2017b), which is specifically designed to address the challenge of

class imbalance between positive and negative samples. Focal Loss

introduces two key parameters, at and g, to dynamically adjust the

contribution of each sample to the total loss. The parameter at

balances the importance of positive and negative samples by

assigning higher weights to the minority class (typically positive

samples), while g reduces the loss contribution from well-classified

samples (usually the majority class) by applying a modulating factor

(1 − pt)
g , where pt is the model’s estimated probability for the

ground-truth class. This mechanism ensures that the model

focuses more on hard-to-classify samples, which are often

underrepresented, thereby improving the overall accuracy and

robustness of category prediction. By suppressing the dominance

of easily classified negative samples and emphasizing the learning of

challenging positive samples, Focal Loss effectively mitigates the
FIGURE 6

Overview of the MOB-Detector: An Integrated Framework for Maritime Man-Overboard Detection Divided into Three Parts—Backbone
(EfficientNet), Neck (BiFPN), and Head (Anchor-Free Detector). This architecture leverages Multi-Scale Feature Learning and Adaptive Local Context.
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class imbalance issue, leading to better performance in object

detection tasks, especially for scenarios with a significant

imbalance between positive and negative samples. The regression

loss employs IOU Loss (Yu et al., 2016) to effectively minimize the

positional discrepancies between the predicted bounding boxes and

the ground truth. Lastly, the center-ness loss is calculated using

Binary Cross Entropy (BCE) (Krizhevskv et al., 2017) to evaluate

how well the predicted positions align with the center of the targets,

thereby suppressing low-quality detections.

The training loss function is shown in Equation 6:

L cx,y
� �

, tx,y
� �� �

= 1
Npos ox,yLcls cx,y , c

∗
x,y

� �
+

l
Npos ox,y1 c*x,y>0

� �Lreg tx,y , t*x,y
	 


+ b
Npos ox,yLcenterness Cx,y, C*x,y

	 

(6)

Where cx,y denotes the classification scores in position (x,y), tx,y
denotes the regression prediction in position (x,y), Cx,y denotes the

center-ness scores in position (x,y) and * denotes the truth scores.

Lcls refers to focal loss, Lreg indicates the IOU loss and Lcenterness
denotes the BCE loss. Npos denotes the number of positive samples
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and l,   b are weights for Lreg and Lcenterness. 1 c∗i >0f g is the indicator

function, being 1 if c∗i > 0 and 0 otherwise.
4 Experiments

4.1 ManOverboard benchmark

The ManOverboard Benchmark is a benchmark proposed by

Professor Yin Jianchuan’s team from the Naval Architecture and

Shipping College at Guangdong Ocean University, aimed at

detecting small targets at sea. The video obtained from the UAV

acquisition was taken every 5 seconds and filtered to finalize 956

images, and the resolution of the images is 3840 x 2160. The team

confirmed that the benchmark contained 956 images and 35119

objects with bounding boxes, as shown in Figures 7A–C. The

detailed data is illustrated in Table 1. Each image has been

manually annotated and categorized among COCO (Lin et al.,

2014), YOLO, and VOC formats, and all annotations were

reviewed by vision experts. The annotations are divided into three

categories: person (person on the beach and person at sea), person
B

C

A

FIGURE 7

(A) Examples of various images in the ManOverboard benchmark include scenes depicting the sea, land, and a combination of both. (B). Image of
the ManOverboard benchmark dataset. The image scene is an open sea, and several people in the water can be seen scattered on the surface of the
sea, with some of them wearing lifebuoys or lifejackets. (C). Image of the ManOverboard benchmark dataset. The image scene is half beach and half
sea, the image in the picture can be seen several people in the water, scattered in the sea and the beach, and in the sea part of the person wearing a
life ring or wearing a life jacket.
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with buoy (person with a buoy), and person with jacket (person

wearing a life jacket). This benchmark provides researchers with a

comprehensive foundation to advance the detection and

recognition of small maritime objects. The Github URL: https://

github.com/YinJianchuan/ManOverboard.
4.2 Evaluation metrics and environment

To validate the performance of MOB-Detector on the

ManOverboard benchmark, the evaluation metrics shown in

Table 2 below were used through comparison and ablation

experiments. As shown in Table 3, the experiments were

conducted in an environment running the Linux operating

system, with hardware consisting of an Intel(R) Xeon(R) Gold

6348 CPU @ 2.60GHz, an NVIDIA HFX A800 GPU, and CUDA

12.4. The deep learning framework used was Pytorch 2.5.1.
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4.3 Ablation experiments

In the ablation study, three experiments were conducted: the

first evaluated the effectiveness of the MOB-Detector’s design, the

second investigated the optimal number of layers in the BiFPN

architecture, and the third experiment aimed to determine the best

receptive field size.

The MOB-Detector enhances the feature information of small

objects through the use of BiFPN and incorporates MDConv to

adapt to the scale transformation of small objects. To validate the

effectiveness of these designs, the first experiments were conducted,

involving four experimental groups: the first group is FCOS, the

second group is FCOS combined with BiFPN, the third group is

FCOS combined with MDConv, and the last group is the complete

MOB-Detector. In the experiments, all the groups keep the same

learning rate, epoch, batch size, and other hyperparameters to

ensure the effect of control variables. In Tables 4–6, bold values

indicate the optimal results within each column. The symbol "√" in

Table 4 indicates the application or adoption of the

corresponding module.

Based on the analysis in Table 4, the MOB-Detector excels

across all performance indicators. AP50,   AP75,    APsmall ,  and A

Pmedium, achieving its highest scores with values of 59.9, 23.7, 32.1,

and 38.6, respectively. These scores represent improvements over

the FCOS model utilizing the EfficientNet-b0 backbone network,

with enhancements of 5.9, 4.8, 6.2, and 5.4, respectively.

Additionally, performance gains were observed when the FCOS

model was augmented with either BiFPN or MDConv. Specifically,

the FCOS+BiFPN and FCOS+MDConv configurations achieved

improvements of 3.5 and 4.1 in APsmall , respectively, compared to

the original FCOS model.

Furthermore, as depicted in Figure 8, the Precision-Recall curve

of the MOB-Detector, with an Average Precision of 0.62,

demonstrates its competitive performance. It maintains a

reasonable balance between precision and recall, indicating that

the detector is capable of effectively identifying positive samples

while managing false positives. This performance highlights the

MOB-Detector as a promising approach in the field of

object detection.

The second set of ablation experiments aimed to determine the

optimal number of BiFPN layers to optimize the network

architecture. The experiments were divided into five groups, with

the number of BiFPN layers ranging from 1 to 5. Before this, the

MDConv was fixed at layer P4, as illustrated in Figure 6.

Based on the analysis in Table 5, the performance of the MOB-

Detector initially increases and then decreases as the number of

BiFPN layers increases. Specifically, the MOB-Detector achieves

optimal performance across all metrics when the number of BiFPN

layers is set to two, with values of 59.9, 23.7, 32.1, and 38.6,

respectively. This indicates that a two-layer BiFPN configuration

provides the best balance for optimal performance in the

MOB-Detector.

The choice of kernel size significantly impacts the performance

of detecting small objects in maritime man-overboard search and

rescue. Since the detection of such targets often focuses on smaller
TABLE 1 Detailed results of images and annotations of the
ManOverboard benchmark.

Item Train Test Sum

Images 860 96 956

Annotations 32115 3004 35119

person 28719 2665 31384

person with buoy 2181 227 2408

person with jacket 1216 112 1328
TABLE 2 Evaluation metrics on the experiments.

Metrics Formula Description

Precision(P) P =
TP

TP + FP

The ratio between the number of
targets correctly detected by the
model and the number of all
predicted as targets predicted by
the model

Recall(R) R =
TP

TP + FN

The ratio between the number of
targets correctly detected by the
model and the total number
of targets

Average
Precision(AP) AP =

Z 1

0
P(r)dr

The corresponding P and R are
calculated based on different
confidence thresholds in the
precision-recall curve, and the area
under the precision-recall curve is
calculated as AP

Mean Average
Precision(mAP) mAP =

1
no

n

i=1

APi
Mean score of AP across
all categories

AP50 – AP at IOU=.50

AP75 – AP at IOU=.75

APsmall – AP for small objects: area< 322

APmedium –
AP for medium objects: 322<

area< 962
*TP, TN, FP, and FN denote true positive, true negative, false positive, and false
negative, respectively.
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object, and considering that a 1 *1 kernel size is generally not

suitable for capturing spatial contextual information, while a 7 *7

kernel size would substantially increase the number of channels for

offsets and modulation factors, leading to higher GPU and memory

usage, we have grouped the receptive field sizes into 3 *3 and 5 *5.

Based on the experimental results presented in Table 6, the results

indicate that the 3 *3 kernel size achieves superior performance

across various metrics. In contrast, the 5 *5 kernel size yields slightly

lower performance, with an AP50 of 56.3, AP75 of 21.9, APsmall of

29.1 and APmedium of 37.3. These findings suggest that a 3 *3 kernel

size is more effective for maritime man-overboard rescue and

search tasks.
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4.4 Comparison experiments

In comparison experiments, the MOB-Detector proposed in this

paper is compared with several state-of-the-art detectors which divided

into one-stage detector [CenterNet, and RetinaNet, YOLOv5, and

YOLOv8 (Xu et al., 2024)] and two-stage detector (Faster R-CNN,

SSD). Compared to the aforementioned detectors, the MOB-Detector

exhibits enhanced feature fusion capabilities in multi-scale feature

learning. Furthermore, rather than relying on traditional local context

information learning, the MOB-Detector employs modulated factors

and convolution offsets to adapt to targets that vary in irregular shapes.

As depicted in Figures 9A–D, the detection results of MOB-Detector,

YOLOv5, and YOLOv8 are roughly consistent with the image

annotations except for three models that fail to effectively

differentiate between “person with buoy” and “humans” in a small

area. Specifically, YOLOv5 misidentifies the buoy in the upper right

corner as a human, while YOLOv8 misses the detection of the figure in

white in the center of the image. In Table 7, bold values indicate the

optimal results within each column. For the detailed metric results in

Table 7, MOB-Detector outperforms YOLOv8, which is ranked second

in all four metrics  AP50,   AP75,    APsmall ,  and  APmedium, with leads

of 8.6, 3, 4.6 and 5.2, respectively. As well as, MOB-Detector is better

than the representatives two-stage detector, SSD.
4.5 Discussion

The experimental results demonstrate the effectiveness of the

MOB-Detector in man-overboard detection tasks, particularly for

small and medium-sized objects. As shown in Table 4, the ablation

experiments reveal that the integration of BiFPN and MDConv in

FCOS significantly enhances performance, with the MOB-Detector

achieving the highest scores across all metrics AP50: 59.9%, AP75:

  23:7%, APsmall: 32.1%, and APmedium: 38.6%. These improvements

highlight the importance of adaptive local context and multi-scale

feature learning in detecting small objects.
TABLE 3 Detailed description of the hardware and software setup.

OS CPU GPU Python Pytorch CUDA

Linux Intel(R) Xeon(R) Gold 6348 CPU @ 2.60GHz NVIDIA HFX A800 3.12 2.5.1 12.4
TABLE 4 Results of the ablation experiments to verify the MOB-Detector’s reasonableness.

Method BiFPN MDConv AP50 (%) AP75 (%) APsmall (%) APmedium (%)

FCOS (pure) 54.0 18.9 25.9 33.2

FCOS √ 50.7 21.7 29.4 33.5

FCOS √ 56.2 22.5 30.0 35.8

FCOS (MOB-Detector) √ √ 59.9 23.7 32.1 38.6
All group experiments use the EfficientNet-b0 network as the backbone.
The symbol ‘√’ indicates the application or adoption of the corresponding module (e.g., BiFPN or MDConv).
Bold values indicate the optimal results within each column.
FIGURE 8

The precision-recall curve of the MOB-detector. The horizontal axis
of the figure is Recall, and the vertical axis is Precision, and the
curves reflect the balanced relationship between the detection
precision and coverage of the model under different
confidence thresholds.
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As illustrated in Tables 5, 6, further analysis of the BiFPN layers

indicates that a two-layer configuration optimizes performance,

suggesting a balance between feature fusion complexity and

computational efficiency. Additionally, the choice of a 3×3 kernel

size for the receptive field proves more effective than larger kernels, as it

better captures global context without excessive resource consumption.
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In Table 7, the MOB-Detector outperforms state-of-the-art

algorithms like YOLOv8, which is the second in comparison,

particularly in AP50 (59.9% vs. 51.3%) and APsmall (32.1% vs.

27.5%). The results collectively validate the MOB-Detector as a

promising solution for object detection, especially in tasks involving

small and densely packed objects.
B

C D

A

FIGURE 9

(A) The original annotations of the image. The yellow box denotes ‘person’, the blue box signifies ‘person with buoy’, and the red box indicates
‘person with jacket’. (B) The detection results of the MOB-detector. The yellow box denotes ‘person’, the blue box signifies ‘person with buoy’, and
the red box indicates ‘person with jacket’. (C) The detection results of YOLOv5. The yellow box denotes ‘person’, the blue box signifies ‘person with
buoy’, and the red box indicates ‘person with jacket’. (D) The detection results of YOLOv8. The yellow box denotes ‘person’, the blue box signifies
‘person with buoy’, and the red box indicates ‘person with jacket’.
TABLE 5 Experimental results of optimal BiFPN layers within the MOB detector.

Number of Layers AP50 (%) AP75 (%) APsmall (%) APmedium (%)

1 57.2 23.0 30.1 36.9

2 59.9 23.7 32.1 38.6

3 52.7 17.9 28.3 32.5

4 54.1 19.0 26.3 33.9

5 51.3 21.0 28.6 34.0
Bold values indicate the optimal results within each column.
TABLE 6 Experimental results of the optimal kernel size of modulated deformable convolution.

Kernel size AP50 (%) AP75 (%) APsmall (%) APmedium (%)

3 *3 59.9 23.7 32.1 38.6

5 *5 56.3 21.9 29.1 37.3
Bold values indicate the optimal results within each column.
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Although the AP50 of the MOB-Detector is close to 60%, its AP

for objects with dimensions smaller than 32x32 pixels is less than

satisfactory. For instance, as illustrated in Figure 10, two distant

objects resembling knots are incorrectly identified as ‘person’ due to

their small size. Furthermore, since the experimental datasets is

primarily based on clear visibility, the generalization ability of the

MOB-Detector needs to be validated in low visibility scenarios.

Therefore, future work could focus on challenging scenarios.
5 Conclusion

In this work, this paper develops MOB-Detector, a man-

overboard detection designed for UAV search and rescue missions.
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MOB-Detector first employs an anchor-free detection head based on

the FCOS network, overcoming the limitations of traditional anchor-

based methods in detecting small-scale man-overboard targets. Next,

MOB-Detector introduces BiFPN to enhance the effective fusion of

man-overboard features, improving detection accuracy. Finally,

MDConv is incorporated, enabling the model to adapt to the

geometric variations of the man-overboard in different postures on

the sea surface. In addition, this paper introduces the ManOverboard

Benchmark, alleviating the gap in existing datasets for small maritime

objects. Using this benchmark, we conducted a comprehensive

evaluation of the performance of MOB-Detector. The results from

our ablation experiments indicate the effectiveness of both BiFPN and

MDConv within the model. It was found that MOB-Detector

achieves optimal performance when the number of BiFPN layers is
FIGURE 10

The detection results of the MOB-Detector. The yellow box denotes ‘person’, the blue box signifies ‘person with buoy’, and the red box indicates
‘person with jacket’. Due to long distances, two targets were misdiagnosed as ‘person’ in this image.
TABLE 7 Comparison experiments using faster R-CNN, SSD, RetinaNet, YOLOv5, YOLOv8, and MOB-detector.

Model AP50 (%) AP75 (%) APsmall (%) APmedium (%)

Faster R-CNN 35.9 9.4 15.5 18.7

SSD 37.2 13.8 17.3 23.6

RetinaNet 30.6 8.5 11.6 19.5

CenterNet 38.4 10.3 13.5 18.9

YOLOv5 (Ultralytics, 2020) 48.5 15.0 22.6 27.2

YOLOv8 51.3 20.7 27.5 33.4

MOB-Detector 59.9 23.7 32.1 38.6
Bold values indicate the optimal results within each column.
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set to 2 and the receptive field of the MDConv is configured to 3*3. In

comparative experiments of one-stage algorithms and two-stage

algorithms, MOB-Detector outperforms other state-of-the-art

algorithms in terms of detection capability. It indicates that the

MOB-Detector will serve as an effective tool on UAV for maritime

search and rescue operations.
6 Future work

In future work, the MOB-Detector model designed for UAV will

undergo further enhancements in accuracy to ensure that stringent

performance requirements are met in resource-constrained

environments with limited computational power and on low-power

devices. Additionally, our future research will explore the following

directions: (1) Detector Design: Detector design aims to further

investigate target detection networks that leverage the Transformer

architecture. The self-attention mechanism inherent in Transformers

enables effective capture of global contextual information within images,

thereby enhancing the accuracy and robustness of target detection in

complex scenarios. Compared to traditional convolutional neural

networks, Transformers offer notable advantages in modeling long-

range dependencies, particularly when addressing multi-scale targets

and small target detection tasks. (2) Data Augmentation: Advanced data

augmentation techniques will be explored to simulate challenging

environmental conditions that are difficult to collect data for, such as

typhoons, heavy rain, and snowy days. This will help improve the

robustness of the MOB-Detector in complex real-world scenarios,

including maritime search and rescue operations.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found below: https://github.com/YinJian

chuan/ManOverboard.
Ethics statement

Written informed consent was obtained from the individual(s)

for the publication of any potentially identifiable images or data

included in this article.
Frontiers in Marine Science 13
Author contributions

GX: Writing – original draft, Writing – review & editing. JY:

Writing – original draft, Writing – review & editing. JZ: Writing –

original draft, Writing – review & editing. NW: Writing – original

draft, Writing – review & editing.
Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. This work was supported

by the National Natural Science Foundation of China under Grants

52231014 and 52271361; the Special Projects of Key Areas for

Colleges and Universities in Guangdong Province under Grant

2021ZDZX1008; the Natural Science Foundation of Guangdong

Province under Grant 2023A1515010684; the Technology

Breakthrough Plan Project of Zhanjiang under Grant 2023B01024;

the Postgraduate Education Innovation Project of Guangdong Ocean

University (202546); and the Program for Scientific Research Start-

Up Funds of Guangdong Ocean University.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
Bai, J., Dai, J., Wang, Z., and Yang, S. (2022). A detection method of the rescue targets in
the marine casualty based on improved YOLOv5s. Front. Neurorobotics. 16, 1053124.

Chen, S., Piao, L., Zang, X., Luo, Q., Li, J., Yang, J., and Rong, J. (2023). Analyzing
differences of highway lane-changing behavior using vehicle trajectory data. Physica A:
Statistical Mechanics and its Applications , 624, 128980. doi: 10.1016/
j.physa.2023.128980

Chen, X., Wei, C., Xin, Z., Zhao, J., and Xian, J. (2023). Ship detection under low-
visibility weather interference via an ensemble generative adversarial network. J. Mar.
Sc. Engineer. 11 (11), 2065. doi: 10.3390/jmse11112065
Chen, X., Wu, X., Prasad, D. K., Wu, B., Postolache, O., and Yang, Y. (2022). Pixel-
wise ship identification from maritime images via a semantic segmentation model.
IEEE Sensors J., 22 (18), 18180–18191.

Dai, J., Qi, H., Xiong, Y., Li, Y., and Zhang, G. (2017). Deformable convolutional
networks[C]//Proceedings of the IEEE international conference on computer vision.
(Piscataway, New Jersey, USA: IEEE). 764–773.

Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., and Fei-Fei, L. (2009). Imagenet: A large-
scale hierarchical image database[C]//2009 IEEE conference on computer vision and
pattern recognition. (Piscataway, New Jersey, USA: IEEE headquarters). 2009, 248–255.
frontiersin.org

https://github.com/YinJianchuan/ManOverboard
https://github.com/YinJianchuan/ManOverboard
https://doi.org/10.1016/j.physa.2023.128980
https://doi.org/10.1016/j.physa.2023.128980
https://doi.org/10.3390/jmse11112065
https://doi.org/10.3389/fmars.2025.1547747
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Xu et al. 10.3389/fmars.2025.1547747
European Maritime Safety Agency (EMSA). (2023). Annual overview of marine
casualties and incidents. Available online at: https://emsa.europa.eu/csn-menu/items.
html?cid=14&id=5052 (Accessed November 1, 2024).

Girshick, R. (2015). “Fast R-CNN,” in Proceedings of the IEEE international
conference on computer vision. (Piscataway, New Jersey, USA: IEEE), 1440–1448.

He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017). Mask r-cnn[C]//Proceedings
of the IEEE international conference on computer vision. 2961–2969.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). Imagenet classification with
deep convolutional neural networks. Adv. Neural Inf. Process. Syst., 25. doi: 10.1145/
3065386

Law, H., and Deng, J. (2018). “Cornernet: Detecting objects as paired keypoints,” in
Proceedings of the European conference on computer vision (ECCV), (Cham,
Switzerland: Springer International Publishing). 734–750.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proc. IEEE. 86 (11), 2278–2324.

Lei, F., Tang, F., and Li, S. (2022). Underwater target detection algorithm based on
improved YOLOv5. J. Marine Sci. Eng. 10, 310. doi: 10.3390/jmse10030310

Li, Y., Li, Z., Zhang, C., Luo, Z., Zhu, Y., and Ding, Z. (2021). Infrared maritime dim
small target detection based on spatiotemporal cues and directional morphological
filtering. Infrared Physics & Technol. 115, 103657.

Lin, T Y., Dollár, P., Girshick, R., He, K., Hariharan, B., and Belongie, S. (2017). Feature
pyramid networks for object detection[C]//Proceedings of the IEEE conference on
computer vision and pattern recognition. (Piscataway, New Jersey, USA: IEEE). 2117–2125.

Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollár, P. (2017b). “Focal loss for dense
object detection,” in Proceedings, IEEE conference on computer vision and pattern
recognition, (Piscataway, New Jersey, USA: IEEE Institute of Electrical and Electronics
Engineers), 2980–2988.

Lin, T Y., Maire, M., and Belongie, S. (2014). Microsoft coco: Common objects in
context[C]//Computer Vision–ECCV 2014: 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings, Part V 13. (Zurich, Switzerland:
Springer International Publishing), 740–755.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C., et al. (2016). “Ssd:
Single shot multibox detector,” in Computer vision–ECCV 2016: 14th european
conference, amsterdam, the Netherlands, october 11–14, 2016, proceedings, part I 14
(Amsterdam, Netherlands: Springer International Publishing), 21–37.

Liu, S., Qi, L., Qin, H., Shi, J., and Jia, J. (2018). “Path aggregation network for
instance segmentation,” in Proceedings of the IEEE conference on computer vision and
pattern recognition. (Piscataway, New Jersey, USA: IEEE), 8759–8768.

Liu, X., Qiu, L., Fang, Y., Wang, K., and Rodrıǵuez, J. (2024). Event-driven based
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