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Typhoons pose a significant threat to China’s coastal regions, resulting in

substantial economic losses and casualties. Understanding the vulnerability of

these areas to typhoon stress is crucial for effective disaster management and risk

mitigation. This study assesses the vulnerability of China’s coastal provinces to

typhoon disasters by integrating three key factors: exposure, sensitivity, and

adaptability. The primary methodologies employed are the Analytic Hierarchy

Process (AHP) and Geographic Information System (GIS) techniques. A

comprehensive risk assessment framework is developed using 17 indicators,

with AHP applied for indicator weighting and GIS used for spatial analysis and

visualization of vulnerability patterns. The findings indicate considerable spatial

variation in vulnerability, with southern provinces such as Guangdong, Guangxi,

and Hainan exhibiting high vulnerability due to frequent typhoons, dense

populations, and lower adaptive capacity. Southeastern regions, like Fujian and

Zhejiang, show moderate to high vulnerability, while northern provinces such as

Jiangsu, Hebei, and parts of Shandong and Liaoning experience lower

vulnerability, attributed to reduced exposure and stronger disaster

preparedness systems. These results underscore the importance of targeted

disaster management strategies tailored to the specific vulnerabilities of

each region.
KEYWORDS

vulnerability assessment, GIS, analytic hierarchy process, exposure, sensitivity, adaptive
capacity, typhoon disaster
1 Introduction

Coastal zones are particularly vulnerable to marine disasters due to their unique

geographic locations and high population density, which increases the associated risks and

vulnerabilities (Wang et al., 2014). Among the most susceptible areas globally to the threat

of typhoons, China’s coastal regions stand out. Each year, China’s coastal areas face

significant risks from severe typhoons, resulting in substantial human casualties and

economic losses. On average, seven to eight typhoons make landfall annually, causing
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devastating impacts (Fang et al., 2021). Between 2009 and 2019, 18

major typhoons affected approximately 126 million people in

mainland China. These events resulted in over 20,000 fatalities,

the collapse of around 230,000 homes, damage to more than 10

million hectares of crops, and direct economic losses amounting to

$75 billion (Wan et al., 2023). Notable typhoons such as Typhoon

Morakot (2009), Typhoon Haiyan (2013), and Typhoon Lekima

(2019) exemplify the severity of these disasters. Typhoon Morakot,

for instance, caused catastrophic flooding and landslides, leading to

nearly 700 deaths, widespread displacement, and extensive damage

to infrastructure, particularly in southern China. Typhoon Haiyan,

one of the strongest typhoons ever recorded, caused substantial

damage to coastal regions in the Philippines, and its residual effects

were felt in China’s coastal areas, particularly Guangdong and

Fujian. Typhoon Lekima, which struck in 2019, caused severe

flooding, resulting in hundreds of casualties and billions in

economic losses, further highlighting the vulnerability of coastal

regions. These typhoons, among many others, illustrate the

devastating impacts of typhoon-induced disasters, underscoring

the critical need for better preparedness, risk management, and

vulnerability assessments in China’s coastal areas.

In the context of climate change, the hazards associated with

typhoons pose even greater uncertainty for the safety of coastal

areas. First, studies suggest that ongoing global climate change is

likely to influence tropical cyclone activity, particularly by altering

typhoon tracks (Wu et al., 2005). These changes may lead to regions

that were previously less affected by typhoons facing higher risks.

Second, climate change is expected to modify temperature and

precipitation patterns, affect oceanic and atmospheric circulation,

accelerate sea level rise, and influence the frequency, intensity,

timing, and distribution of hurricanes and tropical storms

(Mendelsohn et al., 2012). These changes directly affect the

formation, strength, and paths of typhoons, which in turn impact

land cover and ecosystems. For instance, shifting typhoon tracks

could expose coastal wetlands, forests, or agricultural areas to

higher storm risks, thereby altering land use and ecosystem

services. Therefore, in-depth research on typhoon hazards and

their mechanisms is critical for assessing future risks in

coastal regions.

China, as a major maritime country, has 11 coastal provinces

(excluding Hong Kong, Macau, and Taiwan). According to the

China Statistical Yearbook (2023), the combined population of

these 11 provinces is 636.61 million, accounting for 45.16% of the

national population. Their total Gross Domestic Product (GDP)

reached 66.57 trillion Chinese yuan (CNY), representing 53.26% of

the national GDP. Given the severe typhoon threats these regions

face, risk analysis for coastal provinces is of paramount importance.

Risk assessment is an essential tool for addressing complex disaster

environments (Rangel-Buitrago et al., 2020). This process enables

various sectors of society to better understand potential

vulnerabilities and risk points, allowing them to implement

appropriate preventive, mitigation, and adaptive measures to

reduce disaster losses.

In recent years, substantial progress has been made in the

assessment of typhoon disaster vulnerability (Li et al., 2022;

Hoque et al., 2021; Kim, J. M. et al., 2020). Research in this field
Frontiers in Marine Science 02
has primarily focused on developing multi-dimensional evaluation

indicator systems, constructing vulnerability assessment models,

and analyzing spatial distribution patterns. Scholars have

increasingly leveraged remote sensing and Geographic

Information Systems (GIS) technologies to integrate

meteorological, socio-economic, and ecological data, enabling

more refined and precise vulnerability assessments in typhoon-

affected areas (Zhang et al., 2021; Van Westen, 2013). Additionally,

spatial analysis methods, such as statistical approaches (Valjarević

et al., 2022) and geostatistical techniques (Wang et al., 2020), have

been employed to further enhance our understanding of these

complex relationships. Collectively, these studies provide valuable

scientific support for typhoon disaster risk management and

decision-making.

The integration of the Analytical Hierarchy Process (AHP) with

GIS has gained increasing recognition for its effectiveness in

evaluating the intricate relationships between atmospheric

conditions and land systems. AHP quantifies the relative

importance of various factors influencing typhoon risk, while GIS

facilitates the spatial visualization of these risks. In this study, we

utilize AHP to assign weights to key indicators and employ GIS to

analyze and map typhoon risk levels across different coastal

provinces. By combining these two methods, we can assess how

variations in typhoon intensity and frequency impact land systems

and how these effects are spatially distributed. This approach allows

for the identification of areas most susceptible to severe damage

based on their geographic and environmental characteristics,

offering a clearer understanding of the link between typhoon-

induced hazards and land use.

The primary objective of this study is to establish a

comprehensive typhoon risk assessment framework by integrating

these methodologies. By determining indicator weights through

AHP and calculating composite risk levels via GIS, we provide a

quantitative assessment of typhoon risk across coastal provinces.

This GIS-based risk assessment framework serves as a scientific

foundation for governments, disaster management agencies, and

researchers, enabling them to develop more effective strategies for

typhoon disaster prevention and mitigation. Ultimately, this

approach contributes to protecting lives and property while

promoting sustainable development in coastal regions.
2 Data and methods

2.1 Study area

The coastal regions of China are among the most economically

developed areas in the country, characterized by dense populations

and abundant resources. Geographically, these regions are located

between 118°07′ to 124°34′ east longitude and 18°10′ to 39°15′N
north latitude. The mainland coastline stretches for over 18,000

kilometers, and when including the coastlines of the islands, the

total length reaches approximately 32,000 kilometers. The mainland

coastal region consists of 11 provincial-level administrative

divisions (excluding Hong Kong, Macao, and Taiwan), which,

from north to south, are: Liaoning Province, Hebei Province,
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Tianjin Municipality, Shandong Province, Jiangsu Province,

Shanghai Municipality, Zhejiang Province, Fujian Province,

Guangdong Province, Guangxi Zhuang Autonomous Region, and

Hainan Province (Figure 1). The total area of these provinces is

approximately 1.2883 million km².

These coastal regions are not only highly dependent on marine

resources for development but also play a crucial role in China’s

economic growth, particularly through sectors such as the marine

economy, port trade, fishing, and marine tourism.

From June to October each year, during the active period of

tropical cyclones in the western Pacific, the frequency of typhoon

occurrences is at its highest. Typhoons generally form in tropical or

subtropical sea areas and typically move northwestward. When

these typhoons reach the southeastern coast of China, they often

make landfall or pass by the coastal provinces along the typical path

of tropical cyclones.
Frontiers in Marine Science 03
2.2 Assessment indicators and
data processing

The Vulnerability Scoping Diagram (VSD) vulnerability

assessment framework is a structured approach used to identify,

assess, and prioritize potential vulnerabilities within a system

(Polsky et al., 2007). In this study, the VSD framework is

employed as a systematic method to evaluate the vulnerabilities

faced by coastal areas in the context of extreme weather events such

as typhoons. This framework integrates knowledge from multiple

disciplines, including disaster science, meteorology, and regional

development, with the goal of assisting decision-makers in

identifying, assessing, and managing the risks posed by typhoons.

Ultimately, it aims to enhance disaster prevention and mitigation

efforts in the region. The framework consists of three key

components: exposure, sensitivity, and adaptability.
FIGURE 1

Typhoon tracks affecting China’s coastal regions since 1989 and the coastal provinces of China.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1548763
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Wang et al. 10.3389/fmars.2025.1548763
In this study, the VSD framework is adopted to assess the spatial

vulnerability of China’s coastal provinces under the stress of typhoon

disasters. Vulnerability is conceptualized in three dimensions:

exposure, sensitivity, and adaptability, which are measured using 17

indicators, as presented in Table 1. These indicators are categorized

based on their influence on vulnerability: positive indicators (+) and

negative indicators (-). A higher value for a positive indicator

corresponds to greater vulnerability, while a higher value for a

negative indicator reflects lower vulnerability.

The publicly available typhoon track data was imported into

GIS, and line density was calculated to determine the concentration

of typhoon tracks. For other variables such as rainfall, average wind

speed, road network density, mangrove distribution, river network

density, night light data, and the Normalized Difference Vegetation

Index (NDVI), these datasets are available as mature raster data

products from previous studies, as indicated in Table 1. This

research directly utilizes these products and resamples them into

raster data structures with consistent resolution.

The National Bureau of Statistics of China publishes the China

Statistical Yearbook annually, providing comprehensive and

authoritative statistical data that reflect the latest developments in

China’s economy, society, culture, and environment. The data in
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the yearbook is sourced from a variety of channels, including annual

statistics from government statistical departments, industry

associations, enterprise surveys, and other relevant social surveys.

To ensure accuracy and comparability, the data is collected and

processed using standardized statistical methods. For this study,

data from the 2023 edition of the China Statistical Yearbook was

consulted to obtain indicators such as population density, GDP per

capita, local fiscal revenue, number of doctors and nurses per capita,

rural per capita net income, and the number of medical beds per

capita. These data were then imported into GIS and stored in a

spatial raster database.

The Topographic Position Index (TPI) is an indicator used to

analyze terrain features by comparing the elevation of a specific

point to the average elevation of its surrounding area, thus

evaluating the relative position of that point within the terrain

(De Reu et al., 2013). The calculation formula for TPI is as follows:

TPI = log
E
�E
+ 1

� �
� E

�E

� �� �
(1)

Where, TPI is the topographic position index; E is the elevation

at a given point; E¯ is the average elevation within the region; S is

the slope at a given point; S¯ is the average slope within the region.
TABLE 1 Exposure, sensitivity, and adaptability indicators.

Criteria
layer

Code
Positive
or negative

Indicators layer
Data sources

Exposure

E1 +
Typhoon track density Unisys weather Hurricane/Tropical Data and Japan

Meteorological Agency

E2 + Rainfall National Tibetan Plateau/Third Pole Environment Data Center

E3 + Average wind speed Environmental meteorological data service platform (http://eia-data.com/)

Sensitivity

V1 +
Population density China Statistical Yearbook (CSY) 2023, National Bureau of

Statistics (NBS)

V2 + GDP per capita (CSY) 2023, NBS

V3 + Road network density Zhang et al., 2022a

V4 –
Terrain position index (TPI) Calculated based on Digital Elevation Model (DEM) from European

Space Agency, Sinergise (2021).

V5 +
Topographic Wetness Index (TWI) Calculated based on DEM from (European Space Agency,

Sinergise, 2021).

V6 – The distribution of Mangrove Jia et al., 2019, 2018

V7 + River network density Zhang and Peng, 2022b

V8 + Night light data Zhong et al., 2022

V9 +
Terrain Ruggedness Index (TRI) Calculated based on DEM from (European Space Agency,

Sinergise, 2021).

V10 –
Normalized Difference Vegetation
Index (NDVI)

The Earth Science Data Systems of National Aeronautics and Space
Administration (https://www.earthdata.nasa.gov/)

Adaptability

A1 – Local fiscal revenue (CSY) 2023, NBS

A2 – Number of doctors and nurses per capita (CSY) 2023, NBS

A3 – Rural per capita net income (CSY) 2023, NBS

A4 – Number of medical beds per capita (CSY) 2023, NBS
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The Topographic Wetness Index (TWI) is a widely used

topographic index in hydrological analysis, which measures the

potential distribution of soil moisture by estimating water

accumulation based on topographic influences (Sörensen et al.,

2006). The calculation formula is as follows:

TWI = ln(a=tanb) (2)

Where, TWI is the Topographic Wetness Index; ais the

effective flow accumulation area (m²); b is the effective slope.

Terrain ruggedness refers to the degree of elevation variation on

the Earth’s surface, reflecting the roughness and complexity of the

terrain. It quantifies topographic features through local variations in

elevation. Terrain ruggedness is commonly represented by the

Terrain Ruggedness Index (TRI) (Różycka et al., 2017), which is

calculated using elevation change measurements. The formula for

the Terrain Ruggedness Index is as follows:

TRI =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(z0 − zi)
2

q
(3)

z0 represents the elevation of the target point, zi represents the

elevation of a neighboring point, and n represents the number of

points in the neighborhood.
2.3 Weight determination

The weights of the indicators listed in Table 1 were determined

using Analytic Hierarchy Process (AHP). AHP is a multi-criteria

decision analysis method widely used for addressing complex

decision-making problems. AHP decomposes complex issues into

multiple layers and criteria, determining the relative importance of

each factor through expert judgment and mathematical calculations,

thereby assisting decision-makers in making informed and rational

decisions (Darko et al., 2019). Its key advantages include structured

decision-making, multi-criteria analysis, and the quantification of

expert opinions. The basic steps of AHP are as follows:

2.3.1 Constructing a hierarchical structure model
The complex problem is broken down into a multi-level structure,

typically comprising the goal layer, criteria layer, and indicators layer.

The goal layer represents regional vulnerability to typhoon threats.

The criterion layer includes exposure, sensitivity, and adaptability,

while the indicator layer consists of 17 specific indicators.

2.3.2 Constructing the judgment matrix
To establish the pairwise comparison matrix for AHP, expert

evaluations were conducted to assess the relative importance of each

factor in the indicator layer concerning the higher-level criteria.

Each comparison was rated using Saaty’s 1–9 scale, where 1

represents equal importance and 9 denotes extreme importance

(Table 2). These pairwise comparisons were then systematically

organized into a judgment matrix A. To ensure methodological

transparency, experts from relevant fields participated in the

assessment. Consistency of the judgments was verified using the

Consistency Ratio (CR). If inconsistencies were detected,
Frontiers in Marine Science 05
adjustments were made by reviewing and refining the pairwise

comparisons to enhance logical coherence.

2.3.3 Calculating the weights
The weights of each factor are determined by calculating the

eigenvector of the judgment matrix. These weights represent the

relative importance of each factor in the decision-making process.

The judgment matrix A corresponds to the eigenvector W associated

with the maximum eigenvalue lmax . After normalization, the

eigenvector represents the ranking weights of the factors at the

current level in relation to the factors at the previous level. At this

stage, a set of weight vectors is obtained for each element with respect

to a certain element at the preceding level. The ultimate goal is to

determine the ranking weights of each element, particularly for the

alternatives at the lowest level, in relation to the target. This enables the

selection process. The final overall ranking weights are synthesized by

combining the weights under each criterion, from top to bottom.

2.3.4 Consistency check
The judgment matrix must undergo a consistency check to

ensure that the decision-maker’s judgments are logically consistent.

If the matrix passes the consistency check, the results can be

accepted; if not, adjustments are needed. The consistency index is

denoted as CI and is calculated as follows:

CI =
lmax − n
n − 1

(4)

Where n is the order of the matrix A.

Calculating the consistency ratio CR based on the CI and RI

values.

CR = CI=RI (5)

The values of RI are shown in Table 3:

2.3.5 Calculating the total score
The relative weights of each alternative are multiplied by the

corresponding factor weights to calculate the total score for each
TABLE 2 The meaning of scale (Saaty, 1987).

Scale Meaning

1 Indicates the two factors are of equal importance

3 Indicates the first factor is slightly more important than
the second

5 Indicates the first factor is strongly more important than
the second

7 Indicates the first factor is very strongly more important than
the second

9 Indicates the first factor is extremely more important than
the second

2, 4, 6, 8 Intermediate values between the above judgments

Reciprocals If factor i is of importance aij relative to factor j, then j is of

importance 1/aij relative to i.
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alternative. The alternative with the highest total score is typically

considered the optimal choice.

2.3.6 AHP relies on subjective judgments to
assign weights, which can introduce biases
or inaccuracies

To mitigate this, experts were carefully selected based on their

experience and expertise in typhoon-related hazards and regional

vulnerabilities. To further enhance objectivity, they were provided

with comprehensive guidelines on the AHP process, ensuring a

standardized approach to pairwise comparisons. Additionally, open

discussions were encouraged among the panel members, allowing

them to refine their judgments collectively and minimize

personal biases.

The prioritization of criteria was determined through iterative

consultations and expert feedback. Experts ranked each criterion

based on its relevance to typhoon risk assessment and its impact on

disaster resilience. This ranking process was repeated multiple

times, with necessary adjustments made to the pairwise

comparisons to ensure the assigned weights accurately reflected

the relative importance of each factor.

To maintain methodological rigor, the final judgment matrix

was rigorously tested for consistency using the Consistency Ratio

(CR). Following Saaty (1980) recommendation, the CR was kept

below the acceptable threshold of 0.1 to ensure logical coherence. If

the CR exceeded this threshold, the pairwise comparisons were re-

evaluated and adjusted accordingly to improve consistency.

By systematically integrating expert knowledge, maintaining

consistency checks, and refining judgments through iterative

discussions, this approach effectively minimized subjective bias. It

ensured that the criteria were prioritized based on their true

significance to the study objectives, resulting in weight

assignments that were both reliable and meaningful within the

context of typhoon risk assessment.
2.4 Integrated vulnerability assessment

The indicator data is discrete and exhibits significant spatial

variation. To facilitate the subsequent spatial overlay analysis, the

data is transformed into spatial raster format using GIS tools.

Positive indicators are normalized using Equation 6, while

negative indicators are normalized according to Equation 7.

Xnorm _ i,pos = (X − Xmin)=(Xmax − Xmin) (6)

Xnorm _ i,neg = (Xmax − X)=(Xmax − Xmin) (7)

Where Xnorm _ i denotes the normalized score of the indicators,

X represents the original data value of each indicator, Xmin is the
Frontiers in Marine Science 06
minimum value of each indicator, and Xmax is the maximum value

of each indicator.

The vulnerability of coastal provinces to typhoons is calculated

using Equation 8:

VI =o
n

i=1
Xnorm _ i ∗Wi (8)

Where VI is the vulnerability index; n is the number of indices;

Xnorm _ i is the normalized value of indicator i; and Wi is the weight

of indicator i.

There is no universally accepted standard for classifying

vulnerability. In this study, vulnerability is categorized into five

levels—very low, low, moderate, high, and very high—using the

quantile method (Ichino, 2011). This approach effectively illustrates

the spatial differentiation of vulnerability in coastal provinces under

the impact of typhoons.
3 Results

3.1 Synthetic weight

Figure 2 illustrates the indicator weights for different criteria

derived through the AHP. The horizontal axis represents various

indicators (denoted by their respective indicator codes), while the

vertical axis shows their corresponding weights. It is clear that the

weights of different indicators vary significantly, with typhoon track

density (E1) and rainfall (E2) having notably higher weights

compared to the others. This indicates that these indicators are of

greater relative importance within the evaluation framework and

have a more substantial influence on the vulnerability of coastal

areas under typhoon stress. In contrast, other indicators, such as

those related to sensitivity and adaptability, exhibit relatively lower

weights and are more evenly distributed.
3.2 Spatial variations in vulnerability

3.2.1 Exposure, sensitivity and adaptability
Figure 3 illustrates the spatial variation in exposure to typhoon

stress across China’s coastal provinces. The map uses different colors

to represent five levels of exposure: Very Low, Low, Moderate, High,

and Very High. Areas with higher exposure are primarily

concentrated in the southern coastal provinces, including

Guangdong, Fujian, Hainan, and Guangxi. These regions are more

vulnerable to typhoon disasters due to their proximity to typhoon

landfall paths, dense populations, and high levels of economic

activity. Moderate exposure is observed mainly in the eastern

coastal provinces, such as Zhejiang, Shanghai, and Jiangsu. While

these areas are still affected by typhoons, their stronger disaster

preparedness and lower typhoon frequency result in reduced

exposure compared to the southern provinces. Regions with lower

exposure are mainly found in the northern coastal provinces,

including Shandong, Hebei, Tianjin, and Liaoning. These areas

experience fewer direct impacts from typhoons, leading to relatively

low exposure levels.
TABLE 3 The value of RI (Saaty, 1987).

n 1 2 3 4 5 6 7 8 9 10

RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49
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Figure 4 illustrates the spatial distribution of sensitivity to

typhoon stress across China’s coastal provinces. Sensitivity was

assessed by performing spatially weighted calculations on the

sensitivity indicators (V1-V10). High sensitivity is primarily

concentrated in the southeastern coastal regions, including

Guangdong, Fujian, Zhejiang, and Shanghai. These areas exhibit

greater sensitivity due to their high levels of economic development,

dense populations, and the high concentration of critical

infrastructure, which makes them more vulnerable to the impacts

of typhoons. Moderate sensitivity is observed in parts of the eastern

and southern coastal provinces, such as Jiangsu and Guangxi, where

there is moderate economic activity and population density. These

regions tend to be less vulnerable than high-sensitivity areas, likely

due to stronger disaster preparedness, better infrastructure, or fewer

contributing vulnerability factors. Low-sensitivity areas are mainly

found in the northern coastal provinces, such as Shandong, Hebei,

Tianjin, and Liaoning. These regions show lower sensitivity to

typhoon stress, attributed to factors such as advanced socio-

economic development, better infrastructure distribution, and

more favorable climatic conditions, resulting in a generally lower

response to typhoon impacts. The sensitivity levels were mapped

based on these factors, with areas of high sensitivity marked in red

and low sensitivity marked in green.

Figure 5 illustrates the spatial variation in adaptive capacity to

typhoon stress across China’s coastal provinces. Adaptive capacity

is a critical factor in mitigating the impact of typhoon disasters, as it

reflects a region’s ability to prepare for, respond to, and recover

from such events. Provinces like Shanghai and Jiangsu exhibit very

high adaptive capacity, likely due to their advanced disaster

management systems, robust economic conditions, and efficient
Frontiers in Marine Science 07
infrastructure. These regions possess significant resources to

minimize losses and ensure rapid recovery from typhoon impacts.

Zhejiang and Shandong demonstrate relatively high or moderate

adaptive capacity. While these provinces have strong

socioeconomic development and preparedness, certain structural

limitations or uneven resource distribution may hinder their overall

resilience in the face of extreme weather events. Southern provinces

such as Hainan, Guangxi, and parts of Guangdong exhibit low

adaptive capacity, primarily due to economic or institutional

challenges. Additionally, some northern provinces, including

Liaoning and Hebei, have lower adaptive capacity, which may be

attributed to a reduced focus on typhoon disaster preparedness,

given their relatively lower exposure to such events.

3.2.2 Vulnerability
Figure 6 illustrates the spatial variation in vulnerability to

typhoon stress across China’s coastal provinces, representing the

comprehensive results of this study. Vulnerability integrates

exposure, sensitivity, and adaptive capacity into a unified

framework, offering a holistic measure of each region ’s

predisposition to, and potential impact from, typhoon disasters.

The southern coastal provinces, particularly Guangxi, Guangdong,

and Hainan, exhibit very high vulnerability. The southeastern

provinces, including Fujian and Zhejiang, show moderate to high

vulnerability. Provinces such as Jiangsu, Shanghai, and parts of

Shandong and Liaoning demonstrate lower vulnerability, primarily

due to their relatively lower exposure to typhoon paths and more

robust disaster preparedness systems. These regions’ advancements

in infrastructure and socioeconomic development contribute

significantly to their resilience. Additionally, within each
FIGURE 2

Indicator weight distribution based on the AHP method.
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province, vulnerability varies spatially. A notable trend is that

vulnerability generally decreases from the coastline toward

inland areas.
4 Discussion

4.1 Indicator analysis

The indicator-based assessment method is a widely used

approach for evaluating the vulnerability of coastal areas under

typhoon stress and has produced promising results (Nguyen et al.,

2019; Xu et al., 2015). Indicator analysis is a critical component of

comprehensive risk assessments for typhoon disasters. However,

these indicators vary over time and space, necessitating the
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development of a targeted vulnerability assessment framework

tailored to the coastal regions of China. By integrating exposure,

sensitivity, and adaptability indicators, this study offers a

multifaceted view of the vulnerabilities faced by China’s coastal

provinces, providing a nuanced understanding of how various

factors contribute to the overall risk landscape.

Typhoon track density, rainfall, and average wind speed (Kim, J.

S. et al., 2020) are key factors influencing the severity of disaster

impacts. Higher typhoon density, greater rainfall, and stronger wind

speed (intensity) are directly correlated with more severe damage. In

assessing typhoon risk, population density, gross domestic product

(GDP), and road network density are also crucial factors (Gao et al.,

2014). Nighttime light data, which reflects regional economic

development, serves as a supplementary factor to GDP data (Xu

et al., 2015). Although roads themselves are vulnerable systems
FIGURE 3

Spatial differentiation of exposure.
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during typhoons (Zhu et al., 2022), higher road network density is

often indicative of stronger mobility, facilitating more effective

evacuation of people in danger.

Terrain plays a critical role in flood formation (Rav et al., 2019),

and this study incorporates three terrain-related factors:

Topographic Position Index (TPI), Topographic Wetness Index

(TWI), and Terrain Ruggedness Index (TRI). The applicability of

these indicators varies across different geographical regions. Areas

with low elevation and gentle slopes typically exhibit a low TPI,

while areas with high elevation and steep slopes have a high TPI. A

lower TPI generally indicates greater susceptibility to flooding and

waterlogging disasters caused by typhoons. However, in

mountainous regions, the variation in TPI may be associated with

soil erosion and the complexity of water flow paths, necessitating a

context-specific analysis. A higher TWI value suggests a greater

likelihood of soil saturation, particularly evident in humid regions
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where saturated soils can lead to more frequent flooding and

waterlogging disasters. In contrast, the impact of TWI may be

less significant in arid areas. Additionally, greater terrain

ruggedness corresponds to more pronounced unevenness in the

landscape, making low-lying areas more prone to internal flooding

during heavy rainfall. The denser the river network, the greater the

likelihood of being affected by flooding caused by typhoon-related

rainfall (Zhang et al., 2017). Therefore, understanding how these

terrain factors perform in different regions is crucial for assessing

vulnerability to typhoon disasters.

Vegetation surfaces, such as rice paddies and coastal wetlands,

have been shown to play a significant role in mitigating the impacts

of typhoon disasters. As such, factors like mangrove coverage and

the Normalized Difference Vegetation Index (NDVI) are

considered in this study (Liu et al., 2019a, 2019). Additionally,

casualties during a typhoon can result from the collapse of
FIGURE 4

Spatial differentiation of sensitivity.
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buildings, trees, and other structures. The availability of medical

resources is crucial in determining a region’s vulnerability. Hospital

density is an important factor (Wang et al., 2024); however, this

study emphasizes the need to focus on per capita medical resources,

such as the number of doctors and nurses per capita, as well as the

number of medical beds per capita. Moreover, research has found

that rural municipalities tend to have higher mortality rates than

urban areas (Gray et al., 2022). As such, this study incorporates

local fiscal revenue and rural per capita net income as indicators of

disaster resilience in rural regions.
4.2 Methodological analysis

In this study, the combined use of Geographic Information

Systems (GIS) and the Analytic Hierarchy Process (AHP) provides
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a robust framework for assessing the vulnerability of coastal

provinces to typhoon disasters. A key strength of employing AHP

is its ability to break down complex decision-making problems into

a hierarchical structure (Terzi, 2019). This hierarchical approach

allowed for a systematic evaluation of the relative importance of

each factor influencing typhoon risk. Through expert judgment and

pairwise comparisons, AHP provided a quantitative method for

weighting these factors, which was essential for generating a

balanced and comprehensive risk assessment. Indicators were

assigned weights based on their relative significance in

contributing to typhoon risk. The results indicated that sensitivity

had the highest influence on overall risk, followed by exposure

and adaptability.

The integration of GIS further enhanced this methodology by

enabling spatial analysis and visualization of typhoon risks across

coastal regions. GIS allowed for the mapping of vulnerability and
FIGURE 5

Spatial differentiation of adaptability.
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risk factor distributions, providing clear visual representations that

help identify high-risk areas (Feyissa et al., 2018). This spatial

dimension is crucial for policymakers and disaster management

authorities, as it enables more targeted and effective interventions

(Tomaszewski, 2020). By synthesizing the weighted indicators

within the GIS platform, this study produced a comprehensive

risk assessment map. The integration of these indicators into a

cohesive framework enables a holistic understanding of regional

vulnerabilities and facilitates the development of tailored risk

reduction strategies. The spatial representation of risk provides

actionable insights for decision-makers, assisting in the

prioritization of disaster preparedness and mitigation efforts.

Despite the strengths of this methodological approach, certain

limitations exist. One challenge is the inherent subjectivity in the
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AHP process, as it relies heavily on expert judgment for the pairwise

comparison of factors. While AHP offers a structured method to

minimize biases, there remains a degree of subjectivity that could

influence the final weightings. The reliability of the assessment,

therefore, depends on the expertise and consensus among the

experts involved (Saaty, 2008). Another limitation pertains to the

quality of the GIS data used in the analysis. The accuracy and

resolution of spatial data are crucial for precise risk mapping, as the

effectiveness of GIS in identifying risk hotspots and providing

actionable insights is directly tied to the quality of the data. To

enhance the robustness of the framework, future studies could

incorporate dynamic data sources, such as real-time satellite

imagery or updated meteorological data, to revise and refine risk

assessments as new information becomes available.
FIGURE 6

Spatial differentiation of vulnerability.
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4.3 Results analysis

The research results highlight significant spatial differentiation

in vulnerability and risk levels associated with typhoon disasters

across China’s coastal provinces, as well as within regions of the

same province. This spatial variation reflects the complex interplay

of environmental, socio-economic, and infrastructural factors that

determine the extent of typhoon impacts in different areas.
4.3.1 Spatial differentiation between provinces
The analysis reveals notable differences in vulnerability across

coastal provinces. Southern coastal provinces such as Guangxi,

Guangdong, and Hainan exhibit the highest vulnerability. This

outcome results from a combination of factors: high exposure to

frequent and intense typhoons, increased sensitivity due to dense

populations, fragile ecosystems, and relatively limited adaptive

capacity. These areas, therefore, require immediate focus on

disaster mitigation strategies and resilience-building measures.

In contrast, the southeastern provinces like Fujian and Zhejiang

demonstrate moderate to high vulnerability. While these regions

benefit from stronger adaptive capacities, their geographic location

and frequent typhoon occurrences still necessitate enhanced

mitigation strategies to reduce overall vulnerability.

Northern provinces, including Jiangsu, Hebei, and parts of

Shandong and Liaoning, exhibit lower vulnerability levels. This

can largely be attributed to their geographic position and distinct

climate patterns along China’s coastline. Southern provinces,

located near the South China Sea and Western Pacific, are more

frequently impacted by tropical cyclones, which lose strength as

they travel northward. Consequently, these northern provinces face

comparatively lower typhoon-related risks, but still require disaster

preparedness measures.
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4.3.2 Intra-province spatial variation
Significant spatial variation is also observed within individual

provinces, with some regions more vulnerable than others. Coastal,

heavily urbanized areas exhibit higher exposure and sensitivity to

typhoon impacts. These regions tend to have large populations,

dense infrastructure, and significant economic activities

concentrated in vulnerable coastal zones, making them more

susceptible to severe damage during typhoons. Conversely, inland

areas within the same provinces are less affected due to their

distance from the coast, with less severe impacts from typhoons.

This intra-province variation emphasizes the need for localized

disaster management strategies. Each region within a province faces

distinct risks, with coastal areas requiring tailored interventions to

enhance infrastructure resilience, improve evacuation protocols,

and strengthen early warning systems. Meanwhile, inland areas

may require fewer disaster preparedness efforts but should still be

included in regional risk management frameworks.
4.3.3 Implications for policy and risk reduction
This analysis highlights that typhoon vulnerability is a complex

issue influenced by the dynamic interplay of exposure, sensitivity,

and adaptive capacity. The spatial differentiation observed in the

vulnerability map underscores the necessity of region-specific risk

reduction strategies tailored to local conditions.

In regions with very high vulnerability, such as Guangxi and

Guangdong, priority should be given to strengthening coastal

infrastructure, including seawalls, drainage systems, and emergency

shelters, to mitigate the direct impacts of typhoons. Additionally,

enhancing early warning systems and implementing community-

based disaster response programs are critical for improving

preparedness and minimizing casualties. Furthermore, stricter land-

use planning and the enforcement of building codes should be
FIGURE 7

Economic losses and fatalities caused by typhoons in China from 1984 to 2023.
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emphasized to reduce structural damage in high-risk areas. For

moderately vulnerable regions, such as Fujian and Zhejiang, the focus

should be on bolstering adaptive capacity through investments in

resilient urban planning and ecosystem-based strategies. Initiatives

such as mangrove reforestation and wetland conservation can serve as

natural buffers against storm surges and coastal erosion while

contributing to long-term environmental sustainability. In lower

vulnerability areas, such as Jiangsu and Hebei, maintaining existing

resilience levels should remain a priority, alongside addressing localized

weaknesses. Regular assessments of disaster preparedness and

continuous improvements in emergency response frameworks are

essential to ensuring long-term safety. Moreover, integrating typhoon

risk considerations into broader climate adaptation policies will enable

these regions to proactively manage potential future threats.

By implementing these region-specific recommendations,

policymakers can develop targeted interventions that effectively reduce

the overall risk and impact of typhoon disasters in China’s coastal

provinces. Tailored disaster preparedness and mitigation strategies will

play a crucial role in enhancing regional resilience, ultimately

minimizing loss of life and property during future typhoon events.
4.4 Future risk posed by typhoons

The coastal provinces of China will continue to face significant

typhoon-related risks in the future, as they have historically. According

to the Climate Change 2023 Synthesis Report, economic losses from

typhoons have followed a fluctuating upward trend between 1984 and

2023, rising from 1.26 billion CNY in 1984 to 13.83 billion CNY in

2022 (Figure 7). Notable peaks occurred in 1998, 2008, and 2020, likely

due to severe losses from major typhoon events. Outside of these peak

years, economic losses remained relatively stable, with only modest

fluctuations. In contrast, the death toll from typhoons has shown a

declining trend, although there were significant spikes in 1998, 2008,

and 2020, likely linked to the heavy casualties caused by major

typhoon events. In years outside these peaks, the death toll was

relatively low, usually under 10 people. These trends indicate that

while the overall typhoon risk in China remains stable, the severity of

impacts fluctuates depending on the intensity of individual storms.

Therefore, for the foreseeable future, it is crucial for the government to

remain vigilant and continue implementing effective disaster

prevention and mitigation measures to minimize the impact of

typhoon disasters on both the economy and the population.
5 Conclusion

In conclusion, this study provides a comprehensive assessment of

the vulnerability of China’s coastal provinces to typhoon disasters,

integrating exposure, sensitivity, and adaptability into a unified risk

framework. By employing GIS and AHP, the research reveals significant

spatial variations in vulnerability across regions, identifying southern

provinces such as Guangdong, Guangxi, and Hainan as highly

vulnerable due to frequent typhoons, dense populations, and limited

adaptive capacity. The study uncovers new insights into the dynamic

interplay between environmental, socio-economic, and infrastructural
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factors contributing to regional differences in vulnerability. The

significance of this research lies in its ability to offer a data-driven,

spatially explicit risk assessment that can inform targeted disaster

management strategies. Despite improvements in disaster

preparedness, the fluctuating economic losses and fatalities associated

with typhoons highlight the ongoing need for substantial investments in

infrastructure resilience, improved early warning systems, and broader

socio-economic development. Overall, this study provides valuable

insights for policymakers, offering a scientific foundation for the

development of regionally tailored risk reduction strategies that will

enhance the resilience of coastal areas, mitigate future typhoon impacts,

and contribute to sustainable development.
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Różycka, M., Migoń, P., and Michniewicz, A. (2017). Topographic Wetness Index
and Terrain Ruggedness Index in geomorphic characterisation of landslide terrains, on
examples from the Sudetes, SW Poland. Z. für geomorphologie Supplementary Issues 61,
61–80. doi: 10.1127/zfg_suppl/2016/0328

Saaty, T. L. (1980). The Analytic Hierarchy Process: Planning, Priority Setting,
Resources Allocation (New York: Mcgraw-Hill).

Saaty, R. W. (1987). The analytic hierarchy process—what it is and how it is used.
Math. Model. 9, 161–176. doi: 10.1016/0270-0255(87)90473-8

Saaty, T. L. (2008). Decision making with the analytic hierarchy process. Int. J. Serv.
Sci. 1, 83–98. doi: 10.1504/IJSSCI.2008.017590

Sörensen, R., Zinko, U., and Seibert, J. (2006). On the calculation of the topographic
wetness index: evaluation of different methods based on field observations. Hydrology
Earth System Sci. 10, 101–112. doi: 10.5194/hess-10-101-2006

Terzi, E. (2019). Analytic hierarchy process (ahp) to solve complex decision
problems. Southeast Europe J. Soft Computing 8, 5–12. doi: 10.21533/scjournal.v8i1.168

Tomaszewski, B. (2020). Geographic information systems (GIS) for disaster
management (New York: Routledge).
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