
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Oscar Schofield,
Rutgers, The State University of New Jersey,
United States

REVIEWED BY

Piotr Kowalczuk,
Polish Academy of Sciences, Poland
Robert J. Frouin,
University of California, San Diego,
United States

*CORRESPONDENCE

Brice Grunert

b.grunert@csuohio.edu

RECEIVED 20 December 2024

ACCEPTED 21 April 2025

PUBLISHED 27 May 2025

CITATION

Grunert B, Ciochetto A and Mouw C (2025)
A hyperspectral approach for retrieving
inherent optical properties, phytoplankton
pigments, and associated uncertainties
from non-water absorption.
Front. Mar. Sci. 12:1549312.
doi: 10.3389/fmars.2025.1549312

COPYRIGHT

© 2025 Grunert, Ciochetto and Mouw. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 27 May 2025

DOI 10.3389/fmars.2025.1549312
A hyperspectral approach for
retrieving inherent optical
properties, phytoplankton
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uncertainties from
non-water absorption
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Aquatic ecosystems and associated biogeochemical cycles are dynamic and

driven by spatiotemporally diverse processes, including increasing impacts from

more extreme weather and climate-related stressors. Ocean color datasets

collected by airborne and satellite sensors provide platforms capable of

observing distinct ecosystem features at requisite spatial and temporal scales;

however, many of the tools used, including novel tools developed for

hyperspectral datasets, rely on assumptions to retrieve component optical

properties that are tied to specific ecosystem traits, such as phytoplankton

pigments and spectral features affiliated with carbon concentration and

composition. The original Derivative Analysis and Iterative Spectral Evaluation

of Absorption (DAISEA) algorithm was produced as a means to identify spectral

features in hyperspectral absorption spectra free of explicit spectral assumptions

in an effort to bypass these limitations. Here, we provide an update to the original

DAISEA algorithm that includes improved retrieval of colored dissolved organic

matter plus non-algal particulate absorption and phytoplankton absorption,

Gaussian components affiliated with phytoplankton pigments, and estimates of

uncertainty for all retrieved parameters. Spectral root-mean-square error (RMSE)

for the majority of spectra and wavelengths was < 20%, with no bias at visible

wavelengths. Relationships between phytoplankton pigment concentrations and

modeled Gaussian peak height showed errors of 5%–14%, indicating strong

potential for DAISEA to estimate pigment concentrations in future applications.

Finally, we considered the impact of simulated noise and spectral resolution on

model performance. Across absorption spectra, simulated noise led to modest

changes in model performance, while spectral resolution varying from 1 to 5 nm

did not significantly alter model performance. Based on these findings, we expect

DAISEA to pair well with remote sensing inversion schemes that retrieve spectral

non-water absorption free of spectral assumptions.
KEYWORDS

hyperspectral algorithms, inherent optical properties, phytoplankton pigments, colored
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1 Introduction

Aquatic ecosystems are dynamic and driven by a combination

of physical, chemical, and biological factors that vary over spatial

scales ranging frommeters to tens of kilometers and temporal scales

from seconds to days (Dickey et al., 2006; Mouw et al., 2015). In

addition to natural variability, these systems are also subject to

increasing perturbations, from more extreme weather events and

accelerating effects of climate change to increasing anthropogenic

stressors (Cooney et al., 2018; Osburn et al., 2019; Paerl et al., 2019;

Wang et al., 2019; D’Sa et al., 2023). Observing aquatic systems

holistically—including spatiotemporally dense observations and

accurate observations of key ecosystem traits—is critical to

further our understanding of fundamental ecosystem processes

and their mechanisms of change (e.g., Turak et al., 2017;

Lombard et al., 2019; Johnson et al., 2024). Satellite observations

of remote-sensing reflectance [Rrs(l)] are well poised to provide

these spatiotemporal observations, and multispectral sensors have

offered a suite of ecosystem traits that provide effective accuracy for

observing large-scale biogeochemical shifts (Werdell et al., 2013;

Wang et al., 2017; Mouw et al., 2019; Cao and Tzortziou, 2024).

Imaging spectroscopy and hyperspectral observations of Rrs(l) are
increasingly available for observing aquatic systems, including

frequent, global observations of large aquatic systems through

NASA’s Plankton, Aerosol, Cloud, and Ocean Ecosystem (PACE)

Ocean Color Instrument (OCI). Decomposing Rrs(l) into

component inherent optical properties (IOPs), namely, absorption

[a(l)] and backscattering [bb(l)], is possible through a variety of

algorithms and inversion techniques and provides a means of

observing biogeochemical traits associated with these optical

properties (e.g., Albert and Mobley, 2003; Albert and Gege, 2006;

Loisel et al., 2018; Jorge et al., 2021; König et al., 2024).

Hyperspectral sensors offer near-continuous spectral information

for improved delineation of spectral features in absorption and

backscattering, including phytoplankton pigments, particle

composition and carbon content, and bulk molecular properties

of colored dissolved organic matter (CDOM; Grunert et al., 2018;

Joshi et al., 2023; Cetinić et al., 2024; Lomas et al., 2024). While

these observing platforms offer immense promise for advancing our

basic understanding of aquatic systems and informing management

solutions, two major challenges remain largely tied to the

algorithms used to retrieve information from hyperspectral Rrs(l):
(1) further development of tools that effectively identify the features

present in a hyperspectral spectra, with reduced dependence on

multispectral tools for identifying features, is needed (e.g., Dierssen

et al., 2021), and (2) algorithms that avoid the pitfalls of explicit

assumptions while still effectively decomposing observed signals to

component parts (Grunert et al., 2019; Bi et al., 2023).

To overcome these challenges, the community has developed

two primary tools that broadly fall into the algorithm categories of

bottom-up and top-down approaches, described in Mouw et al.

(2015) and Grunert et al. (2019). Briefly, bottom-up approaches

provide kernels, or priors, to initialize retrieval of component parts,

then simultaneously solve for all parameters to find the optimal

solution (e.g., Chase et al., 2017; McKibben et al., 2024). Top-down
Frontiers in Marine Science 02
approaches iteratively solve for component parts, providing

pathways for independent estimation of individual parameters

and avoiding issues with limitations of statistical fits and degrees

of freedom (Lee et al., 2002; Grunert et al., 2019; Cael et al., 2023)

while still providing means of optimizing solutions through

minimization of error when summing component parts to fit the

observed signal. For systems where optical constituents can be well

constrained with priors, top-down approaches often perform well,

as the signal being retrieved is “known” (e.g., Werdell et al., 2013; Bi

et al., 2023; Loisel et al., 2023). However, considering the dynamic

nature of aquatic systems and emerging, previously unobserved

biogeochemical phenomena, these approaches can be hampered by

fitting constraints that do not represent environmental conditions

and limit our ability to observe novel or previously unobserved

ecosystem features (Häder and Barnes, 2019; Sterner et al., 2020;

Blanchet et al., 2022). For these systems, top-down approaches that

fit a model to observed signals can provide necessary flexibility to

observe environmental features.

More flexible algorithms are increasingly necessary, as many

systems are observing new or increasingly common ecological

features, including harmful algal blooms (HABs) and novel

phytoplankton blooms (Reinl et al., 2020; Anderson et al., 2021)

and more intense and diverse terrestrial inputs to coastal systems

(Liu et al., 2023; Cao and Tzortziou, 2024). Beyond these novel or

infrequently observed biogeochemical conditions, many ecosystem

traits are poorly understood and/or documented. For example, the

retrieval of phytoplankton pigments has a strong legacy (Hoepffner

and Sathyendranath, 1991; Lee and Carder, 2004), and satellite

observations of phytoplankton size structure and community

composition have significantly advanced our understanding of

myriad aquatic processes from fisheries yields and aquaculture to

carbon export (Fogarty et al., 2016; Mouw et al., 2016). However,

phytoplankton pigment traits are based on extracted pigments,

which, while broadly representative of optical signals, display

distinct spectral features when extracted versus within the cellular

matrix (Aguirre-Gomez et al., 2001; Evangelista et al., 2006).

Additionally, major pigments such as mycosporine-like amino

acids, commonly referred to as “sunscreen pigments,” are missing

from current Gaussian decomposition approaches, providing

significant uncertainty in decomposition of ultraviolet (UV)

signals and limiting our ability to observe additional biomarkers

that indicate phytoplankton physiology, environmental stress, and

bloom evolution toward toxin-producing genre (Eisner and Cowles,

2005; Descy et al., 2009; Vale, 2015; Behrenfeld and Milligan, 2013;

Carreto et al., 2018; Jacinavicius et al., 2021).

Here, we present substantial updates to the original Derivative

Analysis and Iterative Spectral Evaluation of Absorption (DAISEA)

algorithm, presented as DAISEA2 (https://github.com/

bricegrunert/daisea, Version 2; Grunert et al., 2019). DAISEA was

created as a top-down approach for identifying absorption due to

CDOM and non-algal particles [NAP; adg(l)] and phytoplankton

[aph(l)] using total non-water absorption [anw(l)] provided by an

inversion scheme (e.g., König et al., 2024) or through

decomposition of data collected by in-situ hyperspectral

absorption instruments. The primary goal of DAISEA was to
frontiersin.org
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create an approach that could deconstruct hyperspectral anw(l) into
adg(l) and aph(l), including Gaussian components representing

individual or groups of spectrally similar pigments, free of explicit

assumptions. DAISEA2 was created with the following

improvements in mind: (1) improve estimation of adg(l) and aph
(l) and provide uncertainty estimates for all retrieved components

through the application of a genetic algorithm (Houck et al., 1998;

Zhan et al., 2003; Kostadinov et al., 2007), (2) evaluate the ability of

DAISEA2 to estimate pigment concentrations from retrieved aph(l)
and Gaussian fit parameters, (3) adjust inequality constraints for

application to datasets that only observe to 400 nm (e.g., ac-s), and

(4) provide a hyperbolic model as a fitting option for adg(l).
Ultimately, DAISEA2 shows strong capability to accurately

retrieve adg(l) and aph(l) across a variety of water types, with

reliable, unbiased estimation of spectral slope (Sdg) and visible aph
(l) and associated Gaussian components. DAISEA2 exhibits a

negative bias in retrieval of aph(l) at UV wavelengths,

highlighting the relatively limited understanding in our

community of aph(l) and pigment traits at UV wavelengths.

Based on an initial evaluation with a regionally limited dataset,

DAISEA2-retrieved parameters display relatively small error in

re lat ionships with measured phytoplankton pigment

concentration, indicating strong potential to estimate

phytoplankton pigment concentration with associated uncertainty

in future applications. Finally, we discuss the performance of

DAISEA2 relative to simulated noise and spectral resolution, in

anticipation of application to inversion schemes.
2 Methods

2.1 Datasets and inputs

Discrete in-situ samples were accessed from NASA’s SeaWiFS

Bio-optical Archive and Storage System (SeaBASS, https://

seabass.gsfc.nasa.gov/) as presented for the original DAISEA

algorithm (Grunert et al., 2019). This dataset contains

measurements of laboratory-analyzed samples taken within 10 m

of the surface, resolving concurrent absorption from phytoplankton

[aph(l), m−1], detrital/non-algal particulates [ad(l), m−1], and

colored dissolved organic matter [ag(l), m−1]. Beyond the quality

control described in Grunert et al. (2019), additional steps were

taken to remove high-noise spectra. The first derivative for

wavelengths greater than 450 nm was calculated for both ag(l)
and ad(l). Thresholds for exclusion were chosen by a visual

inspection of slope versus wavelength for each of these

parameters to remove samples that contained extreme noise.

Samples with values beyond ± 0.15 m−1 nm1 were removed for

CDOM, and those outside ± 0.015 m−1 nm−1 were removed for

NAP. In addition, we required test spectra for DAISEA2 to extend

between 350 nm and 700 nm. Data were not extrapolated beyond

measured bounds, and samples with shorter spectra were excluded.

This SeaBASS dataset was augmented with discrete in-situ samples

taken as part of 2018 and 2019 field campaigns aboard the NOAA

Ecosystem Monitoring (EcoMon) cruises ranging from Cape Hatteras,
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North Carolina, to the Gulf of Maine (https://seabass.gsfc.nasa.gov/

experiment/ECOMON) and at a time-series field station on the pier

at the University of Rhode Island Graduate School of Oceanography

(GSO Pier). Both additional field campaigns collected discrete

samples alongside a flow-through system that captured in-situ

IOPs. These included an AC-S to resolve total non-water

absorption (anw(l), m−1) at 83 wavelengths, 3 BB3s to

characterize backscattering at 9 wavelengths, a fluorometer to

capture chl concentration, and a thermosalinograph to resolve

concurrent temperature and salinity. Combined with the SeaBASS

data, this resulted in a total library of 3,421 laboratory-analyzed

discrete samples (Figure 1).

The discrete sample library contained a variety of wavelength

resolutions for absorption parameters. The DAISEA2 algorithm

requires an evenly spaced wavelength resolution <5 nm for a given

anw(l) input. To simplify the analysis and compare algorithm

performance between samples, all absorption data were linearly

interpolated to a 1-nm wavelength resolution from 350 nm to 700

nm prior to analysis with DAISEA2. To assess algorithm

performance, the library was split into the original development

(2,329 spectra) and validation datasets from Grunert et al. (2019).

EcoMon and GSO Pier samples were then added to the validation

set (total of 1,092 spectra). Performance metrics were not

significantly different between development and validation

datasets, and all further analysis was conducted on the total library.

On the EcoMon cruises, discrete samples for high-performance

liquid chromatography (HPLC) were collected and sent to NASA’s

Ocean Ecology Lab to resolve pigment concentrations alongside

phytoplankton absorption spectra. Phytoplankton contain a wide

variety of pigments that serve photosynthetic and photoprotective

purposes. Each of these pigments, and/or sets of pigments, has its

own absorption spectrum (Hoepffner and Sathyendranath, 1991,

1993; Chase et al., 2013) and sums to produce total phytoplankton

absorption (Supplementary Figure S1). DAISEA2 uses Gaussian

decomposition to parse estimated aph(l) into the most likely set of

pigment-specific spectra. We compare DAISEA2-retrieved

parameters, including aph(l) at a reference wavelength relative to

maximum absorption of a given pigment documented in the

literature [aph(lr)], Gaussian peak height, and Gaussian peak area

to measured pigments from HPLC for these 118 samples to derive

relationships and assess the algorithm’s potential ability to detect

pigment composition and concentration from aph(l).
2.2 DAISEA2 algorithm update

The four major updates to DAISEA2 involve (1) the

introduction of genetic algorithms to retrieve fitted parameters

and associated uncertainty in the form of confidence intervals, (2)

adding the option of either an exponential or hyperbolic

relationship for adg(l), (3) the ability to process spectra that only

extend to 400 nm (AC-S data) rather than requiring absorption be

resolved to 350 nm, and (4) evaluating the ability of DAISEA2 to

estimate pigment concentrations. We also made small changes to

other steps throughout the DAISEA algorithm. While the basic
frontiersin.org
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processing steps in Grunert et al. (2019) are followed here, they are

outlined again to highlight any changes in the DAISEA2 update.

DAISEA2 takes the input of anw(l) and separates it into its

constituent parts of aph(l) and the combined sum of CDOM+NAP

absorption [adg(l), m−1]. The approach uses derivative analysis to first

estimate adg(l) and then applies Gaussian decomposition to describe

the spectral shape of aph(l). Steps described below are outlined in the

schematic (Figure 2) to illustrate algorithm workflow.

Step 1

As in DAISEA, the second derivative of anw(l) is used to

identify absorption at wavelengths most representative of adg(l)
and least influenced by phytoplankton absorption (Equation 1):

d2anw(l)
dl2 ≈

anw(li) − 2anw(lj) +   anw(lk)
Dl2 (1)

whe r e Dl i n d i c a t e s t h e wave l en g th r e s o l u t i on

(Dl = lj − li = lk − lj), li is the wavelength for the current anw
measurement, lj is the wavelength at the ith+1 anw measurement, and

lk is the wavelength at the ith+2 anw measurement (Tsai and Philpot,

1998). Points where the second derivative is zero or approximately

zero are expected to be the least influenced by phytoplankton

pigments, as inflection points in the spectra (peaks and troughs

associated with pigments) are represented as local maxima and

minima in the second derivative spectra (Grunert et al., 2019). The

original DAISEA algorithm identified these points as those where the

second derivative was less than the median second derivative rounded

to one significant digit. This is modified in DAISEA2 to identify

inflection points as those falling within0 ± 1SD(d2anw(l)=dl2). This

small change results in fewer selected points along the curve (data not

shown). DAISEA2 also explicitly excludes two major regions of the

spectrum associated with chl a: 457 nm ± 15 nm and 676 nm± 15 nm
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(Chase et al., 2013), as chl a is a ubiquitous pigment associated with

phytoplankton (Figure 2, Step 1).

Step 2

Using the points identified in Step 1, an initial estimate of adg(l)
is obtained via a non-linear least squares fit to either an exponential

(Equation 2) or hyperbolic (Equation 3) relationship:

anw(l) = anw(l0)e
−S(l−l0) (2)

where l0 is the selected reference wavelength, anw(l0) is the

value of anw at the reference wavelength, and S is the spectral slope.

DAISEA2 specifies l0 as 440 nm. Considering past studies showing

strong performance of alternative models for fitting ag(l) or adg(l)
(e.g., Twardowski et al., 2004; Cael and Boss, 2017), DAISEA2 can

alternatively implement the hyperbolic equation of Twardowski

et al. (2004):

anw(l) = anw(l0) · (l=l0)
−S (3)

where l0, anw(l0), and S are defined as for Equation 2. Again,

DAISEA2 specifies l0 as 440 nm. Note, whether selecting the

exponential or hyperbolic relationship, DAISEA2 is a wide-

spectrum slope determination across the entire wavelength range

and not representative of spectral shape in specific, targeted regions

(e.g., 275–295 or 350–400 nm; Helms et al., 2008; Grunert et al.,

2018). Applying Equation 2 or Equation 3 yields an initial estimate

of adg(l), slope (Sdg, nm−1), and intercept (adg(440), m
−1). Although

the magnitude of Sdg derived from an exponential or hyperbolic

relationship is different, the purpose of the parameter is identical

and Sdg is used interchangeably to represent either for the

remainder of this discussion.

To separate the relative contributions of phytoplankton and

CDOM+NAP to total absorption at 440 nm, Grunert et al. (2019)
FIGURE 1

Map of data locations. Data are colored by region with 92 locations in the Arctic (red), 340 locations in the Great Lakes (green), 2,184 locations along
the East Coast of the United States (medium blue), 94 samples near Bermuda (magenta), 22 samples along the Gulf of Mexico (dark blue), 428
samples off the coast of California (purple), 151 samples near Antarctica (yellow), 78 samples along the East Coast of Australia (light blue), and 10
samples throughout the rest of the oceans, including near Hawaii (dark red). Samples with matching HPLC data (n = 118) are highlighted in orange.
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derived an empirical relationship based on their training dataset

also applied in DAISEA2 (Equations 4–6). The equations are

repeated here for completeness:

% aph(440) = 1:038e−0:9257(
anw (555)
anw (680)),  where  

anw(555)
anw(680)

> 0:685 (4)

or

% aph(440) = 2:088e−1:9460(
anw (555)
anw (680)),  where  

anw(555)
anw(680)

≤ 0:685 (5)

and

% adg(440) = 100 −% aph(440) (6)

These relationships remained robust in providing fairly

accurate and unbiased estimates of absorption to initialize the

DAISEA model (Supplementary Figure S2). The estimate of adg
(440) from Equation 2 or Equation 3 is modified by %adg(440) and

retrieved adg(l) updated to reflect this absorption magnitude

(Figure 2, Step 2).

Steps 3–5

Phytoplankton absorption is then retrieved by difference

(Equation 7):

aph(l) = anw(l) − adg(l) (7)
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At this point, the initial DAISEA algorithm used an iterative

process to assess the feasibility of aph(l) and modify Sdg and/or adg
(440) until a plausible solution was found. DAISEA2 diverges from

this approach, instead implementing a genetic algorithm. Genetic

algorithms work with entire parameter sets, instead of adjusting the

value of each fitted parameter separately, to iteratively reach an

optimal solution (Holland, 1975; Houck et al., 1998) and have been

used successfully in other optical oceanographic applications (Zhan

et al., 2003; Kostadinov et al., 2007). Initial parameter sets are

randomly generated to create a group of parents ranked by specified

“fitness” criteria. Pairs of parental parameters are selected and

combined to create “children” based on ranking; a higher ranking

increases the probability of selection. A random subset of parental

parameters, independent of rank, is also selected and “mutated”

through random percent change. The “parent,” “children,” and

“mutant” sets are collectively ranked by fitness, and half the

population is culled. This new population becomes the next set of

parents. The process is repeated until a fitness threshold is reached or a

maximum number of generations is exceeded.

Genetic algorithms were initially designed to work with binary

values, requiring parameter sets to be converted into binary strings

cut and modified during selection, combination, and mutation

(Holland, 1975). Here, we implement a methodology adapted

from Houck et al., 1998, who demonstrated that working with

values in the real world yielded identical results to binary
A B

FIGURE 2

Schematic outlining the processing steps included in DAISEA2, with example figures summarizing each major step.
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transformations. In addition to random percent mutation, binary-

based genetic algorithms also allow a kind of transpose mutation

that exchanges one parameter value for another; for example, the

value for adg(440) would instead be assigned as Sdg and vice versa. In

our case, there is no reason to expect this kind of mutation to yield a

feasible parameter set, and we did not include it in the algorithm.

For DAISEA2, the initial parameter set from Step 2 is added to a

random set of 49 adg(440), Sdg, and %adg(440) triplets to generate 50

parents. While parameter sets are randomly generated, limits are

placed on adg(440), Sdg, and %adg(440) to reduce processing time.

For both exponential and hyperbolic relationships, adg(440) is

restricted to between 0 m−1 and input anw(440). Slope is restricted

to between 0 and 0.03 nm−1 for exponential and 0 to the initial

estimate + 4 nm−1 for hyperbolic fits. Finally, %adg(440) is restricted

to between ±10% of the initial estimate from Equation 6. For each

parent set of adg(440), Sdg, and %adg(440), Equation 2 (exponential)

or Equation 3 (hyperbolic) and Equation 7 are applied to estimate

adg(l) and aph(l). Fitness is assessed as (Equation 8)

F = (
1
f1
+ f2 + f3) · f4 (8)

where f1 (Equation 9) is the sum of squares of error up to 600

nm:

f1 = o
600nm

l=lmin

½anw(l) − canw(l)�2 (9)

Since the purpose of Steps 3–5 is to estimate adg(l), we chose to
minimize error up to 600 nm, rather than 700 nm, to avoid the

influence of chl a at red wavelengths, often visible as a peak in anw
(l). f2 is a true/false metric that assesses the shape of the

phytoplankton spectra (Equation 10). Since aph(l) is obtained by

difference, it is possible to have residual influence of adg(l) if

estimated slope or intercept is inaccurate. As in Grunert et al.

(2019), we considered phytoplankton spectra to be reasonable if

f2(lmin ≤ 350nm) = 1  when  
caph(350)caph(440) ≤ 1:5,   and   0   otherwise (10)

or, for spectra, such as those recorded for the AC-S (Equation

11), with lmin = 400nm:

f2(lmin = 400nm) = 1  when  
caph(400)caph(440) ≤ 1:2,   and   0   otherwise (11)

Both f3 (Equation 12) and f4 (Equation 13) are true/false metrics

ensuring estimated adg(l) and aph(l) are positive:

f3 = 1  when  o
690nm
l=lmin

cadg(l) > 0

690 − lmin
= 1,   and   0   otherwise (12)

f4 = 1  when  o
690nm
l=lmin

caph(l) > 0

690 − lmin
= 1,   and   0   otherwise (13)

Note that it is a requirement of the algorithm that aph(l) be
positive [in other words, adg(l) must be less than anw(l) for all

wavelengths]; retrieving negative phytoplankton absorption will
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result in a fitness of zero. This requirement is slightly relaxed for

adg(l) as f3 simply reduces fitness rather than canceling it, as adg(l)
at wavelengths greater than 600 nm is often near zero. Both metrics

only consider wavelengths less than 690 nm as anw(l) is close to

zero at higher wavelengths, making it difficult to meet the f3 and f4
criteria. During development, extending f3 and f4 to the full

spectrum resulted in algorithm failure for many of the spectra in

the dataset library (data not shown).

The 50 parental parameter sets are ranked by fitness from

highest to lowest. Tournament selection is used to generate

children: 25 pairs of parents are randomly drawn, with

replacement, weighted by fitness, from the population. Each pair

is combined to generate a child parameter set using the mean value

of the two parents. Mutation is performed on an additional 25

randomly selected parents, without replacement, ignoring rank.

Each parameter in the mutation set is modified by a randomly

generated percentage up to ±20% of its initial value. Fitness is

reassessed with Equation 8 for the combined set of parents,

children, and mutants. The 50 highest ranked individuals are

selected as the next generation of parents. The genetic algorithm

runs for 50 generations to retrieve updated estimates of adg(440),

Sdg, and %adg(440). DAISEA2 repeats the genetic algorithm 10

times to generate an ensemble for each of the three parameters. The

median ensemble values of adg(440), Sdg, and %adg(440) are utilized

in Steps 6 and 7 (Figure 2, Steps 3–5).

Steps 6 and 7

Gaussian decomposition is applied to aph(l) estimated after

Steps 3–5 to retrieve the number and location of pigment peaks.

Peak locations are not assumed a priori. Instead, peaks are found by

applying second derivative analysis to the aph(l) signal. These steps
closely follow the original DAISEA algorithm with some updates.

The second derivative of aph(l) is first smoothed by a Savitzky-

Golay filter with a 9-nm window to reduce the potential for

identifying noise-related peaks. The signal is then inverted, and

local maxima are detected where the first derivative is zero. This

creates an initial set of potential peak locations, heights, and widths

as (Equation 14)

ɡi = fie
−
(l−mi )

2

2si (14)

where m (nm) is the location of the peak center on the spectrum,

s (nm) is peak width, and f (m−1) is peak height. Peaks with s <5

nm are considered noise and removed as peak widths associated

with individual pigments or groups of pigments range from 10 nm

to 53 nm (Hoepffner and Sathyendranath, 1993; Bricaud et al., 2004;

Chase et al., 2013).

At this point, retrieved peak height relates to the magnitude of

the second derivative rather than phytoplankton absorption.

Thus, Gaussian peaks are next mapped onto aph(l). Peak height

is used as a proxy for peak importance and mapping proceeds

from the tallest to the shortest peak. The process is iterative; as

each peak is mapped, the signal for that peak is removed from aph
(l) before mapping the next peak. For each successive mi, peak
height is defined as 90% of remaining aph(l) at that wavelength
(Equation 15):
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fi(l) = 0:90 aph(l) −o
n

i=1
fie

−
(l−mi )

2

2si

 !
(15)

where n indicates the total number of peaks found. This is a

slight change from the original DAISEA, that assigned 100% of aph
(l) for each successive peak instead of 90%. Due to the additive

nature of the process, it is possible to retrieve peaks with negative

heights. As with the original DAISEA, negative peaks are excluded,

and remaining peaks ordered by height as a proxy of importance.

The peak set is then trimmed to a maximum of 16.

Here, DAISEA2 diverges from the original DAISEA by

checking peak locations against eight known peaks from the

literature. Specifically, DAISEA2 looks for peak matches against

the most common pigments associated with phytoplankton

(Table 1, Chl a and b) and attempts to add a peak location if

none exists within ±10 nm. Any peaks added in this step are

assigned a peak height equal to aph(l) after Equation 15 is

applied. Again, peaks with negative heights are removed,

remaining peaks are ordered by importance, and only 16 are

retained. Thus, peaks added from Table 1 during this step can

still be excluded (Figure 2, Steps 6 and 7).

Step 8

The final set of m, f, and s from Step 7 along with adg(440), Sdg,
and %adg(440) from Step 5 are used to create limits for a final

genetic algorithm optimizing the parameter set. Both the number

and locations (m) of Gaussian peaks are fixed and not allowed to

vary during this final step. This is a change from the original

DAISEA where peak locations could vary by ±5 nm. The estimated

contribution of adg at 440 nm [%adg(440)] is also kept constant.

Data are fit to a combination of Equations 2 and 14 (Equation 16) if

an exponential relationship is specified for adg(l):

anw(l) = % adg(l0) · anw(l0)e
−S(l−l0) +o

n

i=1
fie

−
(l−mi )

2

2si (16)

or to Equations 3 and 17 if a hyperbolic relationship is used:

anw(l) = % adg(l0) · anw(l0) · (l=l0)
−S +o

n

i=1
fie

−
(l−mi )

2

2si (17)

For the genetic algorithm, an initial parent population of 200

sets of f, s, adg(440), and Sdg are generated from a combination of

100 random parameter sets and 100 parameter sets within up to a

random ±50% of their input values. While this means the initial

parent population is not entirely random, it leverages the effort from

Steps 1 to 7 to greatly reduce final computation time and provide

reasonable constraints for the parameter space based on observed

data. The following limits are imposed on all 200 parents: fi is
allowed to vary between 0 m−1 and anw(mi), s between 5 nm and 50

nm, adg(440) between 0 m−1 and anw(440), and Sdg between −0.002

and +0.003 nm−1 of its input value for exponential relationships and

between −2 and +5 nm−1 of its initial value for hyperbolic fits.

Grunert et al. (2019) detail the reasoning behind asymmetrical

limits on Sdg in their discussion.

Using Equation 2 (exponential) or Equation 3 (hyperbolic) and

Equation 7, estimates of adg(l) and aph(l) are calculated for each

parent parameter set. Fitness is assessed as (Equation 18)
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F =
1=f5

max(1=f5)
+

1=f6
max(1=f6)

+ f3 + f4 (18)

where f5 is the sum of squares of error over the entire

wavelength range (Equation 19):

f5 = o
l=lmax

l=lmin

½anw(l) − canw(l)�2 (19)

and f6 is the sum of squares of error at the Gaussian peak

locations (Equation 20):

f6 =o
n

i=1
½anw(mi) − canw(mi)�2 (20)

Both f5 and f6 are scaled to the maximum value so they range

between 0 and 1, making them of equal importance to fitness.

Parameters f3 and f4 are as defined above during Steps 3–5 in

Equations 12 and 13: true/false values ensuring adg(l) and aph(l)
are positive for wavelengths <690 nm.

The 200 parental parameter sets are ranked by fitness from

highest to lowest. As in Steps 3–5, tournament selection is used to

generate children: 100 pairs of parents are randomly drawn, with

replacement, weighted by fitness, from the population. Each pair is

combined to generate a child parameter set using the mean value of

the two parents. Mutation is then performed on an additional 100

randomly selected parents, without replacement, ignoring rank.

Each parameter in the mutant set is modified by a randomly

generated percentage up to ±10% of its initial value. Fitness is

reassessed with Equation 18 for the combined set of parents,

children, and mutants. The 200 highest ranked individuals are

selected as the next generation of parents.

The genetic algorithm runs for 200 generations or for a

minimum of 100 generations, and then until f5< 0.002. During

development, we found that the genetic algorithm either converged

rather quickly on a parameter set (within 200 generations) or that it

would take 1,000s of generations to reach a consistent solution. The

limits described here balance computation time with the desire for

an accurate retrieval. DAISEA2 repeats the genetic algorithm 10

times to generate ensembles for f, s, adg(440), and Sdg. Final

parameter estimates are returned as the median of the ensemble.

Error is assessed as the minimum and maximum ensemble value for
TABLE 1 Peak locations from the literature associated with the most
common phytoplankton pigments, Chl a and b.

Peak center Pigment Citation

382 nm Chl a Hoepffner and Sathyendranath, 1993

409 nm Chl a and c Chase et al., 2013

436 nm Chl a Chase et al., 2013

457 nm Chl b and c Chase et al., 2013

468 nm Chl b Chase et al., 2013

620 nm Chl a Chase et al., 2013

658 nm Chl b Chase et al., 2013

676 nm Chl a Chase et al., 2013
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each parameter. Final estimates of adg(l) and aph(l) are returned

utilizing Equation 2 (exponential) or Equation 3 (hyperbolic) and

Equation 7.
2.3 Efficiency and runtime

DAISEA2 was run on a Mac Pro (2019), 3.2 GHz, 16-core Intel

Xenon W with 96 GB of RAM. Runtimes for DAISEA2 were

independent of adg model choice (exponential/hyperbolic) and

were bimodal with peaks at 8–9 s and 16–17 s per curve (data not

shown). Minimum and maximum runtimes were <1 s and 25 s,

respectively, with 24% of the dataset falling < 10 s and 61% of the

dataset falling between 10 s and 20 s. Full runs for all 3,421 spectra

took 13h utilizing a single processor. One of the goals of DAISEA2

was to create an algorithm that enables utilization of in-situ profiles,

continuous underway flowthrough, or fixed-point time series

absorption measurements that often only resolve anw(l), such as

those taken with an AC-S. We have collected such a dataset

ourselves, amassing 34,031 AC-S spectra at both a fixed-point

time series on a pier and from underway measurements on

cruises along the eastern coast of the United States. We estimate

it would take 6 days to analyze this entire dataset with a

single processor.

To have a sense of the effort required to apply DAISEA2 to a

satellite data product, we took a single global PACE Level 3 monthly

global product and multiplied the number of pixels with data by the

relative runtime spread for our DAISEA2 analysis. We estimate that

it would take 555 days to process the 3,226,628 pixels with values in

this scene using a single processor. This can be dramatically reduced

by utilizing computing power commonly available today: allocating

15 of the 16 cores on our Mac Pro would cut this runtime down to

37 days. We expect that a computing cluster and parallel computing

techniques that are increasingly available to the community would

enable DAISEA2 to be efficient enough to process PACE data.

Future efforts will focus on avenues for improving efficiency,

particularly when paired with computationally intensive

inversion schemes.
2.4 Data analysis

We assessed the performance of DAISEA2 by considering

performance across eight broad classes of optical conditions.

Classes were defined by the percent contribution of aph at 440 nm

[%aph(440)], ranging from 0% to >70% in increments of 10%, with n

= 1329 (<10%), 346 (10%–20%), 460 (20%–30%), 425 (30%–40%),

287 (40%–50%), 230 (50%–60%), 177 (60%–70%), and 136 (>70%)

spectra, respectively. This approach considers the relative

contribution of phytoplankton pigments to the overall absorption

signal and follows delineation in Grunert et al. (2019). Performance

was assessed using several common performance metrics (Seegers

et al., 2018), including root-mean-square difference (RMSD)

(Equation 21), normalized RMSD (NRMSD) (Equation 22), bias

(Equation 23), and mean absolute difference (MAD) (Equation 24)
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using the following expressions:

RMSD =  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(x
estimated
i − xobservedi )2

n

s
(21)

NRMSD   ( % ) =
RMSD

xobservedmax − xobservedmin

� 100 (22)

Bias =  
1
no

n

i=1
(xestimated

i − xobservedi ) (23)

MAD =  o
n
i=1( x

estimated
i − xobservedi

�� ��)
n

(24)

Additionally, we considered whether aph(l) or adg(l) was

retrievable by calculating the absolute difference in the opposing

metric and comparing this value to the observed value, following

Grunert et al. (2019). The premise for this approach is that if the

uncertainty in a retrieved parameter is larger than the value of the

other parameter, then we cannot retrieve that parameter with

adequate confidence. Finally, Bayes factors (BF10, unitless) were

also calculated to assess fit significance (Wetzels and Wagenmakers,

2012). Bayes factors represent the likelihood that modeled results

better represent observed data relative to an alternative model, with

a BF10 = 2 indicating the model is twice as likely to explain observed

data than an alternative model, with a BF10 ≥ 3 used as a threshold

of significance (Wetzels and Wagenmakers, 2012).
3 Results

DAISEA2 is a revision of the original DAISEA algorithm

(Grunert et al., 2019) and includes improvements in performance

as highlighted below while also providing uncertainty estimates for

all retrieved components. These retrieved components include

spectral absorption coefficients and slope parameters associated

with exponential or hyperbolic models representing adg(l),
spectral absorption coefficients for aph(l), and Gaussian

components used to model phytoplankton pigment absorption

(including f, m, and s as outlined in Equations 16, Equation 17).

Additionally, we evaluated the ability of DAISEA2 to estimate

HPLC pigment concentrations estimated from aph(lr), where lr is
the corresponding wavelength for extracted pigment peak

absorption, Gaussian peak height, and Gaussian peak area for

Gaussian components corresponding to a particular pigment. The

DAISEA2 algorithm performance followed similar broad trends to

the performance of the initial DIASEA algorithm (Grunert et al.,

2019), including strong spectral agreement between observed and

modeled aph(l) and adg(l) across a range of optical conditions, from
waters dominated by adg(l) to waters dominated by aph
(l) (Figure 3).

DAISEA2 improved spectral retrieval of aph(l) and adg(l) for all
sites relative to DAISEA, with significant improvements in the

retrievability of aph(l) and adg(l), particularly at longer wavelengths
relative to the original model (Figure 4). Notably, from 550 nm to
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700 nm, no more than 80% of sites saw aph(l) retrievable in

DAISEA, while the majority of wavelengths from 550 nm to 700

nm were well above 80% retrievable for spectra with % aph(440) > 30

using DAISEA2. These gains were made while maintaining or

slightly improving the retrievability of adg(l) for all classes

outside of %aph(440) < 10. The retrievability and NRMSE were

lower for adg(l) at wavelengths greater than 550 nm, following an

approximately exponential decrease and increase, respectively

(Figure 4); this apparently contradictory behavior is due to

relatively large magnitudes of aph(l) for many of these sites and

the relatively small magnitude of adg(l) at corresponding

wavelengths. Inland and coastal sites dominated this class, where

aph(l) magnitude was often quite large relative to more oceanic

sites, but CDOM absorption was also extremely high at 440 nm
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(values in excess of 1 m−1) for many of these data, resulting in the

low relative value of %aph(440).

Normalized RMSE was lower for all classes relative to DAISEA,

including considerable decreases in NRMSE <550 nm for adg(l)
(Figure 4). In DAISEA, there was broad elevation in NRMSE from

~500 nm to 650 nm, while DAISEA2 has limited NRMSE to a local

spike near 585 nm, indicating difficulty in fitting Chl a and c

absorption at this spectral location for a subset of samples

(Figure 4). Across classes, aph(l) below 400 nm shows a negative

bias of −0.05 to 0.1 m−1 and elevated MAD below 500 nm,

consistent with the algorithm systematically allocating UV

absorption to adg(l) instead of aph(l) (Figures 4E, F). This is in

contrast to DAISEA, which typically overestimated the contribution

of aph(l) for lower %aph(440) spectra and underestimated the

contribution of aph(l) for higher %aph(440) spectra at shorter
FIGURE 3

Example retrievals of adg(l), aph(l), and associated Gaussian decomposition with DAISEA2. For a1-h1, solid lines represent measured data and dashed
lines show modeled results. In a2-h2, shaded areas for Gaussian decomposition represent outer bounds on peak height and width from the genetic
algorithm, with the dashed line corresponding to modeled aph(l). Measured spectra were grouped by percent contribution of aph(l) at 440 nm. An
example for each bin was selected as the spectra closest to the median residual aph(l) except for the <10% group, which was selected by hand.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1549312
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Grunert et al. 10.3389/fmars.2025.1549312
wavelengths. Algorithm performance was broadly similar when

using the hyperbolic model to represent adg(l), except for

generally improved retrievability of aph(l) and a distinct spectral

bias in aph(l) below 450 nm represented by overestimations of

pigment absorption between 400 and 500 nm (Supplementary

Figure S3). The improved spectral performance of the hyperbolic

model represents its ability to adequately constrain the relatively

singular spectral shape of CDOM absorption from 400 nm to 700

nm, which is primarily due to charge transfer effects with a rapid

degradation in fitting performance near 350 nm when the spectral

complexity of adg(l) increases considerably. The slightly improved

performance of the hyperbolic model on CDOM absorption for

spectral regions dominated by visible wavelengths (e.g., ~400 nm to

700 nm) has been previously described (Twardowski et al., 2004)

and is supported by a higher spectral win rate here (Supplementary

Figure S4; Seegers et al., 2018). However, as a hyperbolic model

approaches infinity in finite time, the edge region of any UV

retrieval is expected to rapidly deteriorate relative to an

exponential model. To be consistent with the accepted

community use of the exponential model, we prioritize the

presentation of the exponential model here but include identical
Frontiers in Marine Science 10
figures for the hyperbolic model performance as supplementary

figures to provide a balanced narrative of strengths and limitations

to each approach. It should be noted that some improvements in

performance were anticipated based on stricter quality control of

data used in the evaluation of DAISEA2 relative to those used in

DAISEA (see Section 2.1). Overall, DAISEA2 showed an average

spectral improvement of +15% retrievability of aph(l), reduced
NRMSE of 7.5% and 4.8% for aph(l) and adg(l), respectively, and
a reduction in MAE of 0.015 for aph(l). The average retrievability of
adg(l) was maintained, and average bias was near zero due to the

divergence in bias as described above (data not shown).

DAISEA2 remains challenged in resolving the UV contribution of

phytoplankton, largely attributed to inequality constraints used to

resolve the contribution of adg(l) (Equation 10; Figure 2) and the

irregular contributions of UV-absorbing pigments, including Chl a

absorption at 382 nm and mycosporine-like amino acids (MAAs).

MAAs, in particular, remain poorly constrained, in part due to

databases offering only the wavelength of peak absorption or

absorption spectra specific to unknown MAAs or a phytoplankton

species and not a compound, and are not parameterized in past

approaches that model aph(l) with component pigments (Hoepffner
FIGURE 4

Spectral performance for DAISEA2 retrieval of aph(l) and adg(l) using an exponential model for adg(l) following Equations 21–24 in Section 2.3. Data
were grouped by percent contribution of aph(l) at 440 nm as indicated in the legend for (a) aph % retrievable, (b) adg % retrievable, (c) aph NRMSE,
(d) adg NRMSE, (e) aph bias and (f) aph MAD. Spectral performance using a hyperbolic model for adg(l) can be found in Supplementary Figure S3.
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and Sathyendranath, 1993; Sinha et al., 2007; Piiparinen et al., 2015;

Vale, 2015; Grunert et al., 2019). These challenges are clear in the

systematic bias toward underestimating aph(l) below 400 nm

(Figure 4). Generally, algorithm performance was more challenged

at shorter wavelengths, as seen in relative MAD values and bias

(Figure 4). This was attributed to limitations in defining when aph(l)
can be expected to increase or maintain its magnitude at UV

wavelengths. This knowledge gap remains in the literature,

including when and where MAAs are expected and when Chl a

absorption at 382 nm can be expected to be elevated. Presumably,

broader knowledge on these spectral characteristics within the

community would contribute to an improved understanding of

phytoplankton physiology from hyperspectral, UV-observing remote

sensing instruments.

Spectral fitting by DAISEA2 is quite robust, as evidenced by

consistent and relatively unbiased fitting of Sdg (Figure 5;

Supplementary Figure S5) and consistent retrieval of phytoplankton

pigment absorption features and good agreement with reconstruction

of aph(l) (Figures 3, 6; Supplementary Figure S6). Gaussian

components were identified as consistent with known pigment

absorption locations >80% of the time, with a significant portion of

“unclassified” pigments, or identified peaks that did not agree with

established pigment locations in the literature, affiliated with published

locations of MAAs (16% of unfitted peaks for DAISEA2 using an

exponential model for adg(l) (Supplementary Figure S6; Sinha et al.,

2007; Piiparinen et al., 2015; Vale, 2015).

HPLC phytoplankton pigment concentrations are well

correlated with the magnitude of observed aph(l) at spectral

locations associated with those pigments in the literature, referred

to here as aph(lr), and DAISEA2 reliably retrieved pigments at these

spectral locations (Table 2; Figure 6). All four absorption peaks at

visible wavelengths associated with Chl a were retrieved greater

than 90% of the time, including 100% retrieval of the Chl a

absorption peak at 676 nm with DAISEA2. Absorption at 382 nm

associated with Chl a was retrieved 75% of the time when an

exponential model was used for adg(l) (Figure 6) and 86% of the

time when a hyperbolic model was used (data not shown),

consistent with improved retrieval of aph(l) at UV wavelengths

when using a hyperbolic model to fit adg(l). Overall, pigment

concentrations displayed MAPE of 4%–12% when related to

observed aph(lr) at wavelengths corresponding with those

published in the literature and displayed MAPE of 5%–16%

relative to modeled aph(lr). Relationships between HPLC pigment

concentrations and corresponding Gaussian peak height notably

decreased when applying Gaussian decomposition and the genetic

algorithm to observed aph(l), but improved for modeled Gaussian

peak height using DAISEA2 on anw(l) (Table 3, Figure 7). This was
a surprising finding; however, ultimately, it indicates that total

pigments or the spectral absorption of pigments considered here is

underrepresented, both within the literature considered here

informing the construction of DAISEA and within the model

implementation. If this were not the case, we would expect a bias

in pigment relationships, both within observed and modeled aph(l)
variables and HPLC pigments. The underrepresentation of

phytoplankton pigments and/or spectral features is also supported
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by significantly larger MAPE between HPLC pigments and

Gaussian peak areas used to reconstruct aph(l), indicating an

overallocation of absorption to individual pigment peaks

(Supplementary Figure S7). Ultimately, DAISEA2 introduced 0%–

9% error in pigment relationships when relating pigment

concentration to aph(lr), with reductions in MAPE of up to 2%

also observed (Table 2), and DAISEA2 ultimately reduced error in

the relationship between pigment concentration and Gaussian peak

height by 0%–11% for all pigments except the 676 nm Chl a peak,

where MAPE increased by 1% (Table 3). Overall relationships were

similar when using a hyperbolic model to fit adg(l) (data

not shown).

We also considered the impact of signal uncertainty and

wavelength resolution on the performance of DAISEA2 in

anticipation of application to inversion approaches that would

provide estimates of anw(l) with varying degrees of error. Noise

was randomly introduced at each wavelength in every input

spectrum in increments from ±5% to ±20%. Resultant “noisy”

DAISEA2 aph(l) and adg(l) were evaluated relative to results with

original input data and evaluated against observed aph(l) and adg(l)
(Figures 8 and 9). Small errors added to input anw(l) resulted in

increasing percent error for both aph(l) and adg(l) when the

contribution of aph(440) was < 10% (Figure 8A). This was

expected, as the magnitude of absorption for these spectra was

generally quite large, so small percent errors propagated into

significant variability in input magnitude and hindered the ability

of DAISEA2 to deconstruct the signal into component IOPs. For

increasing error in groups where aph(440) represented a larger

contribution, error was spectrally variable (Figures 8B–H).

Consistent with a bias in underestimating aph(l) at UV

wavelengths, estimation of aph(l) improved with the addition of

random error at UV wavelengths (Figure 8). Random error is

generally not spectrally smooth and resulted in the allocation of

anw(l) signal to aph(l) instead of adg(l). At visible wavelengths,

absolute error tended to increase with increasing noise; however,

ultimately random noise was better fit by Gaussian components

than an exponential signal, resulting in an overall increase in

estimated aph(l) and Gaussian components. For adg(l), noise
tended to result in increasing error at wavelengths below ~500–

550 nm and decreasing error at wavelengths above 550 nm,

consistent with the mechanisms driving aph(l) trends described

previously (Figure 9). For most spectra, moving from a spectral

resolution of 5 nm to 1 nm was most important at UV wavelengths

when estimating aph(l), with most metrics supporting the need for

greater spectral resolution in adg(l)-dominated waters regardless of

model used to represent adg(l) (Supplementary Figures S8, S9).

Retrieval of adg(l) did not show significant variability or spectral

dependencies on wavelength resolution, outside of a similar pattern

of degraded performance in estimating adg(l) in waters dominated

by CDOM and NAP absorption, where increased spectral

resolution was important. Overall, DAISEA2 performance was

relatively consistent when varying wavelength resolution from 1

nm to 5 nm, indicating that application to PACE OCI data at a

resolution of 5 nm would not be expected to significantly

change performance.
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4 Discussion

DAISEA2 is intended as a global algorithm, and the assessment

of performance here indicates that DAISEA2 should perform well

across a variety of optical water types and associated

biogeochemical diversity. The algorithm is designed to fit adg(l)
and aph(l) free of explicit assumptions, relying on initial empirical

estimation of adg(440) and aph(440) to initialize subsequent spectral

fitting and derivative analysis to identify spectral features.

Algorithm performance was largely improved relative to the initial

algorithm in Grunert et al. (2019), with these improvements

predominantly tied to the use of a genetic algorithm to increase the

operational search space for ideal model fits. Genetic algorithms

enable more successful fitting by allowing “mutants” to supersede

initial model parameterizations if the alternative fit provided by the

“mutant” is more representative of the underlying spectral features

and improves overall model fit and spectral residuals (Houck et al.,

1998). Genetic algorithms provide a means for fitting alternative

models while still operating within reasonable bounds and,

depending on the availability of computational capacity, can operate

over reduced or expansive parameter search spaces (Houck et al.,

1998; Zhan et al., 2003; Kostadinov et al., 2007). The genetic algorithm

is also the best means within DAISEA2 to regionalize the algorithm for

more optimal performance, if this is desired, as the parameter space

for “mutants” can be restricted to that associated with regional IOPs

(e.g., Joshi and D’Sa, 2018; Lewis and Arrigo, 2020). Genetic

algorithms are also well suited for hyperspectral approaches that use

the observed signal to fit component spectra or features, rather than

assuming specific spectral components, as initial estimates are used to

populate the search space but, ultimately, alternative fits are offered
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(see Section 2.2). Ultimately, the distribution in these retrieved

components is used to assess uncertainty in retrievals and the extent

to which the model converges on similar spectral features as the

optimal solution.

Algorithms have historically fallen into two broad classes, top-

down and bottom-up approaches, as discussed in the introduction

(Mouw et al., 2015). Across these categories, truly hyperspectral

algorithms are still limited. The hyperspectral algorithms that do

exist often still rely on multispectral techniques, including

assumptions about which spectral features are present (Chase

et al., 2017; Wang et al., 2016), the use of predefined spectral

libraries (Stramski et al., 2019) or inequality constraints (Grunert

et al., 2019; Stramski et al., 2019). Alternatively, approaches rely on

statistical fitting of a signal, minimizing a physical basis for fitting

components and limiting the number of components that can be

retrieved, even from hyperspectral sensors (Cael et al., 2023).

Producing algorithms that are capable of fitting physical

components (e.g., pigments) is often limited by the ability to

constrain the signal and still provide a generous search space,

producing a global algorithm that can function across systems

that display unique IOPs and often generate bias for a given

approach. Here, we offer DAISEA2 as a global algorithm that we

expect to perform well across a variety of optical gradients and

unique biogeochemical conditions, provided effective inversion

techniques to provide anw(l) are available (e.g., Loisel et al., 2018;
Bi et al., 2023). Our approach in developing DAISEA was to focus

on leveraging models that spectrally fit IOPs and informing these

models based on pigment locations and reasonable spectral bounds,

without providing spectral features for fitting (see Discussion in

Grunert et al., 2019). Ultimately, the approach still relies on an
FIGURE 5

Spectral slope from 350 nm to 700 nm (S350:700) retrieved from measured adg(l) versus modeled adg(l) with DAISEA2 using an exponential
relationship. Across the entire dataset, 71% of modeled S350:700 fall within ±0.001 of S350:700 retrieved directly from measured data. Slopes retrieved
using a hyperbolic model can be found in Supplementary Figure S4.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1549312
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Grunert et al. 10.3389/fmars.2025.1549312
initial band ratio to initialize fitting and broad inequality constraints

(Equations 4, 5, 10). The empirical relationship still allows strong

performance due to this step offering a reasonable, unbiased first

guess and the ability for subsequent steps to deviate from this first

guess (Supplementary Figure S2). The inequality constraints do

support bias in estimates of aph(l), as they limit fitness for fitting of

UV pigment features; however, as discussed below, improved

guidance is needed to identify spectra with higher magnitudes of

aph(l) at UV wavelengths and component features, including

absorption due to MAAs. Our inequality constraints are

structured on the premise that adg(l) will be responsible for the

majority of absorption at UV wavelengths, largely due to a lack of

mechanistic understanding of when phytoplankton pigments may

contribute to a significant fraction or even the majority of UV

absorption, limiting the ability to apply rules to allocate UV

absorption to aph(l). We expect that more information on the

relationship between visible and UV pigments would help in

constraining the magnitude of UV pigments to avoid adg(l)
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undercutting UV features in aph(l) and typical underestimates of

aph(l) by DAISEA2.

We expect that improved knowledge on IOPs, such as through

provision of priors within a Bayesian framework, could improve

performance as observed with other IOP-based algorithms (e.g.,

Erickson et al., 2023). This is particularly true in more optically

challenging conditions and at UV wavelengths where DAISEA2

remains challenged by singular inequality constraints that do not

adequately represent the presence of pigments and elevated aph(l)
(Piiparinen et al., 2015); it should be noted that MAA absorption is

also present within adg(l), due to the water-soluble nature of these

pigments (Pavlov et al., 2014). This further emphasizes the need to

expand observations and understanding of aquatic IOPs at UV

wavelengths. As with all approaches, it is expected that continued

expansion of data collection will improve performance, particularly

in undersampled regions and environments that continue to evolve

due to anthropogenic, climate, and extreme weather pressures.

Efforts, including the current data collection efforts of the PACE
TABLE 2 Parameters (slope and intercept) along with fit metrics for a Type II linear fit of pigments vs. aph(l) performed on log-transformed data.
Results are shown for Gaussian decomposition of both measured (D) and modeled (M) aph(l).

Pigment Wavelength D/M Slope Intercept R2 BF10 MAPE

Chl a 382 nm
D 0.791 ± 0.032 −1.590 ± 0.015 0.81 > 100 7%

M 0.976 ± 0.092 −2.022 ± 0.041 0.25 > 100 16%

Chl a&c 409 nm
D 0.796 ± 0.030 −1.560 ± 0.013 0.85 > 100 7%

M 0.704 ± 0.048 −1.661 ± 0.021 0.53 > 100 10%

Chl a 436 nm
D 0.781 ± 0.030 −1.438 ± 0.013 0.84 > 100 7%

M 0.601 ± 0.035 −1.498 ± 0.057 0.66 > 100 8%

Chl b&c 457 nm
D 0.689 ± 0.035 −1.066 ± 0.033 0.72 > 100 9%

M 0.464 ± 0.034 −1.254 ± 0.033 0.47 > 100 8%

Chl b 468 nm
D 0.702 ± 0.047 −0.784 ± 0.062 0.56 > 100 12%

M 0.456 ± 0.041 −1.076 ± 0.041 0.28 > 100 10%

PPC 491 nm
D 1.106 ± 0.078 −0.526 ± 0.093 0.51 > 100 10%

M 0.740 ± 0.062 −0.863 ± 0.074 0.35 > 100 8%

PSC 525 nm
D 0.730 ± 0.032 −1.526 ± 0.030 0.79 > 100 7%

M 0.493 ± 0.038 −1.451 ± 0.036 0.85 > 100 8%

Chl c 585 nm
D 0.787 ± 0.036 −1.628 ± 0.042 0.78 > 100 6%

M 0.433 ± 0.040 −1.509 ± 0.047 0.27 > 100 8%

Chl a 620 nm
D 0.998 ± 0.034 −2.260 ± 0.015 0.87 > 100 4%

M 0.577 ± 0.049 −1.824 ± 0.022 0.34 > 100 8%

Chl c 639 nm
D 0.810 ± 0.037 −1.460 ± 0.044 0.78 > 100 6%

M 0.424 ± 0.031 −1.441 ± 0.037 0.49 > 100 6%

Chl b 658 nm
D 0.842 ± 0.057 −1.153 ± 0.075 0.55 > 100 11%

M 0.488 ± 0.044 −1.267 ± 0.060 0.27 > 100 9%

Chl a 676 nm
D 0.885 ± 0.025 −1.758 ± 0.011 0.91 > 100 5%

M 0.575 ± 0.023 −1.629 ± 0.011 0.81 > 100 5%
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Validation Science Team, are expected to improve data availability

due to a focus on high coincidence across datasets; while relevant

datasets are increasingly available, many of these data were included

in development here (e.g., the GLORIA dataset, Lehmann et al.,

2023), indicating how data availability and diversity still remain a

challenge for effective algorithm development.

Ultimately, DAISEA2 is enabled by the high information content of

spectra offered by imaging spectroscopy and hyperspectral spaceborne

sensors such as NASA’s PACE OCI or in-situ hyperspectral absorption

sensors. Our ability to retrieve component IOPs and relate these features

to biogeochemically relevant parameters such as pigment

concentrations is dependent on this spectral density and the visibility

of individual spectral features (Giese and French, 1955). Here, we

employ derivative spectroscopy and Gaussian decomposition to

identify spectral wavelengths within anw(l) that are minimally

influenced by phytoplankton pigments and to identify pigment

locations, consistent with past approaches (Chase et al., 2013; Wang

et al., 2016; Chase et al., 2017). We also utilize spectral features within

the second derivative to initialize Gaussian decomposition of aph(l),
avoiding the need to assume the existence of pigments in contrast to

previous approaches, and in line with pigment identification methods
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(e.g., Bidigare et al., 1989); we do fit ubiquitous pigments when they are

not found, but these can still be removed (see Section 2.2). All other

algorithms that fit aph(l) using Gaussian components and/or retrieve

phytoplankton pigment concentrations from aph(l) rely on predefined

pigment characteristics or statistical relationships (Chase et al., 2013,

2017; Liu et al., 2019; Zhang et al., 2021; Teng et al., 2022). Our approach

is guided by known pigment locations for classification purposes but

ultimately defines a pigment peak based on where the peak is observed

within an absorption spectrum using the second derivative, resulting in

retrieval of “unclassified” pigment features (Supplementary Figures S6A,

B). Three primary principles guided our approach: (1) the presence or

absence of pigments is ideally unassumed for a global approach where

secondary pigments may not be present, (2) extracted pigments used to

characterize individual pigment absorption spectra exhibit shifts in

spectral feature location relative to when these pigments are within

the cellular matrix (Aguirre-Gomez et al., 2001; Evangelista et al., 2006),

and (3) we expect variability in observed peak behavior can be attributed

to changes in phytoplankton physiology, community composition, or

trait-based approaches to classifying phytoplankton communities

(Stuart et al., 1998; Lohrenz et al., 2003; Klais et al., 2017; Weithoff

and Beisner, 2019). Here, DAISEA2 actively addresses points 1 and 2
FIGURE 6

HPLC pigment concentrations vs. aph(l) at associated wavelengths for (a) Chl a, (b) Chl a&c, (c) Chl a, (d) Chl b&c, (e) Chl b, (f) photoprotective
carotenoids (PPC), (g) photosynthetic carotenoids (PSC), (h) Chl c, (i) Chl a, (j) Chl c, (k) Chl b, and (l) Chl a, for either measured (circles) or modeled
(diamonds) data presented. For measured data, Steps 6 and 7 of DAISEA2 were performed on aph(l) to retrieve initial Gaussian peaks. These were
then further refined by a genetic algorithm for Gaussian peaks only. For modeled data, Gaussian peaks were retrieved during decomposition of anw
(l) using an exponential relationship for adg(l) with the full DAISEA2 model. For both measured (black) and modeled (blue) analysis, Gaussian peaks
within ±10 nm were considered matched to pigment locations. Orange symbols indicate samples where Gaussian decomposition did not retrieve an
associated peak. Black (measured) and blue (modeled) lines are a Type II regression of pigment concentration vs. retrieved aph(l) with mean absolute
percent error indicated in the subplot text.
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above, while we expect future efforts that begin attributing variability in

Gaussian peak locations and features to phytoplankton characteristics,

including pigment concentrations and phytoplankton imaging, may be

able to leverage this additional information provided by DAISEA2

(Kramer et al., 2024).

DAISEA2 remains challenged in resolving aph(l) at UV

wavelengths, with a consistent bias toward underestimating aph(l)
at these wavelengths for all spectra regardless of relative contribution

of aph(440) when using an exponential model to fit adg(l) (Figure 4).
Using a hyperbolic model for adg(l) resulted in a positive bias and

overestimation of aph(l) at UV wavelengths (Supplementary Figure

S8). Across in-situ datasets, our knowledge of UV absorption and

phytoplankton pigments is still quite limited. Due to the spectral range

of legacy multispectral sensors, many datasets available on NASA’s

SeaBASS data archive only collect observations to 400 nm (Werdell

and Bailey, 2005). Even when data is collected at wavelengths ≤ 300

nm, methodological errors tend to increase at UV wavelengths,

including a lack of guidance on what is considered a “bleached” or
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depigmented particulate absorption spectra at these wavelengths.

Current quality controls are limited to visible wavelengths (e.g.,

removal of Chl a absorption peaks at blue and red wavelengths;

IOCCG Protocol Series, 2018). Many aph(l) data from optically

complex inland and coastal waters display increasing absorption at

UV wavelengths, providing difficulty in offering rules (e.g., inequality

constraints) to separate aph(l) from adg(l) (Figure 10C;

Supplementary Figure S10c). Additionally, published Gaussian

decomposition approaches do not fit UV pigments outside of Chl a

at 382 nm, and spectral absorption is generally limited to either spectra

for uncharacterized, community-level features or limited to a single

maximum wavelength for specific markers (e.g., Sinha et al., 2007;

Chase et al., 2013; Piiparinen et al., 2015; Vale, 2015). Our community

ultimately needs to give deeper consideration to UV absorption and

pigment features, particularly with the availability of UV wavelengths

from remote sensing platforms such as PACE OCI. The information

collected by our community, both from spectra as well as data

collecting more detailed information on phytoplankton community
TABLE 3 Parameters (slope and intercept) along with fit metrics for a Type II linear fit of pigments vs Gaussian peak height performed on log-
transformed data. Results are shown for the Gaussian decomposition of both measured (D) and modeled (M) aph(l).

Pigment Wavelength D/M Slope Intercept R2 BF10 MAPE

Chl a 382 nm
D 1.018 ± 0.128 −2.044 ± 0.058 0.11 11.4 20%

M 0.901 ± 0.050 −1.685 ± 0.024 0.74 > 100 9%

Chl a&c 409 nm
D 0.900 ± 0.069 −1.801 ± 0.030 0.47 > 100 12%

M 0.985 ± 0.065 −1.918 ± 0.029 0.63 > 100 11%

Chl a 436 nm
D 0.849 ± 0.072 −1.772 ± 0.032 0.36 > 100 12%

M 0.876 ± 0.048 −1.872 ± 0.022 0.68 > 100 9%

Chl b&c 457 nm
D 0.517 ± 0.051 −1.529 ± 0.049 0.39 > 100 9%

M 0.794 ± 0.059 −1.309 ± 0.053 0.64 > 100 9%

Chl b 468 nm
D 0.679 ± 0.078 −1.196 ± 0.103 0.12 > 100 14%

M 0.751 ± 0.061 −1.087 ± 0.079 0.45 > 100 11%

PPC 491 nm
D 1.203 ± 0.146 −0.588 ± 0.169 0.12 23.49 14%

M 1.955 ± 0.020 −0.040 ± 0.224 0.43 > 100 14%

PSC 525 nm
D 0.722 ± 0.108 −1.562 ± 0.114 0.11 3.20 17%

M 0.924 ± 0.086 −1.650 ± 0.065 0.86 > 100 6%

Chl c 585 nm
D 0.743 ± 0.103 −1.632 ± 0.123 0.01 0.14 16%

M 0.912 ± 0.070 −1.772 ± 0.074 0.56 > 100 7%

Chl a 620 nm
D 0.793 ± 0.096 −2.077 ± 0.043 0.03 0.48 15%

M 0.917 ± 0.040 −2.605 ± 0.018 0.81 > 100 5%

Chl c 639 nm
D 0.561 ± 0.059 −1.653 ± 0.074 0.26 > 100 10%

M 0.892 ± 0.076 −1.847 ± 0.078 0.51 > 100 7%

Chl b 658 nm
D 0.540 ± 0.070 −1.462 ± 0.098 0.20 > 100 10%

M 0.912 ± 0.060 −1.398 ± 0.081 0.62 > 100 9%

Chl a 676 nm
D 0.615 ± 0.025 −1.709 ± 0.011 0.82 > 100 5%

M 0.942 ± 0.042 −1.879 ± 0.019 0.81 > 100 6%
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structure such as Imaging FlowCytobots and other phytoplankton

imaging technology, continues to increase our ability to observe

unique facets of ecosystem structure and link this to critical global

biogeochemical processes from ecosystem productivity to carbon

export (Agarwal et al., 2024; Sonnet et al., 2024). With these

datasets, the scientific community must continue to expand

knowledge on distinct spectral features across UV, visible, and near-

infrared wavelengths to maximize the utility of datasets offered by

PACE OCI and similar sensors.

DAISEA2 ultimately offers improved estimates of pigment

concentrations when adg(l) was included in spectral

decomposition (Table 2; Figure 7); this was a surprising finding.

However, ultimately it indicates that total pigments or the spectral

absorption of pigments considered here is underrepresented, both

within the literature used to inform the construction of DAISEA

(Hoepffner and Sathyendranath, 1993; Chase et al., 2013) and

within model implementation. If this were not the case, we would

expect a bias in pigment relationships, both within observed and

modeled aph(l) variables and HPLC pigments. This further suggests

that continued collection of HPLC pigments, improvement on

methods for isolating aph(l) in samples from a variety of aquatic

systems, and understanding of relationships between pigments and
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phytoplankton community structure and physiology need to

continue to expand to maximize relevance of hyperspectral

datasets for evaluating ecosystem functioning and biogeochemical

cycles, including providing spectral priors for more explicit fitting of

MAAs and other UV-absorbing phytoplankton pigments.

To date, inversion approaches have focused on the delineation

of total backscattering [bb(l)] and absorption [a(l)] from Rrs(l),
with subsequent delineation to particulate backscattering [bbp(l)]
and anw(l) after the removal of backscattering and absorption due

to pure water, a known quantity (Pope and Fry, 1997; Zhang et al.,

2009; Lee et al., 2002; Werdell et al., 2013). This approach is

foundational to IOP retrievals in the community, in part due to

less uncertain assumptions tied to the spectral retrieval of bbp(l). By
nature, these approaches either (1) iteratively separate primary

spectral components [bb(l) and a(l)], with adg(l) separated last

due to the weakest constraints and highest uncertainty in separating

this term into its component absorbing features, ag(l) and ad(l)
(Dong et al., 2013; Stramski et al., 2019) or (2) simultaneously solve

for all components by restricting initial starting points and bounds

based on previously observed conditions (e.g., Maritorena et al.,

2002; Chase et al., 2017). These approaches vary in the degree to

which they allow IOP spectra to vary, often requiring spectral priors
FIGURE 7

HPLC pigment concentrations vs. modeled Gaussian peak height at associated wavelengths for (a) Chl a, (b) Chl a&c, (c) Chl a, (d) Chl b&c, (e) Chl b,
(f) photoprotective carotenoids (PPC), (g) photosynthetic carotenoids (PSC), (h) Chl c, (i) Chl a, (j) Chl c, (k) Chl b, and (l) Chl a, for either measured
(black circles) or modeled (blue diamonds) data. For measured data, Steps 6 and 7 of DAISEA2 were performed on aph(l) to retrieve initial Gaussian
peaks. These were then further refined by a genetic algorithm for Gaussian peaks only. For modeled data, Gaussian peaks were retrieved during
decomposition of anw(l) using an exponential relationship for adg(l) with the full DAISEA2 model. For both measured and modeled analysis, Gaussian
peaks within ±10 nm were considered matched to pigment locations. Black (measured) and blue (modeled) lines are a Type II regression of pigment
concentration vs. peak height with mean absolute percent error for log transformed data indicated in the subplot text.
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such as a fixed Sdg (e.g., GIOP; Werdell et al., 2013), spectral

libraries or fixed, additive spectral shapes (e.g., Bi et al., 2023), or

requiring derived products (e.g., light attenuation coefficient, Loisel

et al., 2018). Inversion of Rrs(l) to anw(l) is expected to spectrally

limit derived anw(l) through these assumptions as well as

incomplete atmospheric or surface (glint) correction, offering

inaccurate starting spectra that will bias retrieved IOPs and

corresponding biogeochemical concentrations. We do not expect

DAISEA2 to perform well on anw(l) retrieved with fixed spectral

shapes or overly rigid spectral priors, but do anticipate that

approaches that incorporate a suite of spectra, such as several aph
(l) spectra representative of distinct phytoplankton groups, could

perform well (e.g., König et al., 2024; Bi et al., 2023). While these

approaches still offer a fixed spectra for fitting, the mixing of spectra

can enable close approximations of actual underlying aph(l) that
offer relatively accurate starting anw(l) for the derivation of

component parts using DAISEA2.

To consider the performance of DAISEA2 on inverted anw(l), we
used a publicly available dataset collected in the Laurentian Great Lakes
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in 2024 (https://seabass.gsfc.nasa.gov/experiment/PVST_PRINGLS)

and effectively regionalized a publicly available bio-optical

package that provides a means of deriving anw(l) from Rrs(l),
with the specifics of data used and inversion parameterization

outlined in the Supplementary Material (König et al., 2024;

Hondula et al., 2024). In addition to assessing the performance of

DAISEA2 on inverted anw(l), this dataset also offered a means of

explicitly assessing DAISEA2 performance in optically complex

waters. As expected, DAISEA2 performance on inverted anw(l) was
primarily controlled by inversion performance (Figure 10;

Supplementary Figure S10). The mean residuals for aph(l) and

adg(l) were relatively consistent when considering DAISEA2

performance on measured and inverted anw(l); however, when
considering performance statistics mirroring those presented in

Figure 4 and Supplementary Figure S3, DAISEA2 displayed similar

performance on the optically complex dataset from the Laurentian

Great Lakes using measured anw(l), but the performance was

poorer on inverted anw(l) for most performance metrics

(Supplementary Figures S11, S12). One large issue in the
FIGURE 8

Median percent error vs. wavelength for retrieved aph(l) with DAISEA2 using an exponential relationship for adg(l). Prior to analysis, random noise
was added to measured anw(l) in increasing increments of 5%. Data are grouped by % contribution of aph(440), with (a) <10%, (b) 10-20%, (c) 20-
30%, (d) 30-40%, (e) 40-50%, (f) 50-60%, (g) 60-70%, and (h) >70%.
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inversion is that spectral features in bbp(l), consistent with highly

absorbing particles, often lead to poor fitting or significant

reductions in the magnitude of aph(l). This challenge is evident

in aph(l) MAD for inverted anw(l) (Supplementary Figures S11f,

S12f) and aph(l) residuals (Figure 10a; Supplementary Figure S10a),

which appear as aph(l) spectra. While this early exercise indicates

promise for applying DAISEA2 to inverted anw(l), much more

work is needed to consider the best approaches for adequately

constraining inversion of Rrs(l), particularly in optically complex

waters where bbp(l) does not always follow a power law model. In

particular, the performance of DAISEA2 against other state-of-the-

art hyperspectral inversion approaches is needed to more fully

assess the strengths and weaknesses of DAISEA2 relative to other

approaches and the potential performance of DAISEA2 with PACE

data. This will be particularly informative in understanding how

various assumptions used across inversion approaches influence

resulting retrieved spectra and should be the focus of future work. It

is also important to note that our consideration of DAISEA2
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performance on inverted anw(l), as well as our analysis of

DAISEA2 performance on artificially noisy spectra, does not

account for spectral artifacts or wavelength-dependent bias

associated with atmospheric correction of satellite data. These

impacts are likely to be significant, particularly at UV wavelengths

where DAISEA2 is already challenged and require future investigation

to fully assess the ability of DAISEA2 to accurately and reliably retrieve

IOPs from satellite datasets such as those offered by PACE.

Finally, separating adg(l) into ag(l) and ad(l) was a stated goal of

future developments of DAISEA (Grunert et al., 2019). However, our

view is that future modifications to DAISEA to delineate ag(l) and ad
(l) will require additional inputs of independent information that

specifically acknowledge relative contributions of each to offer a

physical basis for separation with limited empiricism (e.g., Bisson

et al., 2023). Within the current framework of the algorithm,

separation of these two terms will increase uncertainty across all

parameters, limiting our ability to estimate aph(l) and corresponding

pigments. We view lidar, and potentially polarimetry, as two data
FIGURE 9

Median percent error vs. wavelength for retrieved adg(l) with DAISEA2 using an exponential relationship for adg(l). Prior to analysis, random noise
was added to measured anw(l) in increasing increments of 5%. Data are grouped by % contribution of aph(440), with (a) <10%, (b) 10-20%, (c) 20-
30%, (d) 30-40%, (e) 40-50%, (f) 50-60%, (g) 60-70%, and (h) >70%.
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sources that could provide potential avenues for informed separation

(Jamet et al., 2019; Dionisi et al., 2024).
5 Conclusion

The primary goal of DAISEA2 was to decompose hyperspectral

anw(l) into adg(l) and aph(l) free of explicit assumptions, while

integrating a framework that provides uncertainty estimates for all

retrieved parameters, including future efforts focused on estimating

phytoplankton pigment concentrations from retrieved Gaussian

components. DAISEA2 shows strong capability to accurately retrieve

adg(l) and aph(l) across a variety of water types, indicating global

applicability within aquatic systems represented by the diversity of

conditions considered here. This performance was reinforced on an

independent dataset collected in the optically complex Laurentian

Great Lakes. Based on the flexibility of the algorithm and its ability

to actively retrieve and parameterize spectral features, along with the

ability to expand the search space from initial parameterizations

through a genetic algorithm, we expect the algorithm to perform

well even in systems that differ optically from the datasets used to

develop the algorithm here. This was supported by consistent

performance between the development and validation datasets used
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in Grunert et al. (2019) and similar performance on an independent

dataset from the optically complex waters of the Laurentian Great

Lakes. DAISEA2 exhibits a negative bias in retrieval of aph(l) at UV
wavelengths, in part because the algorithm is biased toward assuming

that UV absorption is due to adg(l), as we lack spectral indicators to

attribute UV absorption to aph(l). When paired with known issues

with atmospheric correction of PACE data at UV wavelengths, these

challenges are likely to increase with inverted anw(l) from satellite

sensors. These weaknesses highlight a need for future work to improve

constraints and accurate pigment retrievals at UV wavelengths and

evaluate the performance of DAISEA2 on satellite datasets.

Additionally, our community should continue to expand

understanding of spectral features at UV wavelengths and provide

pathways for partitioning absorption to component IOPs, including

offering spectral priors for MAAs and other UV-absorbing pigments in

hyperspectral algorithms.

The modest to strong relationships between DAISEA2-retrieved

Gaussian parameters and HPLC-measured phytoplankton pigment

concentrations indicate that DAISEA2 will provide estimates of

phytoplankton pigment concentration with reasonable accuracy and

uncertainty, outside of demonstrated bias at UV wavelengths.

Algorithm performance is relatively robust to spectral resolution and

simulated random noise, and DAISEA2 performed well on inverted
FIGURE 10

Performance of DAISEA2 retrievals of aph(l) and adg(l) (exponential model) on inversion-retrieved anw(l). DAISEA2’s ability to retrieve accurate aph(l)
and adg(l) was dependent on the initial accuracy of inversion-retrieved anw(l) as can be seen in residual spectra (A, B) shaded by residual anw(l) at
350 nm. Examples from two sites (C, D) demonstrate cases where aph(l) can be accurately retrieved despite errors in inversion-retrieved anw(l) and
corresponding adg(l).
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anw(l) when the inversion itself was accurate. However, performance

significantly deteriorated with decreasing inversion success, a limitation

that is likely to be exacerbated when applied to satellite datasets with

spectral biases introduced from atmospheric correction. Future work to

continue improving inversion approaches that maximize spectral

variability while still adequately constraining the inversion process is

needed, as has been acknowledged in the literature and through

ongoing activities across the ocean color community. Additionally,

future work should assess how atmospheric correction and introduced

spectral artifacts impact DAISEA2 performance on inverted anw(l)
from satellite datasets. Key to any improvements for DAISEA2 and

other hyperspectral algorithms is the continuing collection of fully

coincident, hyperspectral datasets by the community to further

evaluate and improve algorithm performance. Finally, DAISEA2 is

still dependent on some tools designed for spectrally limited datasets,

such as band ratios and inequality constraints. We view these steps as

limiting to overall performance, which highlights the need for the

community to continue focusing on the development of unique tools

that leverage the spectral density of information offered by sensors such

as PACE OCI.
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