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Rip currents present a significant safety risk to beach tourists and coastal

communities, resulting in hundreds of annual drownings all over the world. A

key contributing factor to this danger is the lack of awareness among beachgoers

about recognizing and avoiding these rip currents. In response to this issue, we

introduce RipFinder, a mobile app equipped with machine learning (ML) models

trained to detect two types of rip currents. Users can leverage the app’s

computer vision capabilities to use their phone’s camera to identify these

hazardous rip currents in real time. The amorphous and ephemeral nature of

rip currents makes it challenging to detect them with high accuracy using object

detection models. To address this, we propose a client-server ML model-based

computer vision system designed specifically to improve rip current detection

accuracy. This novel approach enables the app to function with or without

internet connectivity, proving particularly beneficial in regions without lifeguards

or internet access. Additionally, the app serves as an educational resource,

offering in-app information about rip currents. It also promotes citizen science

involvement by encouraging users to contribute valuable information on

detected rip currents. This paper presents the app’s overall design and

discusses the challenges inherent to the rip current detection system.
KEYWORDS

rip current detection, data collection, citizen science, coastal observation, computer
vision, deep learning, mobile application
1 Introduction

Rip currents are dangerous, strong, fast-moving currents that pull swimmers away from

the shore, often leading to drownings and fatalities. They pose a significant hazard to

beachgoers and can easily overpower even strong, experienced swimmers. Rip currents are

a global issue, affecting coastlines around the world (Zhang et al., 2021; Retnowati et al.,

2012; Mucerino et al., 2021). In the United States alone, they account for an estimated 100

drownings a year (Gensini and Ashley, 2010). Rip currents can form suddenly and without

obvious signs, which can catch swimmers off guard. While there are general conditions that
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can lead to their formation, predicting exactly when and where they

will appear is challenging. Furthermore, rip currents are created

through various mechanisms and, as a result, exhibit different visual

characteristics. This complexity of occurrence and variability in

appearance makes them difficult to identify (Castelle et al., 2016).

Consequently, many beachgoers lack the essential knowledge and

awareness needed to recognize and avoid these perilous currents.

Rip current detection techniques are significantly important

because of their potential to save lives. As a public safety issue, the

implications extend beyond swimmers. Lifeguards, rescue teams,

and even bystanders who try to help can also be put in danger. If rip

currents could be detected reliably, then beachgoers and lifeguards

could be alerted to the dangers in real-time. This would likely result

in a significant decrease in the number of rip current-related

incidents and fatalities. By providing more accurate information

about rip currents, the general public could make more informed

decisions about when it is safe to enter the water, thereby enhancing

overall public safety. The development and deployment of tools,

such as rip current prediction models (Dusek and Seim, 2013) or

mobile apps that can detect and provide real-time alerts and tips

about rip currents could be instrumental in these efforts.

While rip currents can often be visually identified by

experienced swimmers, surfers, lifeguards, and coastal scientists,

traditional detection and data collection methods typically involve

in-situ instrumentation, such as GPS-equipped drifters and current

meters (Leatherman, 2017; MacMahan et al., 2011). However,

recent studies have demonstrated that images and video can also

be used to detect rip currents. These approaches leverage computer

vision and machine learning (ML) models for object detection to

spot and identify these potentially dangerous phenomena (de Silva

et al., 2021; Silva et al., 2023; Dumitriu et al., 2023; Maryan et al.,

2019; Mori et al., 2022; Philip and Pang, 2016; Rampal et al., 2022;

Rashid et al., 2021). However, detecting and segmenting rip

currents with high accuracy using ML methods presents unique

challenges due to their amorphous and ephemeral nature. Given the

potentially fatal nature of dangerous rip currents, their detection is a

matter of life and death. Thus, high accuracy and reliability are

crucial for any rip current detection tool to issue warnings and take

preventive actions to decrease the number of rip current-related

incidents. Providing such capability for real-world use, i.e., on

mobile platforms, adds another layer of technical challenge.

Many object detection ML models can detect rip currents, but

the challenge lies in deploying these models in real-time on mobile

devices with limited power and computational resources. More

accurate yet computationally resource-intensive, ML models cannot

run directly on mobile devices. By sending the visual input for

object detection to a remote server, it can be achieved on mobile

devices. However, this approach is not always feasible, especially in

beach locations where server connectivity is unavailable.

Alternatively, mobile-optimized ML models can feasibly run

using the limited computational resources of portable devices

without server connectivity but at the cost of sacrificing accuracy.

To address these challenges, we introduce a mobile application,

or app, designed to detect rip currents using ML models for

computer vision. Users can identify potential rip currents in real-
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time by simply aiming their phone’s camera toward the ocean. We

propose a client-server system of object detection models to balance

the trade-off between computational speed and accuracy.

Depending on the mobile device’s available computational

resources and internet connectivity, this app employs one or

more ML models to identify rip currents. If the device is

relatively new and has adequate computational resources, our app

runs two different types of mobile-optimized MLmodels to enhance

the reliability of rip current detection. For older, resource-

constrained devices, only one ML model is used. Moreover, when

internet connectivity is available, part of the visual data is

transmitted to a server for further verification of the detection

using a more accurate large model. Our system combines client-

server architecture with multiple ML model-based computer vision

to enhance the accuracy and reliability of rip current detection. The

novelty of our solution lies in its implementation of this combined

system, allowing the app to function both with and without internet

connectivity. Our app’s versatility is especially invaluable in areas

where lifeguards are absent or internet access is limited, establishing

it as a crucial tool for public safety.

In addition to rip current detection, our app places a strong

emphasis on educating users about the dangers of rip currents

through informative in-app content and links to additional

resources. Our aim is to empower beach enthusiasts with the

knowledge necessary to make informed decisions, protecting

themselves and others from these hazardous rip currents.

Moreover, our app includes a citizen science feature, enabling

users to contribute to scientific knowledge. This is done by

encouraging them to record and share data, such as geotagged

images and videos, along with additional information about

detected rip currents. Harnessing the collective power of app

users, we can gather valuable data that improves our

understanding of rip currents and helps verify existing rip current

forecast models. Ultimately, this leads to the development of more

effective safety measures and strategies.

The contributions of this paper are as follows:
• Introduction of RipFinder: a mobile app designed for real-

time, vision-based rip current detection.

• Development of a client-server system tailored for the ML

models utilized in the rip current detection app.

• A comprehensive analysis and comparison of state-of-the-

art ML models for rip detection.
2 Related work

2.1 Real-time object detection

Developing a mobile application for effectively and reliably

identifying rip currents necessitates real-time object detection

capabilities. Deep learning has revolutionized the field of object

detection, as well as other computer vision tasks. Convolutional

neural networks (CNNs) have become the standard method for
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these applications. Numerous large and intricate models, such as

Faster R-CNN—a two-stage regionbased detector (Ren et al., 2015)—

and DETR (Detection Transformers)—an object detector based on

the Transformer architecture (Carion et al., 2020)—offer remarkable

accuracy in object detection tasks. For instance, Faster R-CNN has

been adeptly used for real-time object detection in drones by

connecting to a remote GPU server (Lee et al., 2017). However,

these detectors often bear significant computational complexity,

rendering them difficult to deploy on mobile or embedded

platforms for real-time performance. An earlier server-based

system named Glimpse, offering continuous, real-time object

recognition for mobile devices, was introduced by Chen et al.

(2015). Nonetheless, server-reliant systems prove impractical in

locations devoid of internet connectivity.

Achieving accurate and reliable real-time object detection on

mobile devices without depending on servers presents inherent

challenges. Numerous efforts have been directed toward integrating

deep learning methods on mobile devices by creating compact,

mobile-optimized ML models. Typically, streamlined architectures,

like one-stage CNNs, render the models lightweight, allowing them

to function swiftly on mobile devices—making them an ideal choice

for real-time object detection. The primary compromise for such

efficiency is a minor decrease in accuracy relative to their more

elaborate counterparts (Huang et al., 2017). We scrutinized a range

of mobile-optimized ML models to ascertain the best fit for our

system. SSD-MobileNetV2 (Sandler et al., 2018) stood out as one of

the earliest trustworthy models tailored for mobile platforms.

Among the contemporary one-stage models refined for mobile

devices are variants of RT-DETR (Lv et al., 2023), EfficientDet

(Tan et al., 2020), and YOLO (Jocher et al., 2022). Our investigation

encompassed a comprehensive evaluation of potential ML models

suitable for real-time rip current detection using computer vision

on mobile platforms.
2.2 Rip current detection with ML

Given its impact on public safety, the problem of automated rip

current detection has been approached using various methods,

some of which predate the emergence of deep learning

techniques. For example, Philip and Pang (2016) utilized optical

flow on video sequences to discern the predominant flow towards

the sea, aiding human observers in rip current detection. Maryan

et al. (2019) employed modified Haar cascade methods to detect rip

currents from time-averaged images. The concept of rip current

detection via deep learning-based methods is not entirely new

either. de Silva et al. (2021) were among the early adopters of

deep learning methods for rip current detection, employing Faster

R-CNN, a large model that achieved high accuracy. They

introduced a frame aggregation technique that bolstered detection

accuracy for fixedposition cameras, but this technique was not

suitable for moving cameras. Mori et al. (2022) offered a flow-based

method to accentuate and depict rip currents for human observers.

However, this approach also demands a stationary camera and

serves as a visualization tool rather than an automated detection

system. In recent years, there have been several scholarly works
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about new deep learning model-based rip current detection

techniques. For instance, Rashid et al. (2021) and Zhu et al.

(2022) presented RipDet and YOLO-Rip, respectively. These

lightweight rip current detection models, rooted in Tiny-YOLOv3

and YOLOv5s, belong to the smaller members of the YOLO family

and are adept for environments with limited computational power.

Rampal et al. (2022) showcased that the mobile-optimized, single-

stage model SSD-MobileNetV2 can achieve performance metrics

comparable to Faster R-CNN. Furthermore, Dumitriu et al. (2023)

explored and compared various iterations of YOLOv8 for rip

current segmentation. Silva et al. (2023) unveiled RipViz, an

innovation that examines 2D vector fields and interprets pathline

behaviors to pinpoint rip currents. Like that of Dumitriu et al.

(2023), this method highlights the rip region’s shape but identifies

currents based on water movement rather than water appearance.

Yet, while there is an assortment of effective rip current detection

methods employing ML, a real-world application—such as a mobile

app—primed for public safety and enhancing awareness for tangible

societal impact remains elusive. This work endeavors to fill that void

by devising a deployable mobile device-based real-time system for

rip current detection.
3 System design and methods

3.1 System architecture

Figure 1 presents an overview of the RipFinder system

architecture. Our comprehensive system, designed to effectively

identify and alert users of rip currents, is organized into two

primary components:
1. The client mobile app serves as the primary user interface.

Within this app, we have integrated four ML models, each

tailored specifically for mobile devices. As the device

processes real-time visual input, these models evaluate the

data and issue warnings if rip currents are detected.

Depending on the device’s processing power, the app can

deploy either one or two ML models for detection. More

modern devices with substantial resources can utilize two

types of mobile-optimized ML models simultaneously,

enhancing the reliability of rip current detection. In

contrast, older devices with limited resources might

default to a single model. Nevertheless, the ultimate

decision to use one or two models rests with the user.

When feasible, the app suggests users employ two models

for optimal detection, but they retain the freedom to choose

only one from the available options if preferred.

2. Our system’s server-side employs complex ML models that

demand significant computational resources and GPU

capabilities, ensuring rip currents are detected with high

accuracy. When a user captures an image or video via our

mobile app, this data is sent to the server for in-depth

analysis. After the server-side models process the data, the

detection results are relayed back to the mobile app.
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Additionally, we offer the option to execute multiple models on the

server, depending on its capabilities (number of CPUs and GPUs,

system memory, etc.), enhancing reliability through redundancy.

Our system attempts to improve the reliability of rip current

detection in a two-fold way. The use of two models enhances

detection reliability on the client app, even though it demands

more computational resources. Server-side models, being complex

and larger, boast superior accuracy, thus ensuring that server-aided

rip current detection is more reliable when internet access is

available. The client-side model, meanwhile, operates using the

on-device computational resources without the need for an internet

connection. The results section further elaborates on the

justification behind these two design choices. Thus, our system’s

design allows it to operate both online and offline.

Training datasets are essential for training both client-side and

server-side ML models. We developed our dataset by utilizing the

existing dataset from de Silva et al. (2021) and supplementing it

with a large amount of our own data. Further details on the dataset
Frontiers in Marine Science 04
and the ML model training process are explained in the

implementation section.
3.2 Mobile apps

Figure 2 provides a visual representation of our mobile app’s

user interface, offering an intuitive, user-friendly environment. We

created both Android and iOS versions of the mobile app. The

application’s design caters to a variety of user needs and includes

the following features:
3.2.1 Live camera and visualization tool
The app offers a live camera feature to capture the seashore and

serves as a real-time visualizer, placing bounding boxes around

detected rip currents in the view, thus acting as an immediate

warning system (Figure 2b).
FIGURE 1

The high-level system architecture of RipFinder.
FIGURE 2

GUI of RipFinder App (a) Main menu, (b) Real-time detection from live camera view, (c) Detection from single image, (d) Data uploader for citizen
science contribution.
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3.2.2 ML model selection
From the in-app menu, users can choose the MLmodel for real-

time rip current detection. On devices with higher computational

resources, users have the option to turn on or off the use of two

models in parallel for increased reliability.

3.2.3 Image and video recording
The app enables real-time rip current detection and the recording

of images and videos, letting users document and share potential rip

currents with other beachgoers and rip current researchers.

3.2.4 Rip current detection tool for existing
images

RipFinder app analyzes existing images on the phone to identify

rip currents, offering retrospective insights to users (Figure 2c).

3.2.5 Educational resources
Our app features an educational hub with resources on rip

currents, accessible via a pull-up menu and help menu, ensuring

users always have information at hand (Figure 2b).

3.2.6 Data upload tool
We integrated a data upload tool (Figure 2d) for users to share

geotagged rip current images and observations, fostering

community collaboration and enhancing our dataset for

improved algorithm refinement.
3.3 Client-side ML models

In our application, RipFinder, we integrate several mobile-

optimized ML models, all trained on a rip current dataset for

client-side detection. These models have been tailored to ensure

swift and efficient performance on mobile devices, which facilitates

real-time rip current detection. The current version of RipFinder

incorporates the following models:

3.3.1 YOLOv8n and YOLOv8m
YOLOv8, the latest in the YOLO series known for fast object

detection (Redmon et al., 2016; Jocher et al., 2023), includes variants

like YOLOv8n (nano) and YOLOv8m (medium) optimized for mobile

devices. Its architecture facilitates single-pass detections, making it ideal

for real-time applications such as rip current detection.

3.3.2 EfficientDet D0 and EfficientDet D2
EfficientDet, known for its object detection prowess (Tan et al.,

2020), has a unique scalable architecture that adjusts to

computational resources, making it ideal for mobile use; it offers

eight variants, D0 to D7, based on image size.

Of the four ML models at our disposal, the app selects one or two

mobile-optimized models for rip current detection, contingent upon a

device’s computational prowess and internet connectivity. Modern,

high-end devices employ two models, while the older, resource-

constrained devices resort to just one. YOLOv8n and EfficientDet
Frontiers in Marine Science 05
D0, due to their lesser computational demand, are ideally deployed as

standalone models or in conjunction with dated or less competent

mobile devices. In contrast, YOLOv8m and EfficientDet D2 are better

aligned with newer devices boasting significant computational strength.
3.4 Server-side ML models

Server-side, we engage a collection of high-performance ML

models tailored for more resource-intensive computations. Given

their demanding computational needs, these models are perfectly

positioned for server-side deployment, capitalizing on robust

hardware resources, including GPUs. For the server side, we’ve selected:

3.4.1 YOLOv8l and YOLOv8x
The YOLOv8 ‘l’ (large) and ‘x’ (extra-large) variants (Jocher

et al., 2023) are more complex than their mobile-optimized

versions, offering higher accuracy but requiring greater

computational power, ideal for situations demanding utmost

accuracy with ample resources.

3.4.2 Real-time detection transformer
RT-DETR, a real-time adaptation of the DETR transformer-

based object detection model (Lv et al., 2023; Carion et al., 2020),

maintains DETR’s accuracy while ensuring faster performance. We

trained its large and extra-large versions, RT-DETR-L and RT-

DETR-X, for server-side use.

By leveraging these server-side models that can deliver high

accuracy, we bolster the final verification of detected rip currents,

reinforcing the reliability of our rip current detection tool.
4 Implementation

Various components of our system were implemented using the

latest available technology.
4.1 Dataset

Our training dataset distinguishes between two types of rip currents

based on their visual features. The first, termed bathymetry-controlled rip,

is characterized by areas devoid of breaking waves, presenting as darker

and calmer regions flanked by brighter waves. The second, known as

transient rip, is identified by water discoloration due to sediment plumes

that extend beyond the breaking waves. Though both classes represent

rip currents, their visual features differ significantly. Detecting one type of

rip current with an ML model trained on data from another type is

unfeasible. Treating these two types as a single class compromises the

effectiveness of the trained model. The label correlograms in the Figure 3

illustrate the distinctions between the two classes based on the labeled

regions of images from each class.

For the bathymetry-controlled rip current category, we utilized

a dataset consisting of 1780 images made publicly available by de
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Silva et al. (2021). For the transient rip current category, we curated

a new dataset comprising 7565 labeled images. These were

selectively extracted from videos captured by a drone, which

focused on the visual signature of transient rip currents, and a

Wi-Fi camera set up specifically for monitoring rip currents. We

combined both datasets to train our model in the detection of the

two rip current types. This dataset was then divided into an 80:20

split for training and validation, with 80% allocated for training

purposes and the remaining 20% used for validation. The efficacy of

the trained models was assessed using a series of test videos.

Figure 4 showcases a selection of images from our dataset.

It is important to include imagery from diverse geographic regions

and environmental conditions to enhance model robustness. Our

dataset includes images from publicly available sources, drone

footage, and fixed-location cameras. We incorporated the de Silva

et al. (2021) dataset, which features satellite imagery from diverse

regions. To enhance generalization, we are collaborating with coastal

research partners to expand data collection across varied wave

conditions, lighting, and water characteristics. Additionally, our

citizen science initiative allows users to contribute images, enriching

the dataset. While expanding the dataset and refining models is an

ongoing effort, it remains independent of RipFinder’s core architecture,

as theMLmodels can be continuously updated with improved datasets.
4.2 ML model training and evaluation

We conducted ML model training on an AWS cloud server

equipped with eight vCPUs, 61 GB of memory, and an NVIDIA

Tesla V100 GPU boasting 16 GB of video memory. The EfficientDet
Frontiers in Marine Science 06
models were trained using the TensorFlow library, while the

YOLOv8 and RT-DETR models were trained with the Ultralytics

library, which is based on PyTorch. All model trainings were

initialized with a maximum of 500 epochs. For all versions of

YOLOv8 and RT-DETR, a patience parameter of 50 was set. The

patience parameter defines the number of epochs to wait before

halting training via early stopping if there’s no improvement in

performance on a validation dataset. Since the EfficientDet models

do not allow for the definition of a patience parameter, we

monitored convergence through TensorBoard and manually

terminated the training once convergence was observed. All

models converged within 300 epochs. We trained all models from

scratch, instead of using transfer learning with MS COCO

pretrained models from the ML libraries, to prevent negative

transfer (Wang et al., 2019). This decision was made because our

rip current class data domain is distinct from any of the classes in

the MS COCO2017 dataset (Lin et al., 2014).
4.3 Client apps and server

We developed the iOS version of the app in Swift using Xcode,

and wrote the Android version in Java with Android Studio. To

ensure broad accessibility, we tested the RipFinder app on a wide

range of mobile devices, including both high-end and low-end

models. While Table 1 presents results from the iPhone 12 Pro

(2020) and Google Pixel 6 (2021), which served as our primary

development devices, we also validated the app’s performance on

older and more budget-friendly models such as the Samsung A50

(2019), Samsung S23 (2023), LG G3 (2014), LG G5 (2016), and
FIGURE 3

The label correlograms for (a) bathymetry controller rips and (b) transient rips, depicted in the figure, illustrate the distinctions between the two
classes based on the labeled regions of images from each class.
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Xiaomi Redmi 10A (2022), and older iPhones such as the iPhone

XR (2018). This extensive testing confirms that the app performs

efficiently across a diverse spectrum of hardware, greatly enhancing

its real-world applicability.

The server-side components were programmed in Python. We

evaluated the server-side ML models on a desktop server equipped

with a 16-core Intel Core i9 3.2 GHz CPU, 30 GB of memory, and

an NVIDIA RTX3080 GPU with 10 GB of video memory.
4.4 Data privacy and security measures

Ensuring data privacy and security is a core aspect of RipFinder,

particularly for citizen science contributions. All uploaded images, videos,

and metadata are encrypted to prevent unauthorized access. Personally

identifiable information is anonymized before storage, and location data

is collected only with user consent, then obscured or aggregated to

prevent tracking.We adhere to institutional ethical guidelines and restrict

data access to authorized researchers who validate contributions. Users

receive clear terms of use and can request data removal. Our retention

policies prevent unnecessary long-term storage, ensuring responsible

data handling while supporting rip current research.
4.5 Quality control and validation of user-
uploaded data

To ensure the accuracy and reliability of citizen science

contributions, RipFinder employs a multi-step validation process

combining automated filtering, metadata verification, and expert review.
Frontiers in Marine Science 07
4.5.1 Automated screening and metadata
verification

All user-uploaded images and videos first undergo computer

vision-based pre-screening, which filters out irrelevant or low-

quality submissions. Additionally, metadata, such as location,

timestamp, and environmental conditions, is cross-referenced

with rip current forecasts from NOAA and other sources. Any

inconsistencies flag submissions for further review.

4.5.2 Expert validation and continuous
improvement

Flagged submissions undergo manual review by rip current

specialists, including NOAA scientists and coastal researchers,

ensuring only verified data is incorporated into the dataset. A

continuous feedback loop refines detection accuracy by improving

machine learning models over time. Verified contributors may also

receive recognition, fostering quality participation.

By integrating automated detection with expert validation,

RipFinder ensures that only high-confidence, research-grade data

supports scientific analysis and rip current safety efforts.
5 Results and discussion

5.1 Performance analysis of ML models

In this section, we present a performance analysis and comparison

of state-of-the-art (SOTA) object detection models tailored for rip

current detection.We comparedMLmodels including EfficientDet D0,

EfficientDet D1, EfficientDet D2, YOLOv8n, YOLOv8s, YOLOv8m,
FIGURE 4

Some examples from our training dataset. The images on the first column are from the dataset by de Silva et al. (2021). The images on the second
and third columns are from the dataset we collected using a drone and a wireless rip activity monitoring camera, respectively.
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YOLOv8l, YOLOv8x, RT-DETR-l, and RT-DETR-x. To gauge the

accuracy of these models, we utilized nine test videos annotated with

ground truth data. To ensure model generalization and robustness, we

validated RipFinder using diverse test videos from independent

sources. Four of these videos were selected for their relevance to our

rip current detection objectives from the test set introduced by de Silva

et al. (2021). Additionally, three videos were drone-captured by us,

while the last two originated from a wireless camera at webcoos.org

dedicated to rip current monitoring.

While our model validation primarily utilized video data captured

from elevated perspectives, we acknowledge that real-world user

applications will often involve videos recorded at ground level.

However, rip currents exhibit distinct visual characteristics that

remain detectable even from a beach-level viewpoint. Lifeguards and

experienced swimmers routinely identify rip currents using precisely

these visual cues. With appropriate training datasets, ML models can

similarly leverage these visual indicators to detect rip currents.

To evaluate the effectiveness of our object detection models, we

use Intersection over Union (IoU) as the primary performance

metric. Our evaluation methodology follows the object detection

benchmarking approach outlined by Padilla et al. (2020), which

provides a standardized toolbox for computing IoU. This toolbox

calculates the ratio of overlap between the predicted and ground

truth bounding boxes, allowing for a precise and objective

assessment of detection accuracy.

Unlike classification tasks that rely on confusion matrices,

object detection inherently requires spatial accuracy in addition to

detection presence. IoU directly accounts for true positives, false

positives, and localization precision, making it a more suitable

metric for this study. Given the established use of IoU in object

detection benchmarks, additional metrics such as precision, recall,

and F1 score are not required to support our results and would be

redundant in this context.

Our accuracy assessment followed the methodology described

by de Silva et al. (2021), where:

accuracy =
correct _ labels
total _ frames

Frames were considered classified as correct if the detected

bounding boxes had an Intersection over Union (IoU) score versus

ground truth bounding boxes above 0.3. IoU is calculated as:

IoU =
area _ of _ intersection

area _ of _ union

The comparison results are presented in Table 2, and some

examples of detected rip currents are shown in Figure 5. Based on

these results, we can justify the following two design choices we made.
5.2 Statistical analysis of model
performance

While the per-video accuracy results in Table 2 offer a general

comparison, we further examined whether the observed accuracy

differences among models are statistically meaningful. We treated
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each of the nine test videos as repeated measurements, one “sample”

per model, yielding paired accuracy data for each model across the

same videos. Below, we illustrate a straightforward method using

95% confidence intervals (CIs) for each model’s mean accuracy.

These intervals help gauge whether model performance truly differs

on average or if apparent differences could be due to sampling

variability Rainio et al. (2024).

The mean accuracy of each model was computed by averaging the

detection accuracy across all test videos. The standard deviation was

calculated to measure the variability in performance across different

video samples. The standard error of the mean was calculated as:

SE  =  
StDev

ffiffiffi

9
p ,

To quantify the uncertainty in these estimates, we determined

the 95% confidence interval (CI). We used a two-sided t-

distribution (given the small sample size) with 8 degrees of

freedom (n − 1 = 9 − 1) and a critical value of ≈ 2.306 for 95%

confidence:

95% CI  =  �x  ±  t0:975, df=8 �  SE :

A higher-variance model yields a wider interval, possibly

overlapping intervals of both stronger and weaker performers. Large

differences in means with minimal interval overlap typically point to

genuine performance gaps, but borderline cases call for further

pairwise statistical testing (e.g., with multiplecomparison corrections).

Table 3 reports the mean accuracy, standard deviation, and 95%

CIs for each model. Although the average accuracies match Table 2,

the confidence intervals offer insight into the consistency of each

model’s performance across videos.

5.2.1 Findings and interpretation
From the statistical analysis, the RT-DETR-X model achieved

the highest mean accuracy (µ = 0.96) with a very narrow confidence
Frontiers in Marine Science 09
interval (CI = [0.91,1.00]), indicating consistent and highly reliable

performance. Similarly, RT-DETR-L (µ = 0.93) and EffDet-D2 (µ =

0.91) demonstrated high accuracy with relatively low variability,

confirming their robustness for rip current detection. Conversely,

YOLOv8n, YOLOv8s, and YOLOv8m exhibited the lowest mean

accuracies and the widest confidence intervals, reflecting high

variability and inconsistent detection performance. The EffDet-D0

and EffDet-D1 models, while moderately accurate, showed greater

performance fluctuations due to their wider confidence intervals.

5.2.2 Implications for model selection
The statistical findings reinforce the rationale behind selecting

EffDet-D2 and YOLOv8n for mobile deployment, as they balance

accuracy and efficiency. Meanwhile, RT-DETR-L and RT-DETR-X

were the most reliable server-side models, offering superior

accuracy with minimal variability. These insights confirm that our

chosen client-server hybrid approach effectively optimizes both

computational efficiency and real-time detection performance. By

incorporating statistical validation, we ensure that model selection

is based on empirical evidence rather than raw accuracy alone. This

strengthens the reliability of RipFinder as a robust and scientifically

validated rip current detection tool.
5.3 Other considerations

5.3.1 Running two ML models to increase
accuracy

While running multiple models demands more computational

resources, it enhances reliability. This design decision stems from

the understanding that ML models with varying architectures

possess distinct strengths and shortcomings. Research by

Mekhalfi et al. (2022) indicates that models from the YOLO

family tend to identify more objects, even if their precision varies.
TABLE 2 We compared the detection accuracy of the SOTA methods to select the best options for the client and server application.

Test Videos Client Side Models Server Side Models

EfficientDet YOLOv8 RT-DETR

D0 D1 D2 n s m l x L X

Rip_test_video_1 1.00 1.00 1.00 0.94 0.72 0.99 0.99 0.93 1.00 1.00

Rip_test_video_2 0.99 0.86 1.00 0.01 0.01 0.05 0.20 0.05 1.00 0.99

Rip_test_video_3 0.86 0.84 0.79 0.58 0.30 0.71 0.46 0.53 0.90 0.93

Rip_test_video_4 0.27 0.79 0.72 0.00 0.00 0.04 0.00 0.00 0.85 0.89

Rip_test_video_5 0.73 0.91 1.00 0.76 0.50 1.00 1.00 1.00 1.00 1.00

Rip_test_video_6 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.86 1.00

Rip_test_video_7 0.99 1.00 1.00 0.19 0.35 0.93 1.00 1.00 1.00 1.00

Rip_test_video_8 0.70 0.71 0.71 0.00 0.00 0.00 0.15 0.29 0.76 0.80

Rip_test_video_9 1.00 1.00 1.00 0.21 0.24 0.62 0.71 0.63 1.00 1.00

Average Accuracy 0.73 0.79 0.91 0.30 0.24 0.48 0.50 0.49 0.93 0.96
fro
Bold values in the last row represent the average detection accuracy for each model variant across all test videos, used to evaluate overall model performance.
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In contrast, EfficientDet provides more stable and accurate

detection. In many cases, one of the models might not detect

specific instances of rip currents, even if they were trained using

the same data. For instance, although the rip current in “Rip test

video 6” can be detected by EfficientDet D2, it isn’t identified by any

other mobile models. Thus, deploying two models ensures that a

challenging-to-detect rip current is more likely to be detected on a

more capable device. Additionally, since rip current detection

pertains to safety, minimizing false negatives is more crucial than

avoiding excessive false positives. Therefore, while employing two

models might seem redundant for general applications, it is

beneficial for the purpose of rip current detection.

5.3.2 Two models vs. three or more
The decision to use two models on the client side balanced

accuracy, computational demands, and processing time. Although
Frontiers in Marine Science 10
running more than two models could improve detection accuracy

through ensemble techniques, the benefits were minimal compared

to the significant increase in resource consumption and latency.

Additional models would heavily strain server CPU and GPU

resources, leading to higher costs and potential delays during peak

usage. Increased latency from more models would compromise

real-time detection, critical for user safety. The two-model setup

already offers robust redundancy, ensuring reliable detection even if

one model underperforms. The combination of YOLOv8l for broad

detection and RT-DETR-L for detailed analysis provides a well-

rounded solution.

After evaluating various models, EfficientDet-D2 and YOLOv8n

were selected for mobile deployment due to their optimal balance of

speed, accuracy, and compact size. For server-side operations,

YOLOv8l and RT-DETR-L were chosen to maximize accuracy

and reliability, enabling effective online and offline functionality.

The findings, summarized in Table 1, highlight models that meet

both hardware constraints and application needs for proficient rip

current detection.

5.3.3 Running ML models on both the client and
server side

More advanced and complex models, such as RT-DETR-L and

RT-DETR-X, achieve higher accuracy but are limited to server

execution. Thus, when an internet connection is available, server-

assisted rip current detection becomes more reliable. The client-side

models serve as the primary object detection mechanism, ensuring

that rip current detection operates at the highest possible accuracy

both with and without internet connectivity.
5.4 Evaluation and model selection

5.4.1 Addressing detection bias
Different machine learning models exhibit varying performance

across rip current types, leading to detection bias in some cases. For
FIGURE 5

Some examples of detected rip currents from our test videos.
TABLE 3 Mean accuracy, standard deviation, and 95% confidence
intervals (CIs) for each model.

Model Mean StDev SE 95% CI

EffDet-D0 0.73 0.36 0.12 (0.45, 1.01)

EffDet-D1 0.79 0.31 0.10 (0.55, 1.03)

EffDet-D2 0.91 0.13 0.04 (0.81, 1.01)

YOLOv8n 0.30 0.37 0.12 (0.02, 0.58)

YOLOv8s 0.24 0.26 0.09 (0.04, 0.44)

YOLOv8m 0.48 0.45 0.15 (0.13, 0.83)

YOLOv8l 0.50 0.43 0.14 (0.17, 0.83)

YOLOv8x 0.49 0.43 0.14 (0.16, 0.82)

RT-DETR-L 0.93 0.09 0.03 (0.86, 1.00)

RT-DETR-X 0.96 0.07 0.02 (0.90, 1.01)
The confidence intervals indicate the range in which each model’s true mean accuracy is likely
to lie, based on nine test videos.
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example, EfficientDet-D0 struggles with transient rip currents,

showing a higher false-negative rate. This discrepancy arises due

to differences in model architectures, feature extraction capabilities,

and training data distribution. Models optimized for certain visual

cues, such as wave breaks in bathymetry-controlled rips, may not

generalize as well to transient rips, which often exhibit diffuse,

sediment-laden water patterns.

Rather than refining a single model, RipFinder employs a multi-

model strategy to balance detection accuracy and computational

efficiency. This approach ensures adaptability, allowing the system

to leverage mobile-optimized models for real-time detection while

utilizing more powerful server-side models when internet access is

available. Table 2 compares model performance, highlighting trade-

offs between accuracy, speed, and resource constraints.

While this work prioritizes flexibility over single-model

optimization, we recognize the importance of improving

individual model performance. Future efforts will focus on fine-

tuning models using more diverse datasets and reducing false

negatives in challenging conditions. By continuously integrating

improved architectures and expanded training data, RipFinder will

further enhance detection reliability for all rip current types.

5.4.2 Evaluation
Among the ten (10) models highlighted in Table 2, we chose

eight (8) for further evaluation. From the less accurate EfficientDet

D0 and D1 variants, we selected only D0 because of smaller size.

YOLOv8s was similarly excluded due to its poor accuracy. We

evaluated the chosen models on a server equipped with a single

GPU, an iPhone 12 Pro, and a Google Pixel 6 to determine the best-

fit models for each platform (Table 1). Our benchmarking of each

model’s performance focused on two primary metrics:
Fron
1. We evaluated the real-time responsiveness of each model

by measuring the frames processed per second (FPS). This

metric offers insights into the model’s speed and its ability

to detect rip currents in real-time scenarios. EfficientDet-

D0 and YOLOv8n exhibited higher FPS on mobile devices,

marking them as optimal choices for devices with limited

computational capabilities. Meanwhile, the enhanced

accuracy of EfficientDet-D2 makes it a reliable option

while still maintaining real-time performance.

2. Each model’s storage footprint needs to be considered for

embedding them in a mobile app, given that mobile devices

have diverse storage capabilities and may also be running

other apps simultaneously. Assessing a model’s storage

needs ensures that the application remains streamlined

and does not overtax the device’s memory. While the

compactness of EfficientDet-D0 and YOLOv8n makes

them as ideal for devices with resource constraints, the

relatively small size and superior performance of

EfficientDet-D2 make it a trustworthy option.
To further validate the practical applicability of our system, we

extended our device testing to include low-end and older Android

models. While certain high-end devices demonstrated superior
tiers in Marine Science 11
performance, models such as the Xiaomi Redmi 10A and

Samsung A50 successfully ran RipFinder, demonstrating that the

app is not solely dependent on flagship devices.
5.5 Model performance evaluation

5.5.1 EfficientDet-D0 and D2
EfficientDet-D0 was notable for its high FPS, making it

responsive on mobile devices, but it sometimes struggled with

detecting transient rip currents in complex backgrounds, leading

to occasional false negatives. On the other hand, EfficientDet-D2,

while slightly slower, offered higher accuracy in distinguishing rip

currents from similar water patterns, making it a more reliable

choice for detailed analysis despite its larger storage requirements.

5.5.2 YOLOv8 variants
YOLOv8n excelled in real-time performance due to its compact

size and speed, effectively detecting well-defined rip currents but

occasionally missing subtler ones. YOLOv8m balanced speed and

accuracy, handling both bathymetry-controlled and transient rip

currents consistently, making it suitable for mobile deployment.

The larger YOLOv8l and YOLOv8x models used server-side

provided superior accuracy, detecting even faint rip currents,

though their size and computational demands restricted them to

server environments. YOLOv8s was excluded due to poor accuracy,

particularly in complex scenarios.

5.5.3 RT-DETR variants
RT-DETR-L and RT-DETR-X, designed for server use, offered

high accuracy and reliability, excelling in differentiating rip currents

from similar patterns like wave shadows and sandbars. Their

complex architecture required substantial computational

resources, making them suitable only for server-side deployment.
6 Limitations and future work

While RipFinder is designed to improve rip current detection

using diverse datasets and a hybrid clientserver architecture, certain

limitations remain.
6.1 Dataset scope and generalization

Our dataset includes rip current images from multiple

independent sources, such as NOAA, coastal research partners,

and public sources (de Silva et al., 2021; Mori et al., 2022). However,

we recognize that geographic and environmental variations may

still impact model generalization, particularly in detecting rip

currents under unique wave conditions or in less studied coastal

regions. To mitigate these effects and improve generalization,

we are:
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• Expanding the dataset by incorporating images from

diverse geographic locations and environmental conditions.

• Using data augmentation techniques, such as lighting

adjustments, resolution scaling, and viewpoint shifts, to

simulate different acquisition conditions.

• Leveraging citizen science contributions to introduce more

real-world variability, ensuring models encounter a wider

range of rip current appearances.
Future work will include a systematic evaluation of model

generalization across different data sources and acquisition

methods to further reduce bias and improve detection accuracy in

real-world applications.
6.2 Server dependency and offline
functionality

The client-server hybrid architecture enhances detection

accuracy by leveraging more powerful models on the server.

However, we acknowledge that server dependency may limit real-

time detection in areas with poor or no internet connectivity. To

mitigate this, RipFinder is designed to function independently using

on-device models, ensuring continued usability in offline scenarios,

although with a trade-off in detection accuracy.
6.3 Potential biases in model training

Training data biases may influence model performance,

particularly in detecting less common rip current types. To

improve fairness and generalizability, we plan to conduct further

bias analysis, integrate domain adaptation techniques, and

continuously refine the dataset to address potential imbalances.
6.4 Robustness in complex marine
environments

Rip current detection is inherently challenging in extreme

conditions, such as strong waves, light variations, and surface

reflections. While multi-model detection improves reliability, some

edge cases remain difficult to classify. Detection failures often occur

when transient rips blend into background wave activity, making

them harder to distinguish. As RipFinder is model-agnostic, future

iterations can integrate more advanced models specifically trained for

challenging marine conditions. Additionally, ongoing data collection

through citizen science contributions will help refine model

generalization, ensuring greater robustness over time.
6.5 Real-world usability from beach-level
perspective

Another key consideration is the real-world usability of the app

when deployed by users at beach level rather than from an elevated
tiers in Marine Science 12
viewpoint. Although our current dataset primarily includes images

captured from drones and other high vantage points, we recognize

the importance of validating detections from ground-level

perspectives. Future work will involve expanding our dataset to

incorporate user-submitted images and videos captured at beach

level, enabling the machine learning models to generalize more

effectively across various viewing angles. Additionally, we plan to

implement citizen-science feedback loops to continuously refine

model accuracy based on real-world user data.
7 Conclusion

In this paper, we introduce Ripfinder, a mobile app equipped

with an ML-based computer vision tool designed to mitigate the

safety hazards associated with rip currents, which are a leading

cause of drownings globally. Ripfinder features a sophisticated

system that ensures rip current detection even in the absence of

internet connectivity, making it indispensable in regions without

lifeguards or reliable internet coverage. This capability is crucial for

enhancing beach safety in remote and underserved areas.

Beyond its detection capabilities, Ripfinder enriches user

knowledge with in-app informational content and videos about

rip currents, helping users understand the dangers and how to avoid

them. This educational component is vital for raising awareness and

promoting safe behaviors at the beach. A standout feature of

Ripfinder is its inclusion of citizen science. By inviting users to

share data about identified rip currents, the app not only enhances

scientific understanding but also fosters community engagement.

This participatory approach leverages the collective efforts of users

to contribute valuable data that can be used for further research and

analysis, ultimately improving the overall understanding of rip

current patterns and behaviors.

Ripfinder’s integration of public safety, education, and scientific

progress underscores its multifaceted approach to ensuring safer

beach outings. By combining advanced technology with user

engagement and educational resources, Ripfinder aims to create a

comprehensive solution that addresses both immediate safety

concerns and long-term scientific goals. The app exemplifies how

modern technology can be harnessed to address real-world

problems, making beaches safer and more enjoyable for everyone.
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Lee, J., Wang, J., Crandall, D., Šabanović, S., and Fox, G. (2017). “Real-time, cloud-
based object detection for unmanned aerial vehicles,” in 2017 First IEEE International
Conference on Robotic Computing (IRC) (Taichung, Taiwan: IEEE), 36–43.
doi: 10.1109/IRC.2017.77

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., et al. (2014).
“Microsoft coco: Common objects in context,” in European conference on computer
vision (Zurich, Switzerland: Springer), 740–755.

Lv, W., Xu, S., Zhao, Y., Wang, G., Wei, J., Cui, C., et al. (2023). DETRs beat YOLOs
on real-time object detection. (Seattle, Washington: IEEE).
frontiersin.org

https://doi.org/10.1016/j.earscirev.2016.09.008
https://doi.org/10.1145/2809695.2809711
https://doi.org/10.1016/j.coastaleng.2021.103859
https://doi.org/10.2112/JCOASTRES-D-12-00118.1
https://doi.org/10.1007/s11069-009-9458-0
https://doi.org/10.2112/JCOASTRES-D-16-00124.1
https://doi.org/10.1109/IRC.2017.77
https://doi.org/10.3389/fmars.2025.1549513
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Khan et al. 10.3389/fmars.2025.1549513
MacMahan, J., Reniers, A., Brown, J., Brander, R., Thornton, E., Stanton, T., et al.
(2011). An introduction to rip currents based on field observations. J. Coastal Res. 27,
iii–ivi. doi: 10.2112/JCOASTRES-D-11-00024.1

Maryan, C., Hoque, M. T., Michael, C., Ioup, E., and Abdelguerfi, M. (2019).
Machine learning applications in detecting rip channels from images. Appl. Soft
Comput. 78, 84–93. doi: 10.1016/j.asoc.2019.02.017

Mekhalfi, M. L., Nicolò, C., Bazi, Y., Rahhal, M. M. A., Alsharif, N. A., and
Maghayreh, E. A. (2022). Contrasting YOLOv5, Transformer, and EfficientDet
detectors for crop circle detection in desert. IEEE Geosci. Remote Sens. Lett. 19, 1–5.
doi: 10.1109/LGRS.2021.3085139

Mori, I., de Silva, A., Dusek, G., Davis, J., and Pang, A. (2022). Flow-based rip current
detection and visualization. IEEE Access 10, 6483–6495. doi: 10.1109/ACCESS.2022.3140340

Mucerino, L., Carpi, L., Schiaffino, C. F., Pranzini, E., Sessa, E., and Ferrari, M.
(2021). Rip current hazard assessment on a sandy beach in liguria, nw mediterranean.
Natural Hazards 105, 137–156. doi: 10.1007/s11069-020-04299-9

Padilla, R., Netto, S. L., and Da Silva, E. A. (2020). “A survey on performance metrics
for object-detection algorithms,” in 2020 international conference on systems, signals
and image processing (IWSSIP) (IEEE). (Niteroi, Brazil: IEEE), 237–242.

Philip, S., and Pang, A. (2016). “Detecting and visualizing rip current using optical
flow,” in EuroVis (Short Papers) (Groningen, The Netherlands: Eurographics
Association), 19–23.

Rainio, O., Teuho, J., and Klén, R. (2024). Evaluation metrics and statistical tests for
machine learning. Sci. Rep. 14, 6086. doi: 10.1038/s41598-024-56706-x

Rampal, N., Shand, T., Wooler, A., and Rautenbach, C. (2022). Interpretable deep
learning applied to rip current detection and localization. Remote Sens. 14, 91–9.
doi: 10.3390/rs14236048

Rashid, A. H., Razzak, I., Tanveer, M., and Robles-Kelly, A. (2021). “RipDet: A fast
and lightweight deep neural network for rip currents detection,” in International Joint
Conference on Neural Networks (IJCNN). (Shenzhen, China: IEEE), 1–6.
Frontiers in Marine Science 14
Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). “You only look once:
Unified, real-time object detection,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). (Las Vegas, NV, USA: IEEE), 779–788.

Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster R-CNN: Towards real-time
object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 28, 6048–
6070. doi: 10.1109/TPAMI.2016.2577031

Retnowati, A., Marfai, M. A., and Sumantyo, J. S. (2012). Rip currents signatures
zone detection on alos palsar image at parangtritis beach, Indonesia. Indonesian J.
Geogr. 43, 12–27.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L.-C. (2018).
“MobileNetV2: Inverted residuals and linear bottlenecks,” in 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (IEEE Computer Society,
Los Alamitos, CA, USA), 4510–4520. doi: 10.1109/CVPR.2018.00474

Silva, A. d., Zhao, M., Stewart, D., Hasan, F., Dusek, G., Davis, J., et al. (2023). RipViz:
Finding rip currents by learning pathline behavior. 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) 2023 (Seattle, WA, USA: IEEE), 1–
13. doi: 10.1109/TVCG.2023.3243834

Tan, M., Pang, R., and Le, Q. V. (2020). “EfficientDet: Scalable and efficient object
detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). (Long Beach, CA, USA: IEEE), 10781–10790.

Wang, Z., Dai, Z., Poczos, B., and Carbonell, J. (2019). “Characterizing and avoiding
negative transfer,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). (Long Beach, CA, USA: IEEE) 11293–11302.

Zhang, Y., Huang, W., Liu, X., Zhang, C., Xu, G., and Wang, B. (2021). Rip current
hazard at coastal recreational beaches in China. Ocean Coastal Manage. 210, 105734.
doi: 10.1016/j.ocecoaman.2021.105734

Zhu, D., Qi, R., Hu, P., Su, Q., Qin, X., and Li, Z. (2022). YOLO-Rip: A modified
lightweight network for rip currents detection. Front. Marine Sci. 9. doi: 10.3389/
fmars.2022.930478
frontiersin.org

https://doi.org/10.2112/JCOASTRES-D-11-00024.1
https://doi.org/10.1016/j.asoc.2019.02.017
https://doi.org/10.1109/LGRS.2021.3085139
https://doi.org/10.1109/ACCESS.2022.3140340
https://doi.org/10.1007/s11069-020-04299-9
https://doi.org/10.1038/s41598-024-56706-x
https://doi.org/10.3390/rs14236048
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1109/TVCG.2023.3243834
https://doi.org/10.1016/j.ocecoaman.2021.105734
https://doi.org/10.3389/fmars.2022.930478
https://doi.org/10.3389/fmars.2022.930478
https://doi.org/10.3389/fmars.2025.1549513
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

	RipFinder: real-time rip current detection on mobile devices
	1 Introduction
	2 Related work
	2.1 Real-time object detection
	2.2 Rip current detection with ML

	3 System design and methods
	3.1 System architecture
	3.2 Mobile apps
	3.2.1 Live camera and visualization tool
	3.2.2 ML model selection
	3.2.3 Image and video recording
	3.2.4 Rip current detection tool for existing images
	3.2.5 Educational resources
	3.2.6 Data upload tool

	3.3 Client-side ML models
	3.3.1 YOLOv8n and YOLOv8m
	3.3.2 EfficientDet D0 and EfficientDet D2

	3.4 Server-side ML models
	3.4.1 YOLOv8l and YOLOv8x
	3.4.2 Real-time detection transformer


	4 Implementation
	4.1 Dataset
	4.2 ML model training and evaluation
	4.3 Client apps and server
	4.4 Data privacy and security measures
	4.5 Quality control and validation of user-uploaded data
	4.5.1 Automated screening and metadata verification
	4.5.2 Expert validation and continuous improvement


	5 Results and discussion
	5.1 Performance analysis of ML models
	5.2 Statistical analysis of model performance
	5.2.1 Findings and interpretation
	5.2.2 Implications for model selection

	5.3 Other considerations
	5.3.1 Running two ML models to increase accuracy
	5.3.2 Two models vs. three or more
	5.3.3 Running ML models on both the client and server side

	5.4 Evaluation and model selection
	5.4.1 Addressing detection bias
	5.4.2 Evaluation

	5.5 Model performance evaluation
	5.5.1 EfficientDet-D0 and D2
	5.5.2 YOLOv8 variants
	5.5.3 RT-DETR variants


	6 Limitations and future work
	6.1 Dataset scope and generalization
	6.2 Server dependency and offline functionality
	6.3 Potential biases in model training
	6.4 Robustness in complex marine environments
	6.5 Real-world usability from beach-level perspective

	7 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Author disclaimer
	References


