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Calcareous sand with fines content was often encountered in offshore and
onshore engineering. However, most previous research has primarily focused
on the mechanical properties of clean calcareous sand. This study conducted a
series of drained and undrained triaxial tests on calcareous sand-clay binary
mixtures to investigate the impact of fines content on the strength and
deformation characteristics of calcareous sand. The results indicate that
specimens with varying fines content exhibit both strain hardening and
softening behaviors under different confining pressures. With the addition of
fines content from 0% to 10%, the extent of dilatancy decreases, resulting in a
smaller peak friction angle compared to clean sand specimens. However, when
fines content increases further to 25%, both the maximum dilatancy angle and
peak friction angle show an increase. A similar trend is observed for the friction
angle at the phase transition state (PTS). In the p’ — g plane, the critical state line

(CSL) remains constant despite changes in fines content, whereas in the e — p’°.”

plane, the CSL shifts with variations in fines content. A unified CSL in the e — p’°”
plane can be obtained by applying the concept of equivalent skeleton void ratio.
Additionally, the state dependence of the material is analyzed using both the
modified state parameter and the state index. It was observed that the friction
angles at both the PTS and the peak state (PS) are influenced by the state of the
material, with the PTS friction angle showing a stronger correlation with the state

index, while the PS friction angle is more closely linked to the state parameter.

KEYWORDS
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1 Introduction

Calcareous sands, primarily composed of calcium carbonate from marine organisms, are
found in shallow, warm continental shelf seas worldwide (Alba and Audibert, 1999; King and
Lodge, 1988). Distinguished from terrigenous soils, calcareous sands exhibit unique engineering
characteristics, including low grain hardness, high intragranular porosity and a pronounced
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tendency for particle breakage under high external loading conditions
(Coop, 1990; Ma et al.,, 2019; Shahnazari et al., 2016; Liu et al., 2023;
Gao et al, 2024). In recent decades, marine engineering projects have
extended into more remote oceanic regions where calcareous sands are
abundant. It is important to highlight, however, that many of these
projects involve mixtures of calcareous sand and fines rather than pure
calcareous sand due to practical considerations (Demdoum et al., 2017;
Porcino et al.,, 2020).

Previous research has shown that presence of fines significantly
altered the particle contact conditions and the overall mechanical
properties of sand-fines mixture (Carrera et al, 2011; Dash and
Sitharam, 2011; Karim and Alam, 2016; Lade and Yamamuro, 1997;

Papadopoulou and Tika, 2008; Shipton and Coop, 2012). These

10.3389/fmars.2025.1549597

studies consistently indicate the existence of a transitional fines
content (TFC), below which the sand grains retain their contact,
and the mechanical properties are primarily governed by the sand
skeleton. At a fixed void ratio, increasing the fines content generally
improves the compactness and collapsibility of the sand, while
reducing its tendency to dilate. This leads to a downward shift of the
critical state line (CSL) in e — logp space. However, once the fines
content exceeds this threshold, the behavior of the mixture reverses.
The literature outlines several approaches for determining the TFC
in sand-fines mixtures, which include both experimental and
theoretical models (Yang et al., 2006; Zuo and Baudet, 2015).
Additionally, the relative sizes of fines and sand particles are
considered an important factor influencing the value of TFC.
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FIGURE 1
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Calcareous sand used in the tests. (a) The SEM images. (b) The XRD analysis. (c) Particle size distribution.
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TABLE 1 Physical properties of calcareous sand.

Property Value

Maximum void ratio, €,,,, 1.20
Minimum void ratio, e,;, 0.80
Average particle size, dsp: mm 0.41
Mean diameter, d3y: mm 0.27
Effective diameter, d,o: mm 0.12
Nonuniformity coefficient, C, 417
Curvature coefficient, C. 1.22
Specific gravity, G, 2.73
Liquid limit of kaolin, w;: % 26
Plastic limit of kaolin, wyi % 52

It is widely acknowledged that sand specimens, under specific
combinations of effective stress and void ratio, converge to a unique
critical state line (CSL), regardless of their loading history or stress
path (Been et al., 1992; Ishihara, 1993; Verdugo and Ishihara, 1996).
However, the incorporation of silt or clay fines into clean sand can
significantly modify the sand fabric, causing a deviation from the
unique critical state line in the e — logp space. To address this, many
researchers have proposed the concept of an equivalent granular
void ratio, which is referred to by various terms, such as the
equivalent inter-granular contact index void ratio (Thevanayagam
et al, 2002), equivalent intergranular contact index (Zuo and
Baudet, 2015), corrected intergranular void ratio (Papadopoulou
and Tika, 2008) and equivalent granular void ratio (Rahman et al.,
2008). Among these, the equivalent granular void ratio is
particularly useful for quantifying the roles of fines at high fines
content, which is why it is commonly used in current research
(Raman and Lo, 2012; Ni et al., 2004; Yang et al., 2006). These
approaches allow for the data from sand-fines mixtures to be
consolidated within a narrow band, facilitating the determination
of a best-fit CSL, serving as a valuable reference for the development
of advanced constitutive models for composite soils (Rahman et al.,
2014; Wei and Yang, 2019).

Calcareous sand-clay mixtures exhibit distinct characteristics
compared to quartz sand-clay mixtures, primarily due to the

TABLE 2 Test condition.

No. Type of test

Confining pressure o.(kPa)

Fines content (%)
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inherent susceptibility of calcareous sands to particle breakage. The
fines content can influence this breakage behavior (Shahnazari and
Rezvani, 2013; Wang et al., 2017; Wei and Yang, 2019). Particle
breakage tends to reduced dilatancy and lower peak strength, which
causes shifts and rotations of the critical state line in both the p — g
and e — Inp planes (He et al., 2023; Shahnazari et al., 2016; Wu et al.,
2021; Yu, 2019). Despite these phenomenon, research into the
mechanical behavior of calcareous sand-clay mixtures remains
limited. Zheng (2019) examined the permeability and consolidation
coefficients of calcareous sand-clay mixtures under incremental
loading and found that clay content significantly influences the
consolidation coefficient, with an inverse relationship between clay
content and permeability coefficient. Li et al. (2022) studied the
liquefaction resistance of calcareous sand and highlighted the
enhanced resistance with higher fines content. Xu et al. (2020)
explored the compression behavior of these mixtures and proposed
a conceptual model for predicting the transitional state while
accounting for the effect of particle breakage on volume changes.
However, the shear characteristics and critical state behavior of these
mixtures under both drained and undrained conditions have not
been comprehensively studied.

To fill this gap, the present study conducted a comprehensive
series of triaxial drained and undrained tests on calcareous sand
specimens with varying clay contents (0%, 5%, 10%, and 25%)
under different confining pressures. The primary objective was to
examine the impact of fines content on the transitional behavior of
calcareous sand-clay mixtures, focusing on factors such as initial
modulus, peak strength, shear dilation, and critical state. To better
understand the shifting of the critical state line in the e — p’ plane
due to changes in fines content, the concept of equivalent particle
void ratio (e*) was introduced, providing a unified framework for
analyzing the behavior of the critical state line.

1.1 Test material

The calcareous sand utilized in the tests, as depicted in
Figure la, exhibits irregularly shaped particles with significant
internal pore retention. X-ray diffraction (XRD) analyses further
revealed that the composition of the calcareous sand primarily
consisted of aragonite and calcite, as illustrated in Figure 1b.

Void ratio after
consolidation e,

Initial void ratio eg

2 CD 200 1.00 0.98
3 CD 400 1.00 0.99
4 CD 100 0.90 0.89
5 CD 200 0.90 0.86
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TABLE 2 Continued

No. Type of test

Confining pressure o.(kPa)

Fines content (%)
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Void ratio after
consolidation e,

Initial void ratio eg

6 CD 400 5 0.90 0.88
7 CD 100 10 0.81 0.80
8 CD 200 10 0.81 0.78
9 CD 400 10 0.81 0.80
10 CD 100 25 0.59 0.58
11 CD 200 25 0.59 0.57
12 CD 400 25 0.59 0.57
13 CU 100 0 1.00 1.00
14 CU 200 0 1.00 0.98
15 CU 400 0 1.00 0.99
16 CU 100 5 0.90 0.89
17 CU 200 5 0.90 0.86
18 CU 400 5 0.90 0.88
19 CU 100 10 0.81 0.80
20 CU 200 10 0.81 0.78
21 CU 400 10 0.81 0.80
22 CU 100 25 0.59 0.58
23 CU 200 25 0.59 0.57
24 CU 400 25 0.59 0.57

CD, confined drained test; CU, confined undrained tests.

Undergoing a drying process with the removal of particles larger
than 2 mm, the testing material maintains maximum and minimum
void ratios of 1.20 and 0.8 respectively, along with a specific gravity
of 2.73. The Particle Size Distribution (PSD), conducted in
accordance with the Geotechnical Test method Standard (GB/T
50123-2019, 2019), is illustrated in Figure 1c. The results indicate an
average particle size of 0.41 mm, a non-uniformity coefficient of
4.17, and a curvature coefficient of 1.22, signifying a relatively
uniform particle size distribution and good gradation continuity. In
the study of the mechanical behavior of calcareous sand-clay
mixtures, commercial kaolin was employed, and its properties are
detailed in Table 1.

1.2 Test setup

The experiments were conducted using the GDS triaxial
automated system. Hydraulic pressure controllers capable of
reaching up to 2 MPa, were utilized to apply the cell and back
pressures. A submersible load cell, with a maximum capacity of 15
kN, was employed to deliver the axial force. Axial displacement was
measured externally at the top of the specimen with a linear variable
differential transformer (LVDT), which had a measurement range
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of £100mm. Pore pressure readings were obtained from transducers
installed at both end of the specimen, with the average value
adopted for the analysis. All instruments were calibrated to
ensure an accuracy within 0.10-0.15% of their full-scale output.

A total of 24 triaxial tests, including both drained and
undrained conditions, were carried out on isotropically
consolidated specimens. The samples contained varying kaolin
clay content levels of 0%, 5%, 10%, and 25%, and were subjected
to confining pressures between 100 and 400 kPa. Each specimen
measured 50 mm in diameter and 95 mm in height, prepared by air-
pluviation into a split mold lined with a stretched membrane under
vacuum. Due to the friability of the calcareous sand, the initial void
ratio (e) of the samples was set at 1.0, resulting in a relative density
(D,) of 50%. After sample preparation, carbon dioxide was used to
replace the air in the pores under an effective confining pressure of
20 kPa, followed by water flushing until a stable, bubble-free flow
was achieved. Saturation was achieved by incrementally increasing
the back pressure over 24 hours to 500 kPa, which was then
maintained for more than 12 hours until Skempton’s coefficient B
exceeded 0.98. Throughout the consolidation phase, sample volume
changes were carefully recorded. Strain-controlled loading was
applied at rates of 0.0114 mm/min for drained tests and 0.095
mm/min for undrained tests, with the slower rate selected to avoid
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(a—f) Typical drained stress-strain behavior of calcareous sand with different fine contents.

excess pore water pressure in drained conditions. The tests were
terminated when the axial strain reached 20%. The test results
indicated that the variations in volumetric strain and pore water
pressure with increasing axial strain were minimal. Accordingly, it
was believed that the critical state for the majority of the samples
was achieved during the triaxial test. For further details on the
triaxial compression tests, please refer to Table 2.

Frontiers in Marine Science 05

2 Test results

2.1 Typical stress-strain behavior

The typical stress-strain behaviors of drained clayed sands are
shown in Figure 2. It is evident that all specimens exhibit strain-
softening behavior, regardless of variations in confining pressure or
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Micro-scan analysis of calcareous-clay mixtures. (a) 5% fines content. (b) 25% fines content.

clay content. This is characterized by an initial increase followed by a
decrease in the deviator stress. An increase in confining pressure
enhances the initial stiffness and peak shear strength, while reducing
the tendency for volumetric dilation of the specimen. These findings
are consistent with test results for both clean and clayey sands reported
in the literatures Goudarzy et al. (2022); He et al. (2023); Sarkar et al.
(2022). Furthermore, a notable influence of clay content on the stress-
strain behavior of the specimens is observed. While the overall stress
evolution trend remains generally consistent across specimens with
different clay contents, the peak shear strength initially decreases and
then increases with increasing clay content. Conversely, the axial strain
at the stress peak exhibits an opposite trend. The relationship between
volumetric strain and axial strain is also affected by clay content. For
instance, under an initial mean effective pressure of 400 kPa, as clay
content increases from 0% to 10%, the volumetric response transitions
from dilation to pure volumetric contraction. This change, as shown by
the micro-scan analysis in Figure 3, is likely due to the lubrication effect
of clay, which facilitates sliding between sand particles. However, as the
clay content increases further to 25%, the volumetric response shifts
from contraction to dilation. This is due to the significant reduction in
the initial void ratio caused by the addition of clay, which hinders
particle sliding. To resist the applied stress, substantial particle
rearrangement, including particle rotation, occurs, resulting in some
degree of volumetric dilation.

Figure 4 shows the typical stress-strain behaviors of the specimens
tested under undrained triaxial shearing. The deviator stress is found to

Frontiers in Marine Science

increase first until it reaches a peak and then decreases with a further
increase in the axial strain. The higher the initial mean effective
pressure, the higher the deviator stress and the associated stress peak
of the specimen. The mean effective pressure decreases and then
increases during shearing. Both stresses mobilize after the phase
transition state point until they reach the critical state, where the
non-flow behavior of each specimen under undrained loading can be
observed. Additionally, the clay content significantly influences the
undrained behavior of the specimens, similar to its effect under drained
loading conditions. Specifically, the stress peak of each specimen
initially decreases as clay content increases, but then increases once
the clay content reaches 25%. As shown in Figure 5, the dilatancy
behavior follows a similar trend: as the clay content increases from 0%
to 10%, dilatancy decreases, resulting in a transition of excess pore water
pressure from negative to positive values under an initial mean effective
pressure of 100 kPa. However, as the clay content further increases to
25%, the dilatancy behavior becomes more pronounced, corresponding
to the reappearance of negative pore water pressure values.

2.2 Typical stress-dilatancy behavior

Figure 6 shows the typical stress-dilatancy behavior of clayed
sand in drained tests. For undrained tests, it is difficult to obtain the
accurate plastic volumetric strain increment, thus not presented
here for clarity. From Figure 6, it is evident that, after a period of

frontiersin.org
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(a—f) Typical undrained stress-strain behavior of calcareous sand with different fine contents.

shearing, the stress ratio increases while the dilatancy ratio
decreases, reaching a maximum dilatancy point. Subsequently, as
the dilatancy ratio increases, the stress ratio decreases toward the
critical-state value, regardless of fines content. However, both the
initial mean effective pressure and fines content affect the maximum
dilatancy ratio and the corresponding peak stress ratio. Specifically,
an increase in the initial mean effective pressure leads to a decrease

Frontiers in Marine Science

in both the maximum dilatancy ratio and the peak stress ratio. For
identical initial mean effective pressures, a fines content of 10% (as
shown in Figure 6¢) results in a higher peak stress ratio than that
observed with 25% clay content (Figure 6d).

The stress-dilatancy curve allows for the determination of the
peak friction angle (@) and the maximum dilatancy angle (@)
under drained loading, with their relationship illustrated in
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Figure 7. Details for determining ¢, and ¢, are provided in
Appendix A. In general, ¢; exhibits a positive influence on ¢,
irrespective of the clay content and initial mean effective pressure.
@, increases monotonically with the increasing ¢ which can be
captured by the Bolton’s dilatancy equation (Bolton, 1986).
However, the intercepts and slopes of the fitted dilatancy lines are
different, depending on the specific clay content. This is partially
different from the study in Xiao et al. (2017), where the slopes of
quartz sands with different contents of non-plastic fines were almost
constant. The discrepancy could be attributed to the more angular
particle shapes and internal pores of the sand used in this study.
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3 Analysis and discussions
3.1 Critical state

The critical state behavior of calcareous sand with varying clay
contents is presented in Figures 8, 9. Figure 8 displays the data
points along with the fitted critical state line (CSL) in the p’ — ¢
plane, where independence of the CSL on clay content can be found.
However, as shown in Figure 9, clay content does have a noticeable
effect on the CSL in the e — (p’/pa)o.7 plane (with p,=100 kPa), where
an evident downward shift of the CSL is observed as clay content
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increases. Despite this shift, the slopes of the CSLs for different
proportions of sand-clay mixtures remain almost constant.

To consider the effect of fines content on the CSL, the equivalent
granular void ratio (e”), as introduced by Thevanayagam et al.
(2002), is employed in place of the global void ratio (e), i.e.,

« _e+(1-bFC

T 1-(1-bFC’ )

where b represents the fraction of fines contributing to the
internal force chain in the specimen. Specifically, b = 0 when fines
do not participate in force transmission, and b = 1 when all fines are
active in the force chain. In this study, b is calculated using the
formula proposed by Rahman et al. (2008), and the details of this
calculation are provided in Appendix A. Using this formulation, the
equivalent granular void ratio at critical state for different

Frontiers in Marine Science

proportions of sand-clay mixtures is derived, as proposed by
Thevanayagam et al. (2002). The critical-state data points in the
e — (p'/p,)°.” plane can be represented as shown in Figure 10. It is
evident that a unified CSL can be used to model the critical state of
calcareous sands with different clay contents in the e* — (p'/p,)°.”
plane, as expressed by the following expression:

R P\
il

where e; =0.7 and 4 = 0.0025.

Furthermore, to evaluate the state-dependent behavior of
calcareous sand with varying clay content, the equivalent state
parameter (") and the equivalent state index (I:) can be
introduced. These parameters are formulated based on Equation 2
and are expressed as follows:
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where e, represents the threshold void ratio, which corresponds to
the intercept of the CSL at p’ =0 kPa, as suggested by Ishihara (1993). In
the following sections, the state-dependent behavior of calcareous sand
with varying clay contents at specific characteristic states will
be evaluated.

3.2 Phase transition state

The friction angle (¢,) of clayed sand at the phase transition
state (PTS) is calculated and illustrated in Figure 11. The
results reveal an initial reduction in the PTS friction angle
with increasing clay content, followed by a subsequent rise. This
trend suggests that adding a small amount of clay can reduce the
strength of calcareous sand at PTS; however, as more clay is
introduced, the strength of blended mixture can increase
again. This behavior can be attributed to clay particles filling
the pores between sand grains, thereby enhancing the stress
transmission network.

The relationship between the PTS friction angle and both the
state parameter and state index is presented in Figure 12. From
Figure 12a, it is evident that the PTS friction angle increases
monotonically with an increase in the state parameter,
regardless of the drainage condition or clay content. This
relationship can be characterized using a linear function.
Conversely, Figure 12b shows a general decline in the PTS
friction angle as the state index increases, which can also be
approximated with a linear function. Comparing the R values of
the fitted curves reveals that the PTS friction angle correlates more
apparently with the state index.
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3.3 Peak state

The friction angle (¢,) of calcareous sand-clay mixtures at the peak
state (PS) can be determined based on the peak state shear stress, as
illustrated in Figure 13. Similar to the PTS friction angle, the PS friction
angle initially decreases and then increases with the increasing clay
content. However, a comparison of Figures 11, 13 indicates that clay
addition exerts a more pronounced effect on the peak state behavior.
The changes in the PS friction angle, whether decreasing or increasing,
are sharper compared to those in the PTS friction angle.

In addition, Figure 14 depicts the relationship between the PS
friction angle and both the state parameter and state index. As
shown in Figure 14a, the PS friction angle generally increases with
the state parameter, and this trend can be represented by a linear
function. However, further investigations into results with varying
clay contents reveals distinct patterns. For clean calcareous sand
(FC = 0%), the PS friction angle decreases with the state parameter,
whereas for specimen with FC = 25%, the trend reverses. Specimens
with FC = 5% and 10% exhibits a combination of both trends: an
initial reduction followed by an increase in the PS friction angle as
the state parameter increases. This indicates a transitional response
in peak state behavior as clay content increases from 0 to 25%,
highlighting the role of clay intrusion in modifying the strength of
calcareous sand. Furthermore, Figure 14b shows an overall decline
in the PS friction angle with increasing state index, which can also
be approximated using a linear function. A comparison between
Figures 14a, b, reveals that PS friction angle exhibits a stronger
correlation with the state parameter than with the state index.

4 Conclusions

Calcareous sand is commonly used in reclamation projects in
oceanic areas, where the intrusion of fines is often a concern. This study
aimed to investigate the impact of fines content on the strength and
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deformation characteristics of calcareous sand under both drained and
undrained triaxial loading conditions. The main findings of the study

are summarized as follows:

1. Strain hardening and softening responses were observed in
both clean calcareous sand and sand-clay mixtures under
different confining pressures. At low confining pressures,
distinct strain softening and volumetric dilatancy were
evident. In contrast, under high confining pressures,
strain softening and dilatancy were much less pronounced.

. When the fines content increased from 0 to 10%, the degree
of volumetric dilatancy and the maximum dilatancy angle
decreased, which in turn led to a reduction in the peak state
friction angle. However, as the fines content further increased
to 25%, both the volumetric dilatancy and the maximum
dilatancy angle increased, resulting in an enhanced peak
strength for the calcareous sand-clay mixture. Similar
observations were observed in the relationship between the
phase transition state friction angle and fines content.

. Although fines content significantly affected the stress-
strain relation of the specimens, it had little influence on
the critical state lines of each specimen in the p’ — q plane.

. As fines content increased, the critical state lines of the

calcareous sand-clay mixtures in the e — p’°.”

plane shifted
downwards. However, a unified critical state line could be
established by adopting the concept of the equivalent
skeleton void ratio.

. Using the unified critical state line, the state dependence of
the calcareous sand and clay mixtures was further evaluated
using the modified state parameter and state index. The
results showed that the friction angles at the phase
transition state and peak state were both dependent on
the material state. As the state parameter increased, the
friction angle at the phase transition state increased, while
the friction angle at the peak state with a higher state index.
A better correlation was observed when the state index was
used. However, the variation in the peak state friction angle
with material state was not entirely consistent, as its
evolution depended on the fines content.
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Appendix A

The peak state friction angle (¢p), phase transition state friction
angle (¢;), and the maximum dilatancy angle (¢,;) can be
determined using M,, Mand (d€}/d€Y),, as follows:

[ 3M
¢, = sin 1<6+1\P4p>’ (5)
3M
o, = sin~! <6 N I\(jfd) R (6)
[ (d€hjae)),
¢d = sSin <2—(d€€7d€‘f)m (7)

where M, and M, represent the stress ratios at the peak and
phase transition states, respectively, and (d€5/d€?),, corresponds
to the maximum value of the ratio (d€5 / d€f7 ).

For clean calcareous sand, the root mean square deviation
(RMSD) for samples with different clay contents (5%, 10%, and
25%) was calculated. By varying the parameter b from 0 to 1 in
intervals of 0.05, the corresponding changes in RMSD could be
determined. The optimal value of b corresponds to the minimum
RMSD, which was used to determine the optimal b values for the
different clay content levels in this study.

1
RMSD = \/?2?:1(%0% - ecn%)z (8)

Here, T represents the total number of tests, e, is the void
ratio of clean calcareous sand at the critical state; and e, is the
void ratio of the specimens with varying clay contents (5%, 10%,
and 25%) at the critical state.
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