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Prediction and analysis of
China’s coastal marine economy:
an innovative grey model with
the best-matching data-
preprocessing techniques
Zerong Wang, Zhijian Cai and Yao Li*

School of Economics, Zhejiang University of Finance and Economics, Hangzhou, China
China’s coastal marine economy, a key part of the national economy, exhibits

complex temporal evolution and regional heterogeneity, posing challenges for

accurate forecasting. To address these challenges, this study employs advanced

data-preprocessing techniques, accumulating generation operators (AGO) in

grey prediction models, to tackle the nonlinear, volatile, and heterogeneous

gross ocean product (GOP) data. Specifically, an accumulating generation

operator matching mechanism that utilizes a pool of seven advanced AGOs is

incorporated into the discrete grey prediction model. The proposed best-

matching discrete grey prediction model can accurately describe the GOP

system in China’s 11 coastal provinces. Furthermore, the experimental results

indicate that the proposed model achieves 5.09% average forecasting mean

absolute percentage error, demonstrating 46.65% and 61.73% improvement rates

over the single AGO-based and benchmark models, respectively. Consequently,

the proposed model is deployed to forecast China’s provincial GOP up to 2025,

offering insights into the national development strategies, regionally tailored

policies, and inter-provincial coordination in the marine sector.
KEYWORDS

marine economy forecasting, gross ocean product, grey prediction model,
accumulating generation operator, data preprocessing
1 Introduction

The marine economy refers to the various industries and economic activities associated

with the development (Fang et al., 2024), utilization (Tang et al., 2022; Xin et al., 2024), and

protection of marine resources (Yusheng et al., 2024; Zhang, 2024). It encompasses a wide

range of sectors, including marine fisheries, marine transportation, offshore oil and gas

extraction, shipbuilding, marine engineering, and marine tourism. At the core of measuring

the marine economy’s contribution, the gross ocean product (GOP) represents the total

economic output of these marine sectors (Pan et al., 2024). The GOP is made up of three
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primary components: (1) the primary sector, which includes marine

fishing and aquaculture; (2) the secondary sector, encompassing

industries like offshore oil and gas extraction, shipbuilding, and

marine engineering; and (3) the tertiary sector, which involves

services such as marine transportation, coastal tourism, and

maritime logistics. Together, these sectors capture the economic

value generated from marine resources and associated industries,

making GOP a critical indicator of the strength and growth of the

marine economy.

In recent years, according to the Ministry of Natural Resources

of the People’s Republic of China (https://www.mnr.gov.cn/),

China’s gross ocean product reached 10.54 trillion yuan,

accounting for 7.8% of the country’s total gross domestic product

(GDP) in 2024, maintaining the similar ratio as in 2022. Thus,

the marine economy has played an increasingly vital role in

national economic growth, contributing to a significant share of

China’s GDP.

Consequently, the marine economy plays a pivotal role in China’s

broader economic development, influencing multiple dimensions of

national progress (Xu et al., 2024). Its importance is reflected in its

contributions to economic growth, industrial structure optimization,

regional development, foreign trade expansion, and social welfare

improvement (Santos et al., 2024). As a driver of economic growth,

the marine economy fuels sectors such as marine transportation,

fisheries, and offshore energy, while also fostering high-tech

industries like marine biotechnology and renewable energy,

supporting China’s shift toward innovation-driven growth (Liu

et al., 2021). Additionally, the marine economy plays a key role in

promoting regional coordination, especially among coastal provinces

(Prince et al., 2023). The marine economy also serves as a critical

pillar of China’s international engagement, with maritime trade and

initiatives like the Belt and Road enhancing global economic ties

(Turschwell et al., 2020).

Given these multifaceted roles and the increasing complexity of

marine economic systems, there is a growing need to anticipate

future developments and manage growth proactively through

forecasting tools. Accurate forecasts provide essential insights for

economic planning and industrial layout (Nguyen and Hoang,

2024), enabling policymakers to optimize resource allocation,

guide the growth of marine industries, and plan effectively for the

future (Zheng et al., 2023). Moreover, GOP forecasting aids in the

rational development and utilization of marine resources, ensuring

that economic exploitation is balanced with environmental

sustainability. In addition to fostering sustainability, reliable

forecasts help enhance the economy’s resilience to risks, such as

market fluctuations or environmental disruptions, by anticipating

future trends and challenges. As such, strengthening GOP

forecasting becomes vital for advancing the high-quality

development of China’s marine economy and positioning it for

long-term success in a dynamic global landscape (Ji et al., 2024).

Therefore, this work aims to contribute to the growing body of

research on marine economic forecasting by developing a novel

forecasting model tailored to China’s coastal provinces. Given the

diverse economic conditions and unique marine resource

endowments of each region, a customized approach is essential
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for producing accurate and reliable forecasts. By utilizing advanced

data processing techniques and dynamic modeling methods, this

study provides a comprehensive analysis of future gross ocean

product trends. The insights generated will support policymakers

and industry leaders in making informed decisions, promoting

sustainable development, and enhancing China’s position as a

global leader in the marine economy.

The core contributions of this work are summarized as follows:
1. This study provides an in-depth analysis of the current state

of gross ocean product across China’s coastal provinces,

revealing a range of complex characteristics unique to each

region. The analysis highlights the presence of significant

nonlinearities, high volatility, and diverse noise

perturbations in the data series, also underscoring the

regional heterogeneity in the developmental patterns of

the GOPs.

2. This study proposes a novel model that employs an

mechanism to identify the best-matching advanced

accumulating generation operator (AGO) method within

the grey prediction model for each region, leveraging the

distinct attributes of each province’s marine economic data.

This tailored approach ensures the highest possible

accuracy in forecasting, and the results demonstrate a

significant improvement in predictive precision compared

to other benchmark models.

3. This study projects the future Gross ocean product in

China’s 11 coastal provinces, offering valuable insights

that can inform regionally personalized policy decisions.

The forecast results enable regional policymakers to craft

sustainable growth strategies tailored to each province’s

unique strengths, while also advancing coordinated

national development goals.
The remaining article is organized as follows. Section 2 reviews

the existing literature on marine economy forecasting and grey

prediction methods. Section 3 details the methodology employed,

focusing on data preprocessing techniques and the newly proposed

best-matching AGOs-DGM(1, 1) model. Section 4 presents the data

analysis and experimental results, highlighting the model’s

predictive performance. Section 5 presents and discusses future

projections based on the forecasting outcomes and explores policy

implications. Finally, Section 6 concludes the paper.
2 Literature review

2.1 Progress on marine economy
forecasting

Accurate marine economy forecasting (e.g., achieving a

forecasting mean absolute percentage error below 10% or 5%) is

crucial for the growth and strategic planning of coastal regions

(Kong et al., 2024). As forecasting methodologies have become

more refined, they now offer significantly improved accuracy (Shi
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et al., 2024; Wang et al., 2024), enabling coastal regions to allocate

resources more effectively and plan strategically for evolving marine

economic trends.

In recent years, diverse mathematical, machine learning, and grey

system models have advanced marine economic forecasting

applications, addressing the unique challenges of forecasting in the

marine sector. Initially, mathematical models are valued for their low

data requirements, allowing for effective short- and medium-term

predictions even with limited historical data. However, discrepancies

between predicted and actual marine economic output indicate that

there is still a need to better align inputs like talent, capital, and

marine research to enhance the added value of marine production

(Ma et al., 2020). Subsequently, backpropagation (BP) neural

networks have been utilized to construct forecasting index systems

that capture the nonlinear and dynamic relationships within marine

economies. By analyzing multiple indicators, BP neural networks

reveal the causal relationships that underpin marine economic

development, offering precise predictions that align closely with

actual observed trends. This approach has demonstrated high

predictive accuracy, highlighting its value in regional economic

forecasts (Shi, 2019). Lastly, grey models have become increasingly

popular due to their robustness in handling small samples and

uncertain data. These models are particularly suited to analyzing

the marine economy system, which evaluates the system against

economic shocks and regional disparities. For instance, the nonlinear

fractional grey model, combined with optimization algorithms, has

been used to forecast marine economy resilience across China’s

coastal regions (A CRITIC-TOPSIS and optimized nonlinear grey

prediction model: A comparative convergence analysis of marine

economic resilience, 2024).

Additionally, grey prediction models have shown remarkable

utility in addressing the unique challenges of marine economic

forecasting, particularly where data availability is constrained or

uncertain (Xuemei et al., 2019). These models have been applied to

evaluate and predict the growth trajectories of regional marine

economies, such as those in China’s coastal areas. Through grey

forecasting, researchers can gain insights into the system’s

evolutionary trends that would otherwise be difficult to predict

due to data limitations (Zhang et al., 2003). For instance, grey

prediction models are used to reflect the developmental dynamics of

regional marine economies, providing an informed basis for policy

formulation and sustainable growth strategies (Zhang, 2020).

Moreover, grey models also facilitate comprehensive assessments

that highlight potential areas for economic improvement, thereby

assisting regional governments in aligning their policies with long-

term development goals (Kedong et al., 2021).

Given the advancements in model accuracy and complexity,

these forecasting models have become indispensable tools for

regional economic planning. Marine economic forecasting has

been extensively applied to coastal provinces to predict economic

outcomes such as GOP growth and the performance of marine

industries. Forecasts for provinces like Guangdong have identified

key growth drivers, including marine technological innovation and

infrastructure investment, providing insights into long-term
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regional economic strategies (Ma et al., 2020). The ability to

forecast regional marine economies has helped coastal

governments tailor their development plans, ensuring that

policies are aligned with the unique needs and potential of each

region (Shi, 2019; Kedong et al., 2021). By applying advanced

forecasting models, local governments can better anticipate

economic fluctuations and plan for sustainable marine growth.

In conclusion, the progress made in marine economy

forecasting has equipped coastal regions with powerful tools for

economic planning and strategic decision-making. The continued

evolution of grey system models and hybrid forecasting methods

reflects a growing capacity to accurately predict complex marine

economic trends. As these models are increasingly applied to

regional contexts, they enable tailored development strategies that

align with each region’s unique economic profile.

However, existing research on marine economy forecasting has

primarily focused on model development or national-level analysis,

with limited attention to region-specific forecasting strategies that

account for the heterogeneous economic dynamics of individual

coastal provinces. This highlights the need for adaptive forecasting

frameworks capable of tailoring predictions to diverse regional

marine economies.
2.2 Grey prediction methods

Grey prediction methods have emerged as a valuable tool in

economic forecasting (Deng, 1982), particularly for fields where

data limitations are a common challenge. These methods are well-

suited to environments with small sample sizes and uncertain or

incomplete information, making them an effective choice for

forecasting in the marine economy and other sectors

characterized by data scarcity (Li et al., 2023a). Initially, Grey

models offer a unique advantage in their ability to generate

reliable predictions even with minimal data, as they require fewer

observations than traditional statistical methods. This adaptability

allows them to handle non-linear relationships and dynamic

changes within a system, providing robust predictions in

situations where other models might struggle. Subsequently,

compared with hybrid approaches, grey prediction models offer

significant advantages in computational efficiency and model

transparency, enabling faster implementation and easier

interpretation. Therefore, the versatility of grey prediction

methods has led to their widespread application across various

domains. Specifically, grey prediction methods have been utilized in

engineering, environmental studies, healthcare, and retail sales

management (Ye et al., 2024), showcasing their broad

applicability. Their ability to forecast with limited data has made

grey models particularly popular for emerging sectors and regions

with underdeveloped data infrastructure. As for marine economic

forecasting, grey models are frequently employed to predict marine

economic (Li et al., 2023b) and environmental (Tian et al., 2020; Li

et al., 2024) systems, aiding in regional marine development.
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Building on their established strengths, grey prediction methods

have evolved through several key enhancements to improve

accuracy and adaptability. (1) Background value optimization is

one such area, focusing on refining the approximation of adjacent

values to reduce jump errors between continuous and discrete data.

For example, Simpson’s background values are utilized in place of

the traditional adjacent average (Ding et al., 2024c). Another crucial

enhancement is (2) initial condition optimization, which improves

the solution of time response equations by optimizing the initial

conditions of differential or difference equations to better match the

evolving behavior of the target system (Ding and Li, 2021). (3)

model structure optimization aims to increase the flexibility of grey

models by modifying differential or difference equation structure

(Ding et al., 2024d) or incorporating elements from other

techniques (Ding et al., 2024a), creating adaptive model structures

or hybrid models that are more responsive to complex data.

Together, these advancements in background values, initial

conditions, and model structure significantly enhance the

effectiveness of grey prediction methods, broadening their

application across various domains.

Additionally, the construction of the Accumulating generation

operator has been a major focus among the advancements in grey

prediction methods (Ding et al., 2024b). AGO is central to grey

models, as it transforms raw data into a form that emphasizes

trends and reduces the influence of random fluctuations. This

process of accumulation is particularly valuable for small-sample

and poor-information environments, which are typical in marine

economic forecasting.

Currently, the improvements in AGO have involved optimizing

its configuration to further enhance the model’s predictive power.

Ding et al (2022) observed that the grey model often leads to

projections that increase or decrease too steeply, due to its nature as

a time series model with coefficients that vary over time. To address

this, the study incorporated a damping trend parameter within the

accumulating generation operator to adjust and moderate the

forecast outcomes. He et al (2022) introduced a fractional

dynamic weighted coefficient system that adheres to

normalization, creating a new information-prioritized s-order

weighted accumulation operator. This approach allows the

parameter to assign varying levels of priority to data, thereby

adjusting the relative influence of both recent and older

information during sequence generation. Zhang et al (2023)

identified that certain existing AGOs may aggregate errors from

irrelevant grey data, which can impair the model’s accuracy. In

response, a probabilistic operator (PAGO) was devised to process

grey information more effectively, thus isolating and utilizing only

the relevant data.

As a result, the refinement of AGO has significantly boosted the

accuracy and versatility of grey prediction models, enabling them to

offer more reliable forecasts across diverse applications. The

ongoing focus on AGO’s structure and application underscores its

importance in maintaining the robustness and adaptability of grey

prediction methods.

Despite substantial advancements in AGO design, current

studies rarely address the challenge of selecting the most
Frontiers in Marine Science 04
appropriate AGO for different data environments. There remains

a research gap in developing systematic, data-driven mechanisms to

match AGO variants with specific regional characteristics,

especially within complex systems like marine economies.
3 Methodology

To accurately forecast the Gross ocean product of China’s

coastal provinces, this section employs a novel grey prediction

framework, best-matching AGO-DGM(1, 1), tailored to address

the complexities and heterogeneities of the provincial marine

economic systems. The proposed methodology leverages

advanced accumulating generation operators to preprocess sparse

and noisy data, enhancing trend extraction and noise reduction.

Furthermore, by integrating a best-matching AGO selection

mechanism, the model adapts to the unique dynamics of each

region, optimizing its forecasting accuracy. This section details the

data preprocessing techniques used, the establishment of the AGO-

DGM(1, 1) model, and the procedures for selecting the best-

matching AGO for each province. The overall procedure of the

proposed model is illustrated in Figure 1.
3.1 Data preprocessing techniques in grey
theory

The marine economy, represented by Gross ocean product, is a

grey economic system characterized by sparse data and insufficient

information. This data scarcity, combined with the inherent

complexity and volatility of marine economic activities, makes it

highly suitable for grey system theory. Furthermore, the grey

prediction model, as a crucial component of grey system theory,

specializes in handling uncertain, incomplete, and poor

information, representing an effective tool to model and predict

such economic behaviors.

Specifically, the AGO represents a key data preprocessing

technique within grey prediction models. The AGO plays a

critical role in transforming raw data into a more suitable format

for grey system modeling, particularly in the context of small-

sample, poor-information marine economy data environments.

This technique offers several advantages:
• Enhancing evolutionary patterns: The AGO enhances the

underlying evolutionary trends of small samples by

accumulating data, allowing the model to better capture

the long-term development of the marine economy system.

• Mitigating external random disturbances: Through

accumulation, AGO reduces the effects of external

random disturbances and shocks. This is particularly

useful for stabilizing volatile data series, such as marine

economic outputs, which are often influenced by external

factors like policy changes and natural events.

• Reinforcing quasi-exponential characteristics: By applying

AGO, the behavior of the system’s data sequence is
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Fron
transformed to exhibit an approximate exponential

characteristic. This transformation makes the sequence

more compatible with differential equation modeling,

which is the mathematical foundation of many grey

prediction models, including the DGM(1, 1) model.
Therefore, the AGO data preprocessing technique enables more

accurate forecasting by strengthening the marine economic system’s

inherent dynamics while simultaneously reducing noise and

randomness. Thus, it presents an ideal tool for handling the

marine economy’s nonlinear, volatile, and stochastic data

characteristics, ultimately enhancing prediction accuracy.

So far, many advanced AGO methods have been developed to

improve upon the traditional AGO, with one of the most notable

advancements being the information-prioritized accumulating

generation operator. This method is a significant refinement that

addresses some of the limitations of the conventional AGO.

Subsequently, several crucial new-information-priority AGO

methods will be introduced.
3.1.1 Conventional AGO
Assuming that Y(0) = ½y(0)(1), y(0)(2),…, y(0)(n)�T, y(0)(i) ≥

0, i, 1, 2,…, n : represents the original Gross ocean product

sequence, the conventional 1-AGO process is defined as follows:
tiers in Marine Science 05
Y(1) = ½y(1)(1), y(1)(2),…, y(1)(n)�T

y(0)(k)d =o
k

i=1
y(0)(i) ;  k = 1, 2,…, n :

(1)

where, Y(1) represents the accumulated sequence worked by the

conventional 1-AGO and d stands for the operator that works

on y(0)(k), k = 1, 2,…, n :

3.1.2 New information priority operator (NIPO)
Building on the traditional 1-AGO framework, NIPO enhances

the accumulation process by utilizing variable weights (Wu et al.,

2022), distinguishing it from the equal-weight accumulation

characteristic of 1-AGO. Specifically, it introduces a breakpoint in

the accumulation process and employs an adaptive parameter k
that adjusts the accumulation weights hik before and after this

breakpoint:

Y(NIPO) = ½y(NIPO)(1), y(NIPO)(2),…, y(NIPO)(n)�T

y(NIPO)(k) =o
k

i=1
hiky

(0)(i),    hik =
1, i = k

k , i ≤ k − 1
, k ∈ (0, 1) :

(
(2)

where y(v)(k) indicates the processed sequence employing the

variable weight AGO. Equation 2 indicates that when generating the

k-th data point in the accumulated sequence (y(v)(k)), the weight

assigned to the k-th data point (y(0)(k)) is 1, while the data points
Select the best-matching model

Derive hyper-parameters for all models

Compare the model errors

k=k+1

Set the parameters of the PSO 
algorithm

Evaluate the individual fitness 

value

Calculate the individual extreme 

value and global extreme value

Update the velocity and position 

of each particle

Is the terminal 

condition satisfied?

k=1

Obtain the optimized  parameters

Collect the raw data

Preprocess the raw data by all AGOs 

Construct the AGOs-DGM (1,1) models

Split samples into training set and testing set

Deduce the time response function with 

undetermined parameters

YES

NO

Grey
 model

PSO

Generate the initial population

Matching process

AGO library

FIGURE 1

Methodological framework of the proposed model.
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p r i o r t o y(0)(k) ( y(0)(1), y(0)(2)…, y(0)(k − 1)) r e c e i v e a n

accumulation weight less than 1, which is controlled by the

parameter k . This approach ensures that the processed

marine economy sequence adheres to the principle of new

information priority.

3.1.3 R-order adjacent accumulating generation
operator (RAAGO)

Unlike the NIPO’s weight allocation, RAAGO divides the

accumulation process with nonlinearly correlated accumulation

weights (Wang et al., 2022):

Y(RAAGO) = ½y(RAAGO)(1), y(RAAGO)(2),…, y(RAAGO)(n)�T

y(RAAGO)(k) =o
k

i=1
hiky

(0)(i),    bhik
=

1
r2+1 , i = k

r
r2+1 , i ≤ k − 1

:

(
(3)

Here, Y(RAAGO) represents the accumulated sequence processed

by RAAGO. This AGO approach can make accumulation with less

fluctuations. Additionally, when r = 0, the accumulated sequence is

reduced to the original sequence. When r  ∈  (0, 1), RAAGO

conforms to the principle of new information priority. And when

r > 1, the historical accumulating weight is greater than the current

accumulating weight.

This AGO method facilitates accumulation with reduced

fluctuations. Additionally, when r = 0, the accumulated sequence

reverts to the original sequence. When r ∈ (0, 1), RAAGO adheres

to the principle of prioritizing new information. When r > 1, the

weight of historical accumulation exceeds that of the current

accumulating weight.
3.1.4 Accumulated generating operation with the
new information priority principle (NAGO)

NAGO, in contrast to NIPO and RAAGO, does not divide

accumulation weights into two discrete segments (Wu and Zhang,

2018). Instead, it assigns continuously varying weights to the data

across all time points:

Y(NAGO) = y(NAGO)(1), y(NAGO)(2),…, y(NAGO)(n)
� �T

y(NAGO)(k) =o
k

i=1
hiky

(0)(i),    hik = rk−i, r ∈ (0, 1) :
(4)

where Y(NAGO) represents the accumulated sequence utilizing

the NAGO and r indicates the parameter adjusting the consequtive

accumulating weights.

Equation 4 indicates that, during the accumulation for the data

point y(NAGO)(k) at the time k, the original observations y(0)(i), i =

1, 2…, k‘s accumulating weights increase exponentially concerning the

time points i. Moreover, a smaller value of r results in a faster increase

in the accumulating weights. This weight assignment not only renders

new information priority but also enhances the exponential

developmental pattern within the processed marine economy series.
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3.1.5 Adaptive exponential accumulated
generation operator (AEAGO)

Expanding on NAGO’s continuously variable accumulation

weights, AEAGO applies a scaling factor to modify the

exponential pattern of the accumulation weights (Ye et al., 2022).

Y(AEAGO) = ½y(AEAGO)(1), y(AEAGO)(2),…, y(AEAGO)(n)�T

y(AEAGO)(k) =o
k

i=1
hiky

(0)(i),    hik =
1, k = 1

(1 − r)rk−i, k ≥ 2
, r ∈ (0, 1� :

(

(5)

Here, the parameter r functions as the exponential base, while

its linear form (1 − r) functions as a scaling factor of the exponent.
When the value of r is relatively small, the exponential growth rate

is accelerated and the scaling effect is amplified. Moreover, h11 is set

to be one to construct a buffer operator. By introducing the scaling

effect, AEAGO can be seen as an enhanced version of NAGO.

3.1.6 New information priority generalized
accumulation generation operator (NGAGO)

NGAGO is derived from the Wei-bull distribution to grant the

accumulation weight a life distribution function (Li et al., 2022).

Contrasting to AEAGO, it offers nonlinear constraints between the

scaling factor and the exponent:

Initially, the Wei-bull distribution describes the service lifetimes

of the system components, which is expressed as:

f (t) =
a
m
(
t
m

)a−1e−(
t
m)

a

: (6)

Particularly, when a = 1, Equation 6 is reduced into an

exponential function of time with a nonlinear scaling factor:

f (t) = re−r(t−i) : (7)

Considering the accumulation weight hik as the system

component, NGAGO gives the following transformation:

Y(NGAGO) = ½y(NGAGO)(1), y(NGAGO)(2),…, y(NGAGO)(n)�T

y(NGAGO)(k) =o
k

i=1
hiky

(0)(i),    hik = re−r(k−i), r > 0:
(8)

Likewise, Y(NGAGO) represents the preprocessed sequence and r
stands for the parameter adjusting the accumulation weights.

3.1.7 Unified new-information-based
accumulating generation operator (UNAGO)

UNAGO is inspired by the aforementioned AGO methods

(Ding et al., 2024b). Initially, the constraint between the

exponential and scaling coefficients limits weight variability in

AEAGO and NGAGO. To overcome this, the exponential and

scaling effects are decoupled by introducing them as independent

hyperparameters. Additionally, the above AGOs do not integrate

both variable and equal weight accumulation.
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Thus, UNAGO attends to these problems to create a unified

framework:

Y(UNAGO) = ½y(UNAGO)(1), y(UNAGO)(2),…, y(UNAGO)(n)�T

y(UNAGO)(k) =o
k

i=1
hiky

(0)(i), k = 1, 2,…, n,    hik = r1r
k−i
2 + r3

(9)

Here, r1, r2, and r3 represent the scaling, exponential, and

equal-accumulation coefficients, respectively. By decoupling

those weight adjustment effects, the UNAGO obtains a

unified mechanism.

Generally, the development of various AGO methods

demonstrates the continuous improvement of grey prediction

models in handling sparse and uncertain data. These advanced

techniques have enhanced the ability to capture the evolutionary

trends of marine economy systems, by refining the accumulation

process. Thus, these data preprocessing techniques result in more

accurate and reliable forecasts, making the grey prediction model an

invaluable tool for predicting the Gross ocean product in China’s

coastal provinces. Nonetheless, China’s coastal provinces’ marine

economy systems exhibit regional heterogenous characteristics.

Consequently, the best-matching AGO approaches should be

employed to accurately describe the evolutions of China’s coastal

provinces’ Gross ocean product.
3.2 The model implementation of AGOs-
DGM(1, 1) model

Due to the heterogeneous characteristics of marine economic

systems across China’s coastal provinces, a tailored approach is

necessary to accurately describe the unique evolution of each

province’s gross ocean product. These provinces vary significantly

in terms of economic structure, geographic conditions, resource

availability, and policy impacts, making a one-size-fits-all model

insufficient for precise forecasting. Therefore, it is essential to

customize models that can capture the distinctive growth

patterns, fluctuations, and disturbances within each regional

economy to improve prediction accuracy.

In response to this need, we propose the best-matching AGOs-

DGM(1, 1) model. This model selects the most appropriate AGO

method for a given coastal region, ensuring that the chosen

preprocessing technique best fits the unique dynamics of the

area’s marine economy. By utilizing this data-driven approach,

the model adapts to the evolutionary characteristics of the

economic system, mitigating the effects of volatility and noise

while enhancing the underlying trend signal.

Subsequently, the establishment of the AGO-improved version

of the DGM(1, 1) model is introduced.

Assuming that Y(0) is as defined in Equation 1 and Y(AGO)

represents the preprocessed marine economy series with an AGO

method, the corresponding AGO-DGM(1, 1)’s basic difference

function is described as:

y(AGO)(k + 1) = l1 · y
(AGO)(k) + l2 (10)
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where l1 and l2 represent the developmental and grey constant

coefficients, respectively.

Let

B =
y(AGO)(1), x(AGO)(2), … , y(AGO)(n − 1)

1 1 … ; 1

" #T

C = ½ y(AGO)(2), y(AGO)(3), … ; y(AGO)(n) �T
(11)

the estimated parameters l̂ 1 and l̂ 2 are calculated by the

ordinary least square approach:

½l̂ 1,  l̂ 2�T = (BTB)�1BTC (12)

Given the initial condition: x̂ (u)(1) = x(u)(1), the analytical time

response equation is derived as

ŷ (AGO)(k + 1) = l̂ k
1 · y

(AGO)(1) +
1 − l̂ k

1

1 − l̂ 1

· l̂ 2, k = 1, 2,…, n − 1 (13)

Take UNAGO as an instance, the restored series from the

accumulation process is

ŷ (0)(k) =

ŷ (AGO)(k) −o
k−1

i=1
(r1r

k−i
2 + r3)ŷ

(0)(i)

r1 + r3
: (14)

Equation 14 represents the generation process of the simulative

and forecasting sequence by the UNAGO-DGM(1, 1) model. The

other AGOs-DGM(1, 1) models follow the similar procedures.
3.3 The hyper-parameter solution and
AGO-matching process

This Section demonstrates the hyper-parameter solution and

AGO-matching process to establish the proposed best-matching

AGOs-DGM(1, 1) model.

Initially, the hyper-parameters regarding the accumulation

weight adjustment parameters (referring to r1, r2, and r3 in

UNAGO, r in AEAGO and NGAGO, r in AEAGO, and k in

NIPO) need to be optimized. In this work, a heuristic intelligent

algorithm, particle swarm optimization algorithm (PSO), is applied

to search the self-adaptive weight adjustment parameters. The PSO

algorithm iteratively updates the particles’ velocities (directions and

magnitude) and positions (parameter value). Assuming that v(t)i and

u(t)i represent the current velocity and position of the particle i at the

tth iteration, respectively. The following equation describes the rules

for updating the particles’ velocities and positions:

v(t+1)i = w · v(t)i + c1 · rand1 · (Pbest,i − u(t)i ) + c2 · rand2 · (Gbest − u(t)i )

u(t+1)i = u(t)i + v(t+1)i

Pbest,i = u(t+1)i   if   J(Pbest,i) > J(u(t+1)i )

(15)

where w is the inertial weight, c1 and c2 are the acceleration

coefficients. rand1 and rand2 are random numbers between 0 and 1.

Pbest,i and Gbest are currently the best position of the particle and the
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best position among all particles, respectively. Upon the

termination criteria of satisfactory fitness level, Gbest is outputted

as the optimal parameters for the AGOs-DGM(1, 1) model.

Furthermore, the proposed best-matching AGOs-DGM(1, 1)

model utilizes the mean absolute percentage error (MAPE) as the

objective function for both the PSO algorithm and AGOs’matching

process:

sMAPE = o
n−h

k=1

ŷ (k) − y(k)
y(k)

����
����=(n − h)

fMAPE = o
n

k=n−h+1

ŷ (k) − y(k)
y(k)

����
����=h

(16)

Here, h notes the forecast horizon within the test set and n − h

represents the training data length. ŷ (k) and y(k) stand for the

forecasted gross ocean product and the ground truth, respectively.

Moreover, sMAPE and fMAPE represent the simulating and

forecasting MAPE, respectively. Furthermore, the sMAPE is

employed to search the best self-adaptive weight adjustment

parameter(s) while the fMAPE is applied to match the best AGO

methods for the specific coastal provinces.

Therefore, after obtaining the model parameters from the

training set, we construct the forecasting models under different

AGO configurations for the GOP data. We then compare their

forecasting errors during the prediction period, allowing us to select

the AGO that yields the lowest out-of-sample error. This process

enables us to theoretically and empirically identify the best-

matching model for each province. The rationale behind this

approach lies in that it serves as a benchmark for evaluating

competing AGO variants after the model has been fully trained.

Since each AGO transformation defines a distinct model structure.

This allows for a data-driven, yet methodologically sound, selection

of the AGO method that best fits the underlying data characteristics

of each province.

In summary, the proposed best-matching AGOs-DGM(1, 1)

model provides a robust and adaptive framework tailored to the

heterogeneous marine economic systems of China’s coastal

provinces. By selecting the most appropriate AGO method and

optimizing the best-matching model’s self-adaptive parameters, the

proposed model can effectively capture the complex, nonlinear, and

dynamic characteristics of each region’s marine economy. This

enhances both the accuracy and reliability of predictions, making it

a valuable tool for forecasting the gross ocean product in coastal

areas. Furthermore, the integration of advanced preprocessing

techniques and adaptive parameter adjustments ensures that the

model remains flexible and responsive to the evolving economic

conditions across different provinces, ultimately aiding in informed

decision-making and policy formulation.
4 Data analyses and experimental
results

In this section, we present the data and experimental results used

to evaluate the effectiveness of the proposed best-matching AGO-
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DGM(1, 1) model in forecasting the Gross ocean product of China’s

coastal provinces. The analysis begins with a collection of provincial

GOP data, highlighting the regional heterogeneity and temporal

variability that the model must accommodate. Subsequently, this

section conducts multi-step forecasting experiments, assessing the

model’s performance across different horizons, and comparing its

accuracy with that of several benchmark models. Through this

comparative analysis, we aim to demonstrate the superior

predictive capabilities of the best AGO-matching grey prediction

framework in handling sparse, nonlinear, volatile, and heterogeneous

data typical of marine economic systems.
4.1 Data collections and analyses

This study compiles Gross ocean product data from the coastal

provinces of China, as shown in Figure 2. The data sources include

the China Marine Statistical Yearbook and the Marine economy

statistical bulletins published by the provincial natural resources

(marine) administrative departments and statistical agencies. The

data sets begin at 2005, but the most recent data varies between

provinces due to data availability. For example, gross ocean product

data for some provinces, such as Shandong, is available up to 2023,

whereas for others, like Hebei, it only extends to 2021.

Figures 2, 3 display the time series of gross ocean product for

each coastal province and the spatial distribution of gross ocean

product in 2021, respectively. Several key insights emerge from

these figures:
1. Small sample and poor information system: The gross

ocean product data for each province is a classic example

of a small sample and poor information system. As

illustrated in Figure 2, the time series consists of only 17–

19 data points, making it a grey system problem rather than

a traditional statistical analysis issue. Such small-sample

data, compared to large datasets typically used in statistical

and machine learning models, require specific forecasting

techniques like the grey prediction model and the data

preprocessing approach to handle the uncertainty and

limited information effectively.

2. Nonlinear evolution and data volatility: The GOP data exhibits

a high degree of complexity, with notable nonlinear trends,

significant volatility, and abundant noise. As observed in

Figure 3, each province follows a distinct nonlinear growth

pattern, with fluctuations in growth rates across the years.

These fluctuations likely stem from a combination of factors,

including changes in local policies, natural resource

availability, external economic influences, and environmental

disruptions. The irregular disturbances and oscillations in the

data further underline the challenge of making accurate

forecasts, reinforcing the need for sophisticated models like

the proposed best-matching AGOs-DGM(1, 1) that can

account for such dynamic behaviors.

3. Significant spatial distribution disparities and temporal

heterogeneity: As shown in Figure 3, there are
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Fron
considerable differences in the spatial distribution of gross

ocean product across the provinces. Provinces like

Guangxi, Hainan, and Hebei have relatively low GOP

levels, all below 3000 hundred million yuan. In contrast,

Shanghai and Zhejiang reach 9621.3 and 9841.2 hundred

million yuan, respectively, while Shandong and Guangdong

exceed 15,000 hundred million yuan. This phenomenon

indicates substantial regional variation, with different

provinces at distinct stages of marine economic

development, necessitating region-specific analysis. In

addition to spatial differences, Figure 2 highlights the

temporal heterogeneity in the evolution of marine

economies across provinces. The time series data reveals

divergent nonlinear dynamics, with varying levels of

growth volatility and randomness. Some provinces show

smoother, more consistent growth patterns, while others

exhibit more erratic fluctuations. This heterogeneity in

both spatial and temporal dimensions underscores the

need for a customized predictive model that can account

for each province’s unique characteristics, ensuring

accurate forecasts that reflect their specific developmental

trajectories and fluctuations.
In summary, the collected gross ocean product data from 11

coastal provinces of China highlights the need for specialized
tiers in Marine Science 09
forecasting techniques due to the small-sample, poor-information

nature of the system. The marine economy system exhibits

significant nonlinear evolution and volatility. Furthermore, the

spatiotemporal analysis shows marked disparities in GOP

levels and distinct temporal developmental behaviors across

the provinces.

Thus, the above data characteristics of the marine economy

system emphasize the necessity of a customized grey system model,

such as the proposed best-matching AGOs-DGM(1, 1) model,

which can tailor predictions to the specific dynamical

characteristics of each province’s marine economy, ensuring more

accurate and region-specific forecasts, which is essential for effective

policy-making and marine economic planning.
4.2 Experimental results

This section presents the experimental results to validate the

effectiveness of the proposed best-matching AGOs-DGM(1, 1)

model in accurately forecasting the provincial gross ocean

product in China.

Firstly, the multi-step ahead forecasting experiments are

conducted to evaluate the predictive performance of the model

across different forecast horizons. Specifically, in the one-step ahead

forecasting, the latest available GOP value from each region’s time
FIGURE 2

Gross ocean product series from 11 coastal provinces in China.
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series is used as the test data, while the preceding data is treated as

the training set to calibrate the models. This setup allows for an

assessment of the model’s ability to forecast near-term values.

Similarly, in the three-step ahead forecasting, the last three data

points are reserved as the test set to evaluate the model’s

performance over a longer horizon, while the earlier data serves

as the training set. Additionally, the accuracy of the forecasts is

evaluated using the MAPE criterion. Lastly, given the varying data

availability across provinces, Tianjin, Hebei, Liaoning, and Hainan

used a total sample length from 2005 to 2021, while other regions

used a total sample length from 2005 to 2023 for the train-test

data split.

Secondly, this study includes several benchmark models for

comparison to highlight the superior predictive capabilities of the

proposed model. Specifically, the autoregressive integrated moving

average (ARIMA) and exponential smoothing (ETS) models, which

are widely used statistical time series forecasting methods, are

included. Furthermore, advanced machine learning models such

as the long short-term memory model (LSTM) and Transformer,

known for their effectiveness in handling sequential data, are also

employed as benchmark models. By comparing the performance of

the best-matching AGOs-DGM(1, 1) model against these

traditional and modern approaches, we aim to demonstrate its

advantages in forecasting the gross ocean product of China’s

coastal provinces
Frontiers in Marine Science 10
Table 1 records the forecasting MAPEs of all competing models

across one- to three-step prediction horizons for China’s coastal

provinces. Figure 4 provides a visual representation of these results

by presenting box plots of the MAPEs, where the forecasting errors

for one- to three-step predictions are consolidated into a single box

to illustrate the overall distribution of forecasting errors. From the

analysis of both the table and figure, several key observations can

be made:
1. The AGO-enhanced grey prediction models achieve higher

accuracies: The DGM(1, 1) models enhanced by the

advanced AGO methods, including UNAGO, NAGO,

NGAGO, AEAGO, NIPO, and RAAGO, consistently

exhibit superior forecasting accuracy across all prediction

steps and coastal provinces. Specifically, these models

achieved average fMAPE values of 8.66%, 8.97%, 6.63%,

6.48%, 11.95%, and 7.67%, respectively. These accuracy

levels surpass the performance of the traditional 1-AGO-

based DGM(1, 1) model, indicating that the advanced

AGOs significantly improve the forecasting precision of

the conventional one. The enhanced models demonstrate

their ability to better capture the underlying nonlinear

trends and mitigate the noise present in the small-sample

data, leading to more reliable predictions. This validates the

effectiveness of AGO optimizations in grey models, as they
FIGURE 3

Regional distribution of the coastal provinces’ gross ocean product in China.
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TABLE 1 Forecasting MAPEs (%) of all competing models across all prediction horizons for the coastal provinces.

Models AGOs- Benchmarks

ARIMA ETS LSTM Transformer

0.73% 27.20% 6.44% 43.10%

0.36% 5.12% 9.44% 3.36%

26.93% 27.20% 6.05% 4.44%

0.32% 11.38% 3.22% 0.37%

10.14% 13.66% 3.24% 3.14%

8.14% 11.38% 1.71% 3.49%

16.37% 4.56% 14.57% 17.54%

8.05% 6.08% 17.21% 10.91%

6.21% 4.56% 8.62% 9.49%

5.81% 11.86% 11.52% 29.76%

13.26% 4.23% 94.15% 69.17%

27.15% 11.86% 63.00% 5.29%

13.89% 7.97% 30.41% 18.24%

15.15% 11.63% 15.55% 9.72%

12.70% 7.97% 88.36% 6.87%

0.75% 3.88% 9.46% 4.31%

1.98% 2.93% 5.76% 3.00%

2.17% 3.88% 3.10% 5.62%

26.19% 22.77% 1.19% 22.67%

13.06% 14.71% 17.12% 15.31%

19.64% 22.77% 12.16% 12.36%

0.59% 36.73% 23.52% 14.28%

1.90% 1.65% 25.69% 11.17%

12.09% 36.73% 17.18% 15.02%

3.30% 10.95% 2.02% 3.93%

4.55% 10.32% 2.68% 0.86%
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Provinces Horizons UNAGO NAGO NGAGO AEAGO NIPO RAAGO 1-AGO

Fujian

1 2.45% 4.28% 1.52% 0.53% 0.53% 0.53% 25.70%

2 6.76% 11.11% 2.91% 0.78% 31.11% 0.78% 31.11%

3 20.61% 22.29% 11.28% 6.20% 39.98% 1.94% 39.98%

Guangdong

1 0.99% 2.48% 0.59% 0.66% 0.66% 0.66% 24.77%

2 4.82% 7.08% 2.48% 1.89% 1.89% 1.89% 32.44%

3 15.23% 20.60% 12.44% 6.45% 45.31% 6.31% 45.31%

Hainan

1 9.56% 8.18% 11.55% 12.49% 13.06% 13.06% 1.51%

2 6.19% 6.21% 6.56% 6.35% 6.19% 6.39% 9.16%

3 5.25% 4.38% 4.39% 4.78% 5.51% 4.80% 9.41%

Guangxi

1 0.43% 3.23% 1.85% 1.51% 1.39% 0.02% 4.71%

2 3.18% 4.19% 1.13% 1.11% 4.20% 6.90% 5.28%

3 15.99% 16.93% 21.17% 20.61% 24.24% 24.24% 2.65%

Hebei

1 4.68% 4.64% 15.00% 10.04% 4.67% 2.29% 4.68%

2 21.70% 21.70% 9.08% 9.47% 21.70% 20.91% 21.70%

3 16.63% 16.63% 9.49% 7.55% 16.63% 16.12% 16.63%

Jiangsu

1 1.06% 2.00% 2.28% 1.87% 1.88% 1.87% 14.48%

2 3.18% 3.59% 2.78% 3.98% 4.08% 3.98% 17.95%

3 1.61% 1.62% 1.43% 1.61% 1.65% 1.61% 23.98%

Liaoning

1 26.12% 20.85% 20.33% 21.59% 27.39% 22.61% 11.44%

2 14.17% 14.20% 14.22% 14.19% 14.26% 14.20% 14.32%

3 12.24% 10.02% 10.43% 9.54% 13.97% 9.54% 15.83%

Shandong

1 4.39% 4.14% 4.17% 3.06% 2.26% 2.80% 11.10%

2 8.54% 7.08% 7.78% 6.86% 6.48% 6.92% 12.89%

3 8.78% 8.95% 10.44% 14.40% 14.47% 14.47% 17.79%

Shanghai
1 12.32% 12.10% 1.51% 2.02% 13.52% 6.73% 14.35%

2 15.51% 15.29% 1.83% 3.05% 15.58% 12.59% 15.81%
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enhance the model’s capability to adapt to the complexities

of marine economic data.

2. Benchmark models underperform in comparison: The

benchmark models—ARIMA, ETS, LSTM, and

Transformer—achieved average fMAPE errors ranging

from 10.12% to 18.79%, which are substantially higher

than the AGO-enhanced DGM(1, 1) models. This stark

difference highlights the limitations of conventional

statistical and machine learning models in handling the

sparse, volatile, and noisy nature of marine economic data.

While ARIMA and ETS models are effective in forecasting

linear time series data, they struggle with the nonlinear and

fluctuating characteristics of the GOP data. Similarly,

although LSTM and Transformer models are known for

their strength in sequential data processing, they were less

effective in this context, likely due to the small sample size

and the requirement for data pre-processing, such as the

AGO techniques employed by grey models.
These results underscore the superiority of AGO-enhanced

DGM(1, 1) models for forecasting gross ocean product in China’s

coastal provinces, particularly in environments characterized by

sparse, uncertain, and non-linear data. By utilizing advanced AGO

methods, the grey models can better capture the dynamics of each

province’s marine economy, providing more accurate and reliable

forecasts than traditional models.

Lastly, the proposed best-matching AGO-DGM(1, 1) model

leverages the best matching AGO technique to forecast the GOPs of

China’s coastal provinces. It is important to emphasize that the

best-matching AGO-DGM(1, 1) model is not focused on re-

evaluating forecasting performance during the testing stage.

Instead, it identifies and applies the best-matching AGO method

tailored to each specific coastal province. The rationale behind this

approach lies in the fact that the superior performance of the AGO-

enhanced DGM(1, 1) models has been validated in our experiments.

Consequently, the model directly selects the optimal AGO method

based on the unique characteristics of each province’s data.

Table 2 presents the best-matching AGOs for each coastal

province, determined by minimizing the forecasting errors

(fMAPEs). These AGOs were selected through the models’

selection processes, ensuring that each region’s specific dynamics

—such as its growth pattern, volatility, and data structure—are

accurately captured. This allows the model to provide highly

accurate and region-specific forecasts, further confirming the

versatility and effectiveness of the AGO-DGM(1, 1) framework in

addressing the heterogeneous nature of marine economic systems

across China’s coastal regions.

To further illustrate the effectiveness of the proposed a best-

matching AGO-DGM(1, 1) model, Table 3 and Figure 5 compare its

performance with that of the benchmark models. Therein, the

proposed best-matching AGO-DGM(1, 1) model consistently

outperforms the benchmark models in terms of forecasting

accuracy. The lower average error and more concentrated error

distribution of the AGO-DGM(1, 1) model indicate a higher level of

precision and consistency. This result suggests that the proposed
T
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model is not only better at handling the overall trends but also more

robust in managing outlier predictions. The fewer outliers observed

in the results point to the model’s capacity to mitigate extreme

fluctuations and irregularities, which are common in volatile and

nonlinear marine economic data. Additionally, the tight clustering

of errors demonstrates the model’s adaptability to the specific

economic dynamics of each coastal province, ensuring reliable

forecasts across different regions and time horizons.
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In contrast, the benchmark models, such as ARIMA, ETS, LSTM,

and Transformer, show a wider spread of errors and more frequent

outliers, revealing their limitations in capturing the complexity of

small-sample, poor-information systems like gross ocean product

data. These comparisons clearly affirm that the best-matching AGO-

DGM(1, 1) model provides superior forecasting performance,

making it an ideal choice for such challenging datasets.

In conclusion, the experimental results demonstrate the crucial

role of the advanced AGO methods in enhancing prediction

reliability for marine economy systems. By optimizing data

preprocessing, the AGO reduces noise and amplifies key trends,

laying a strong foundation for accurate modeling. Additionally, the

best-matching AGO approach further refines this process, adapting

to the unique regional characteristics and diverse dynamics of each

province. This tailored, region-specific adaptation significantly

boosts the proposed model’s predictive accuracy, ensuring

robust forecasts.
5 Future projections and policy
implications

5.1 Projecting the future gross ocean
product in China

This section presents the forecasted results of the gross ocean

product across China’s 11 coastal provinces. As recorded in Table 4,

the gross ocean product of China’s coastal provinces shows a steady
FIGURE 4

fMAPEs of all competing models across all prediction horizons.
TABLE 2 Best matching AGOs for the coastal provinces.

Provinces fMAPEs Best AGOs

Tianjin 6.35% UNAGO

Hebei 9.02% AEAGO

Liaoning 13.86% traditional AGO

Shanghai 1.73% NGAGO

Jiangsu 2.16% NGAGO

Zhejiang 1.64% NAGO

Fujian 1.08% RAAGO

Shandong 6.73% NAGO

Guangdong 2.95% RAAGO

Guangxi 4.21% traditional AGO

Hainan 6.26% NAGO

Average 5.09%
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growth trend from 2022 to 2025, with regional variations that reflect

differing levels of economic development, industrial capacity, and

natural resource management. Additionally, Figure 6 depicts the

regional distribution of the forecasted GOPs in 2025. The following

provides a detailed analysis of the projected growth in each region,

along with a discussion of the potential economic and ecological

implications of these forecasts:

5.1.1 Strong growth in southern coastal provinces
Guangdong, the province with the largest marine economy, is

projected to grow from 18,033.4 hundred million yuan in 2022 to

19,889.6 hundred million yuan in 2025, with a consistent annual

increase. This stable growth highlights Guangdong’s well-established

marine industries, particularly in sectors such as marine equipment
Frontiers in Marine Science 14
manufacturing, logistics, and biopharmaceuticals. The province’s

continued expansion indicates its dominant position in China’s

marine economy. While this growth is promising economically, it

also raises concerns about the sustainability of marine resources.

Efforts to ensure the sustainable use of marine resources, such as

implementing stricter fishing quotas and promoting the restoration

of marine ecosystems, will be crucial to prevent overexploitation.

Fujian is also set to see significant growth, with its GOP

increasing from 11,500 hundred million yuan in 2022 to

13,099.39 hundred million yuan in 2025. This reflects the

province’s increasing investment in marine fisheries, tourism, and

renewable energy. Fujian’s strategic location and access to rich

marine resources contribute to its steady development. While these

industries present opportunities for growth, they also place pressure

on marine biodiversity, especially in the case of fisheries

and tourism.
5.1.2 Emerging growth in underdeveloped
regions

Hainan and Guangxi are among the fastest-growing provinces

in terms of GOP percentage increase. Hainan is projected to grow

from 2,094.82 hundred million yuan in 2022 to 2,767.54 hundred

million yuan in 2025, a 32% increase over the forecast period. This

significant growth is largely driven by Haina’s focus on becoming a

global center for marine tourism, marine conservation, and low-

carbon marine industries. This growth offers significant potential

for ecological restoration projects, as the province is increasingly

integrating biodiversity conservation into its economic

development plans.

Guangxi shows a similar upward trajectory, growing from

2,296.9 hundred million yuan in 2022 to 3,363.1 hundred million

yuan in 2025, representing a 46% increase. The province’s marine

economy, which is less developed compared to other coastal

regions, is expected to benefit from new investments in port

infrastructure, maritime logistics, and aquaculture, making it an

emerging player in China’s marine sector.
TABLE 3 Forecasting errors of the proposed model and the benchmark models.

Provinces\Models ARIMA ETS LSTM Transformer Proposed

Tianjin 20.61% 18.31% 15.02% 9.69% 6.35%

Hebei 13.91% 9.19% 44.77% 11.61% 9.02%

Liaoning 19.63% 20.08% 10.16% 16.78% 13.86%

Shanghai 3.51% 10.74% 3.32% 2.72% 1.73%

Jiangsu 1.63% 3.56% 6.11% 4.31% 2.16%

Zhejiang 6.04% 4.58% 25.42% 3.85% 1.64%

Fujian 9.34% 19.84% 7.31% 16.97% 1.08%

Shandong 4.86% 25.04% 22.13% 13.49% 6.73%

Guangdong 6.20% 12.14% 2.73% 2.33% 2.95%

Guangxi 15.41% 9.32% 56.22% 34.74% 4.21%

Hainan 10.21% 5.07% 13.47% 12.65% 6.26%
FIGURE 5

fMAPEs of the DGM(1, 1) model with the best-matching AGOs and
the benchmarks.
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5.1.3 Steady growth in central and northern
provinces

Jiangsu, another economic powerhouse, is projected to increase

its GOP from 9,046.2 hundred million yuan in 2022 to 10,354.45

hundred million yuan in 2025, reflecting moderate but steady

growth. Jiangsu’s marine industries, particularly in shipbuilding

and marine engineering, continue to play a crucial role in its

economic performance. The province’s focus on technological

innovation and marine ecosystem management will likely sustain

this growth.

Shandong is expected to maintain its position as one of the

leading marine economies, with its GOP rising from 16,302.9

hundred million yuan in 2022 to 17,687.81 hundred million yuan

in 2025. While growth in Shandong is slightly slower compared to

southern provinces, its established marine industries, including

fisheries, offshore oil, and ocean-based manufacturing, ensure its

continued economic contribution.

Liaoning is forecasted to grow from 4,248.92 hundred million

yuan in 2022 to 4,786.76 hundred million yuan in 2025, reflecting

moderate growth in the marine sector. Liaoning’s focus on heavy

marine industries, including shipbuilding and port logistics, will

drive this expansion, although the province faces challenges related

to environmental sustainability and industrial upgrading. Liaoning

will need to adopt innovative practices that reduce pollution and

promote the sustainable use of marine resources to ensure the long-

term health of its marine economy.

5.1.4 Slower growth and stagnation in Hebei and
Tianjin

Hebei is expected to see only modest growth, increasing from

2,650.07 hundred million yuan in 2022 to 2,802.65 hundred million

yuan in 2025. This slow growth suggests that Hebei’s marine

economy is encountering structural issues, such as over-reliance
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on traditional industries and limited innovation in emerging

sectors. Hebei may need to focus on modernizing its marine

sectors and diversifying its economic base to achieve more

robust growth.

Tianjin, in contrast, shows signs of stagnation. The projected

GOP grows slightly from 4,641.83 hundred million yuan in 2022 to

4,654.63 hundred million yuan in 2025, indicating almost no

growth after 2023. This stagnation reflects Tianjin’s reliance on

legacy marine industries and its struggles with industrial

restructuring. Without strategic interventions to foster innovation

and revitalize its marine sector, Tianjin may continue to experience

stagnant growth.

5.1.5 Dynamic growth in Zhejiang and Shanghai
Zhejiang is projected to experience robust growth, with its GOP

increasing from 10,355 hundred million yuan in 2022 to 12,253

hundred million yuan in 2025. This substantial rise reflects

Zhejiang’s diversified marine economy, which includes marine

tourism, fisheries, and high-tech marine industries. As one of the

fastest-growing regions, Zhejiang’s development underscores the

success of its innovation-driven growth model.

Shanghai, although experiencing slower growth than Zhejiang,

is still projected to increase its GOP from 9,792.4 hundred million

yuan in 2022 to 10,014.89 hundred million yuan in 2025. Shanghai’s

marine economy is mature, with strong contributions from

international shipping, port management, and ocean-related

financial services. However, its slower growth reflects the

challenges of maintaining rapid expansion in a highly developed

marine economy. Policies that promote the greening of Shanghai’s

marine sectors—such as stricter environmental regulations and

investments in marine conservation—will be crucial to

maintaining the city’s competitive edge while ensuring the

sustainability of its marine ecosystems.

Overall, from 2022 to 2025, most provinces are expected to see

continuous growth in their marine economies, though at varying

rates. The southern and eastern coastal provinces—such as

Guangdong, Fujian, and Zhejiang—will remain leaders in China’s

marine economy, driven by innovation, diversified industries, and

strong financial support. Meanwhile, provinces like Hainan and

Guangxi will emerge as growth centers, leveraging their untapped

potential and benefiting from increased investment and

development. In contrast, northern provinces such as Hebei and

Tianjin face slower growth, signaling a need for structural reforms

and innovation-driven policies to revitalize their marine sectors.

Without such interventions, these regions may lag behind their

southern counterparts.
5.2 Policy implications

The forecasted growth of gross ocean product across China’s

coastal provinces highlights several key areas where targeted policy

interventions can ensure sustained growth, promote regional

synergy, and drive sustainable development. The following policy

recommendations are structured at the national and regional levels
TABLE 4 Forecasted coastal provincial gross ocean product (hundred
million yuan) from 2022-2025 in China.

Provinces\Years 2022 2023 2024 2025

Fujian 11500 12000 12543.81 13099.39

Guangdong 18033.4 18778.1 19363.8 19889.6

Hainan 2094.818 2301.268 2525.026 2767.543

Guangxi 2296.9 2568.4 3000.505 3363.104

Hebei 2650.073 2705.054 2755.805 2802.651

Jiangsu 9046.2 9606.9 9949.512 10354.45

Liaoning 4248.918 4421.125 4600.313 4786.763

Shandong 16302.9 17018.3 17182.81 17687.81

Shanghai 9792.4 9901.6 9880.278 10014.89

Tianjin 4641.827 4657.148 4661.049 4654.627

Zhejiang 10355 10881.83 11557.7 12253
The provinces that contain available data during a specific year use the fitting results of the
proposed model. For instance, Shandong’s data is available up to 2023, and thus the forecasted
values in 2022 and 2023 represent the fitting result while the forecasted values in 2024 and
2025 stand for the out-of-sample results.
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and focus on inter-provincial coordination to address the diverse

needs of China’s marine economy, while also considering the

potential impacts of marine economic growth on biodiversity,

fishing policies, and ecosystem services.
5.2.1 Strengthen national-level marine
economic strategies

At the national level, China’s marine economy must be aligned with

broader national economic and sustainability goals to ensure long-term

prosperity. This requires the central government to implement cohesive

policies that drive innovation, ensure environmental sustainability, and

provide strategic financial support for marine development.

National innovation agenda: A comprehensive national policy

should prioritize innovation in marine industries by incentivizing

research and development (R&D) in areas such as marine

biotechnology, renewable energy, and smart shipping. Establishing

national marine research institutes can further accelerate innovation

and foster partnerships between academia, industry, and government.

These innovations must also be coupled with efforts to integrate

biological sustainability into economic policies, ensuring that
Frontiers in Marine Science 16
technological advancements do not come at the cost of marine

biodiversity or ecosystem health.

Green marine development: To mitigate environmental

degradation, the government should enforce national environmental

standards across all coastal provinces. Centralized policies that promote

green marine technologies and sustainable marine practices will ensure

that the marine economy grows while protecting marine ecosystems.

This can be supported through green finance mechanisms such as

subsidies for low-carbon technologies and investments in eco-friendly

infrastructure. Additionally, national policies should explicitly address

the importance of preserving marine biodiversity and regulating

industries such as fishing and tourism, which can often lead to

habitat degradation and overexploitation of marine resources.

National marine investment funds: The government should

establish national-level marine investment funds to support

provinces at different stages of development. These funds would

provide capital for provinces with both mature and emerging

marine sectors, helping to finance projects that enhance marine

infrastructure, port modernization, and marine environmental

conservation. It is crucial that these investments also focus on

sustainable marine practices that ensure the protection of marine

biodiversity and ecosystem services.
FIGURE 6

Regional distribution of the forecasted provincial gross ocean product in China.
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5.2.2 Tailor regional policies to address
provincial needs

Given the heterogeneity of China’s coastal provinces, regional

policies should be tailored to reflect the specific needs and growth

patterns of each province. Fast-growing provinces require policies

that support innovation and sustainability, while slower-growing

regions need targeted investments and restructuring programs.

Support innovation in leading provinces: Provinces like

Guangdong, Fujian, and Zhejiang—which lead China’s marine

economy—should focus on enhancing high-tech marine

industries such as marine biopharmaceuticals and renewable

energy. However, alongside rapid growth, these provinces must

prioritize sustainability by adopting green technologies and

enforcing strict environmental regulations to mitigate potential

ecological damage. Policy measures should also encourage these

provinces to incorporate biodiversity conservation into their

economic plans, ensuring that marine development does not

compromise the health of ecosystems.

Drive growth in emerging regions: Hainan and Guangxi are

poised for substantial growth but need strategic investments to fully

realize their potential. Special economic policies that provide tax

incentives, simplified regulatory frameworks, and infrastructure

investments can accelerate their growth. Additionally, the

government should invest in marine tourism and aquaculture in

these regions, sectors that are primed for expansion and can drive

long-term economic development.

Revitalize stagnating economies: Northern provinces such as

Hebei and Tianjin face slower growth, highlighting the need for

industrial restructuring. Policies should focus on transitioning from

traditional marine industries to more modern, tech-driven sectors,

such as marine environmental services and clean energy. To

encourage this shift, innovation hubs can be established in these

provinces, fostering entrepreneurship and attracting investment in

emerging marine sectors.
5.2.3 Promote inter-provincial coordination
for balanced growth

One of the key challenges highlighted by the growth projections is

the disparity between fast-growing southern provinces and slower-

growing northern regions. To ensure cohesive development across all

coastal provinces, the government must foster greater inter-

provincial coordination. This will promote balanced economic

growth and reduce regional disparities.

Facilitate knowledge and technology sharing: Leading provinces

such as Guangdong, Zhejiang, and Shandong can play a pivotal role

in sharing knowledge and technology with slower-growing regions

like Hebei and Tianjin. Establishing inter-provincial research

collaborations and marine technology transfer programs will

allow slower-growing provinces to benefit from the advancements

made in more developed areas, promoting a more uniform growth

trajectory across the country.
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Create regional marine innovation hubs: The government can

establish regional innovation hubs that facilitate cross-provincial

partnerships between industry, academia, and research institutions.

These hubs would focus on marine-related R&D, providing shared

resources and infrastructure for provinces to collaborate on key

projects, such as marine biopharmaceuticals, smart ports, and

renewable energy. These hubs will help bridge the gap between

leading and lagging provinces, driving overall marine economic

development across the nation.

In summary, the future of China’s marine economy depends on a

multifaceted policy approach that integrates national-level strategies,

region-specific interventions, and inter-provincial coordination. By

promoting innovation, ensuring sustainable development, and

addressing the unique challenges faced by each coastal province,

China can achieve balanced growth across its marine sectors.

Facilitating cooperation between provinces will also allow for the

sharing of sustainable practices and ensure that all regions benefit

from the country ’s expanding marine economy without

compromising its marine biodiversity. A coordinated effort will

position China as a global leader in marine innovation and

sustainable development, creating a model for other nations to follow.
6 Conclusion

This study developed an best-matching AGOs-DGM(1, 1)

model to forecast the gross ocean product of China’s coastal

provinces, effectively addressing the complexities of marine

economic data with an approach tailored to each region’s unique

characteristics. By applying an adaptive AGO matching mechanism

that includes seven distinct AGOs, including some of the most

advanced optimized versions, the model effectively captures the

nonlinear trends, volatility, and regional heterogeneity inherent in

marine economic systems.

Firstly, an in-depth analysis of GOP data across 11 coastal

provinces revealed significant variations in economic trajectories,

reflecting unique local characteristics such as regional

heterogeneity, nonlinear growth patterns, and a range of external

disturbances. These complexities underscore the need for

specialized forecasting methodologies tailored to the marine

economic context.

Secondly, the proposed model leverages an adaptive AGO

matching mechanism utilizing seven types of AGOs, including

advanced optimized versions, significantly enhancing forecasting

precision. This tailored AGO selection enabled the model to align

more closely with the specific data profiles of each province, leading

to superior forecasting performance compared to traditional models

like ARIMA and LSTM, particularly in scenarios involving limited

data samples.

Thirdly, the forecasting outcomes provide valuable insights for

policymakers aimed at promoting sustainable development and

fostering regional coordination. By aligning provincial strategies

with both local economic strengths and overarching national goals,

the model aids in crafting policies that advance balanced growth

and resilience within China’s marine economy.
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In conclusion, this research delivers robust forecasts of the

complex marine economy, employing adaptive grey prediction

models with optimized best-matching AGOs as critical

instruments. This approach notably enhances forecasting accuracy

for regions with limited data and diverse developmental pathways,

delivering more dependable projections to inform strategic planning

and policy formulation for sustainable economic development.

Nevertheless, several limitations should be acknowledged.

While the model performs well under stable data conditions, it

may have limited capacity to account for unforeseen economic

shocks, abrupt policy changes, or extreme events. Future research

could address this limitation by integrating external shock

indicators or developing hybrid models that incorporate real-time

policy or risk signals into the forecasting framework.
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