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Introduction: The sound speed in the ocean significantly influences the

propagation characteristics of underwater acoustic signals. Rapid acquisition of

underwater three-dimensional (3D) sound speed fields is essential for target

detection, acoustic communication, and underwater navigation. The usual used

single empirical orthogonal function (sEOF) method, which reconstructs sound

speed profiles (SSP) by establishing statistical relationships between empirical

orthogonal coefficients of SSP and sea surface environmental factors, may have

several limitations: (1) The principal modes extracted by the EOF method may

lose some sound speed information, resulting in low reconstruction accuracy; (2)

The grid-by-grid inversion of SSP is computationally inefficient for acquiring

large-scale 3D sound speed fields; (3) Oceanic dynamic activities cause

disturbances in the sound speed field, and relying solely on sea surface

environmental information can limit the accuracy of full-ocean-depth sound

speed inversion.

Method: In this paper, we propose a region-oriented reconstruction model

named 3dCNN-DEN for 3D sound speed fields using the Convolutional Neural

Network (CNN). The model utilizes multi-source satellite remote sensing data

and CMEMS temperature-salinity reanalysis data, simultaneously incorporating

sea surface environmental factors (SST, SLA, and EKE) and underwater

information (average density) as inputs. The key innovation lies in integrating

both sea surface and underwater vertical density information to enhance the

accuracy of 3D sound speed field reconstruction.

Result: The results showed that the 3dCNN-DEN achieves an average root mean

square error (RMSE) of 0.7572 m/s and an average mean absolute error (MAE) of

0.5759 m/s, significantly outperforming conventional EOF-based methods.

Incorporating underwater average density improves reconstruction accuracy,

showing a 77.1% and 60.3% improvement over the sEOF-r and sEOF-CNN

methods, respectively.
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Discussion: The 3dCNN-DEN model significantly improves the accuracy and

computational efficiency of sound speed reconstruction by fully leveraging the

vertical structural characteristics of the marine environment. Unlike the EOF

method, it avoids information loss caused by mode truncation. These

advancements provide a novel perspective and technical approach for

achieving more accurate 3D sound speed field reconstruction.
KEYWORDS

sound speed reconstruction, convolutional neural network, average density, empirical
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1 Introduction

Sound speed is a key parameter in ocean sound propagation,

directly influencing the path of sound waves, detection range, and

data analysis accuracy. It significantly impacts underwater activities

such as target detection, localization, acoustic communication, and

environmental monitoring (Alexander et al., 2016; Wu et al., 2022).

The sound speed in seawater is influenced by parameters like

temperature, salinity, and density, which are affected by dynamic

ocean systems such as mesoscale eddies (Chen et al., 2022), oceanic

fronts (Chen et al., 2017), and internal waves (Lin and Lynch, 2017).

These systems create spatiotemporal variations, leading to uneven

sound speed distributions. As a result, quickly obtaining a high-

precision 3D sound speed field is critical.

Currently, sound speed in seawater is primarily obtained

through field observations: indirect measurements calculate sound

speed using empirical formulas based on temperature, salinity, and

depth data, while direct measurements use sound speed profilers to

obtain SSP. Field observations reflect actual sound speed conditions

but are limited by spatiotemporal resolution, making it difficult to

meet the high-precision requirements for large-area sound

propagation analyses. With advancements in satellite remote

sensing technology, real-time, large-scale, high-resolution data on

SST and SLA have become more accessible. However, satellite

measurements typically cover the ocean surface or near-surface

layers, which cannot fully capture subsurface information. Studies

indicate that SST and SLA are effective predictors for SSP estimation

(Liu et al., 2017; Wang et al., 2013), making near-real-time SSP

retrieval based on satellite data a research focus.

Theoretically, the SSP can be represented as a function of both

space and time. However, this representation requires a large

number of parameters. To reduce the dimensionality of SSP

reconstruction, the empirical orthogonal function (EOF) method

is commonly used. This method performs modal decomposition on

SSP data, extracting the principal characteristic modes that capture

sound speed variations for reconstruction. Leblanc and Middleton

(1980) demonstrated that using the EOF method as shape functions

to describe SSP yields minimal error, allowing SSP to be

reconstructed using only the first few coefficients. As a result, the
02
EOF method has become the most widely used approach for

underwater sound speed reconstruction. For instance, Chen et al.

(2018) employed the single empirical orthogonal function

regression (sEOF-r) method to establish linear regression

relationships between SSP’s EOF coefficients and sea surface

height and temperature anomalies, concluding that sea surface

parameters are strongly correlated with only the first-order EOF

coefficients. They also analyzed the feasibility and global

reconstruction performance of this method. Liu et al. (2023)

highlighted that eddy activity significantly influences the SSP

distribution. Accordingly, they incorporated eddy kinetic energy

(EKE) into the sEOF-r method, optimizing the empirical regression

formula to enhance reconstruction accuracy. Although the EOF-

based linear framework has some inherent errors, it significantly

reduces computational costs and has even been adopted by the U.S.

Navy as part of its operational ocean environment forecasting

solution (Fox et al., 2002).

As artificial intelligence technology advances, machine learning

has demonstrated increasing proficiency in capturing the nonlinear

relationships between sea surface environmental parameters and

sound speed. This has shown great potential for inverting

underwater environmental parameters based on sea surface data.

Jain and Ali (2006) proposed an SSP reconstruction method using

artificial neural networks that incorporated sea surface heat flux, net

radiation, wind stress, dynamic height, and temperature-salinity

profiles, achieving effective SSP reconstruction within a depth of

250 meters. Li and Zhai (2022) approached SSP as a time series with

strong spatial correlations and introduced a convolutional long

short-term memory (CNN-LSTM) network model, driven by

historical Argo SSP observations, to predict complete SSPs.

Furthermore, many researchers have combined machine

learning algorithms with the sEOF method to construct sound

speed reconstruction models, continuously introducing new input

parameters to improve accuracy. For example, Park and Kennedy

(1996) used SST along with corresponding temporal information

and flight times from acoustic multipaths as inputs, creating an SSP

reconstruction model based on multilayer perceptron neural

networks and the sEOF method. Recognizing the complexity of

shallow waters and the stability of deep waters, Liu et al. (2020)
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applied an adaptive approach to determine the optimal EOF mode

order, thereby enhancing SSP reconstruction accuracy. Li et al.

(2021) reconstructed SSP in the South China Sea using SST

anomalies, sea level anomaly (SLA), and latitude-longitude

coordinates with a self-organizing map (SOM) neural network

and the sEOF method. Building on this work, Li et al. (2022)

incorporated sea surface sound speed as an additional input to

reconstruct SSP in the Southeast Indian Ocean and further validate

the effectiveness of the SOM approach. Zhao et al. (2024) further

enhanced SSP reconstruction accuracy in the South China Sea by

combining the sEOF method with long short-term memory

(LSTM) networks, leveraging sea temperature anomalies and SLA

data. Liu et al. (2024) paired the sEOF method with generalized

regression neural networks (GRNN) to establish a nonlinear

mapping between sea temperature anomalies, SLA, EKE, and SSP

in the Luzon Strait region. Building upon these advancements, Feng

et al. (2024) incorporated shallow water temperature, flow field

data, and geolocation into the model framework. They then

compared the reconstruction performance of various machine

learning algorithms within the same SSP reconstruction framework.

In general, the sound speed reconstruction process using the

EOF method involves establishing a mapping between sea surface

environmental data and SSP temporal coefficients at each location,

but this approach has several limitations. First, the EOF method’s

extraction of principal modes may result in losing some sound

speed information, leading to reduced reconstruction accuracy.

Second, the grid-by-grid inversion of SSP is computationally

inefficient for large-scale 3D sound speed field acquisition. Third,

oceanic dynamic activities cause varying disturbances in the sound

speed field, and relying solely on sea surface remote sensing data

can limit the reconstruction accuracy of full ocean-depth sound

speed fields.
Frontiers in Marine Science 03
To address these challenges, this study utilizes multi-source

integrated data to propose a rapid three-dimensional sound speed

field reconstruction model based on Convolutional Neural Networks

(CNN), termed 3dCNN-DEN. For the first time, this model

incorporates sea surface environmental factors (SST, SLA, and EKE)

alongside underwater average density data as inputs. By fully leveraging

the vertical structural characteristics of the marine environment, this

significantly enhances the accuracy of sound speed field reconstruction.

Unlike traditional point-by-point inversion methods, the 3dCNN-

DEN model performs three-dimensional sound speed field

reconstruction directly over regions, greatly improving computational

efficiency. Moreover, it takes advantage of CNN’s robust feature

extraction capabilities to avoid the information loss issues caused by

modal truncation in EOF methods.
2 Data and methods

2.1 Data sources

The area east of the Luzon Strait experiences numerous

mesoscale eddies annually. It interacts with the Kuroshio Current,

making it one of the regions with the most intense variations in the

Kuroshio (Shen et al., 2013). Due to its unique geographical location

and the complex nature of ocean circulation and eddies, the acoustic

field structure in this region is highly intricate. Thus, this paper

selects the area east of the Luzon Strait for experiments on

reconstructing the 3D sound speed field, as illustrated in Figure 1.

The dataset of sea surface environmental parameters utilized

satellite altimeter data, with sea surface temperature (SST) sourced

from NOAA and sea level anomalies (SLA) and eddy kinetic energy

(EKE) sourced from AVISO. To match the resolution of the remote
FIGURE 1

Schematic of the area east of the Luzon Strait, with the experimental area marked in red.
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sensing data, this paper selects temperature and salinity reanalysis

data with the same resolution from the CMEMS (Copernicus Marine

Environment Monitoring Service) platform for use in sound field

reconstruction. The data format is presented in Table 1, covering the

period from January 1993 to December 2022, spanning 360 months.

The spatial coverage ranges from 18° to 23°N and from 124° to 136°E,

with a spatial resolution of 0.25° × 0.25°. The temperature-salinity

profile is vertically divided into 75 layers.

Sound speed and average density were calculated using

functions from the Seawater Toolkit. The sound speed was

computed using the UNESCO algorithm (Chen and Millero,

1977), and the specific empirical formula is provided in reference

Wong and Zhu, 1995.
2.2 Sound speed reconstruction method

2.2.1 3dCNN-DEN model
The ocean interior exhibits various complex and multiscale

dynamic phenomena, which alter the distribution of the sound

speed field, disturb the SSP, and affect the paths of sound wave

propagation. These phenomena exert a significant and complex

influence on the acoustic field structure. Solely using sea surface

environmental parameters may limit the reconstruction accuracy of

full ocean-depth sound speeds. Therefore, this study abandons the

traditional sEOF method and incorporates both sea surface

environmental information (SST, SLA, and EKE) and underwater

average density to improve accuracy. According to the theoretical

formula for sound speed, the phase velocity of sound waves in a

compressible medium is expressed as:

c = (
1
r

cp
kTcv

)
1
2 (1)
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where r is seawater density, cp and cv are the isobaric and

isochoric specific heats of seawater, and kT is the isothermal

compressibility of seawater. As shown in Equation 1, the sound

speed in seawater is closely related to its density, this paper

introduces the average density as underwater information for

sound speed reconstruction. To eliminate the influence of

seasonal signals, the background density field is calculated using a

multi-year seasonal average rather than a simple annual mean

climatology. Additionally, with the capability of CNNs to process

spatial fields, a region-oriented reconstruction model for full ocean-

depth 3D sound speed fields, the 3dCNN-DEN model,

is established.

2.2.1.1 Introduction of CNN

A CNN is a deep feedforward neural network characterized by

local connections and weight sharing, with their architecture

illustrated in Figure 2. CNNs utilize multiple convolutional layers,

pooling layers, and fully connected layers to automatically extract

and learn features from data, eliminating the need for manually

designed feature extractors. This enhances the efficiency of

processing complex data. The convolution operation, through its

local receptive capabilities, effectively captures local features in the

data. The parameter-sharing mechanism significantly reduces the

number of parameters by sliding the convolutional kernel across the

entire dataset, lowering both computational and storage demands.

Moreover, pooling layers improve the spatial invariance of features,

making the model more robust to translation and scaling variations.

This study selects CNN for sound field reconstruction based on

three primary reasons: Firstly, CNNs exhibit significant advantages

in processing multidimensional nonlinear data, effectively

extracting deep features from sea surface environmental factor

fields and average density fields. Secondly, the local perception

and multi-scale feature extraction capabilities of CNNs enable them
TABLE 1 Data types.

Data Name Data Source Area Time Period Resolution

SST NOAA

18°-23°N
124°-136°E

January 1993 - December 2022 0:25 °�0:25 °
SLA

AVISO
EKE

Temperature and salinity CMEMS
FIGURE 2

CNN structure.
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to capture the spatial heterogeneity of marine environments,

thereby optimizing the accuracy of sound field reconstruction.

Additionally, through convolution operations, CNNs reduce data

redundancy and dimensionality, significantly enhancing

computational efficiency.

2.2.1.2 Reconstruction technology process

Based on sea surface environmental factors (SST, SLA, and

EKE) and incorporating underwater information (average density)

as input parameters for sound speed reconstruction, this study

developed a region-oriented, full ocean-depth 3D sound speed field

reconstruction model (3dCNN-DEN) using the CNN. The

technical process is illustrated in Figure 3.
Fron
1. Data Preprocessing: Data interpolation and matching are

performed to align the temporal and spatial dimensions of

the satellite remote sensing data and CMEMS reanalysis

data. The underwater sound speed field is calculated with

the Seawater Toolkit and the average density is calculated

based on historical data as background field.

2. Model Input and Output Determination: The modeling

focuses on spatial fields, with sea surface environmental

information fields (SST, SLA, and EKE) and average

density fields at various depths serving as inputs, while

the sound speed fields at various depths are used as outputs.

The dataset is divided into training and test sets.

3. Network Training: The CNN establishes a mapping

between inputs and outputs. Parameters are continuously

adjusted using the training set to optimize the model.

4. Sound Speed Reconstruction: The sea surface information

from the test set is fed into the trained model, and the

sound speed field is reconstructed layer by layer.
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2.2.2 Models for comparative analysis
To validate the improvements of the model proposed in this

paper, three different sound speed reconstruction models were

analyzed and compared: the traditional sEOF-r method, the

sEOF-CNN method, and the 3dCNN method. The root mean

square error (RMSE) and the mean absolute error (MAE) were

used as metrics to measure the error between the estimated sound

speed values and the test samples.

2.2.2.1 sEOF-r method

The primary goal of the EOF method is to separate the temporal

and spatial variable functions in the SSP, describing the

spatiotemporal variations of the SSP using as few modal basis

functions as possible. Integrate all SSPs into a sound speed profile

matrix CM�N , where M represents the number of vertical layers in

the SSP (M=75), and N represents the temporal layers of SSPs

within the region. By performing EOF decomposition on the SSP

matrix CM�N , this matrix can be approximately expressed as:

CM�N = C0(M) +o
K

k=1

akfk(m) (2)

where K is the number of EOFs selected for computation, ak is

the empirical orthogonal coefficient, fk(m) is the EOF base function,

and C0(M) represents the mean SSP. The selection of the order

depends on the variance contribution rate of each mode, with the

cumulative variance contribution rate of the first K eigenvectors is

given by Equation 3:

Q =
o
K

i=1
li

o
M

m=1
lm

(3)
FIGURE 3

Technical process diagram of 3dCNN-DEN.
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Research has shown that when the cumulative variance

contribution rate of the first three EOFs (Q) is ≥ 88%, reliable

reconstruction results can be obtained (Lu et al., 2020).

In the traditional sEOF-r method, the EOF coefficients are

typically computed for each location’s SSP matrix based on

Equation 2. Following the work of Chen et al. (2018) and Liu

et al. (2023, 2024), the relationships between SST, SLA, and EKE

with SSP are significant. Therefore, this study constructs a

univariate linear regression between the sea surface parameters

(SST, SLA, and EKE) and the temporal coefficients ak of the EOFs.

The least squares estimation of the fitting coefficients is obtained,

and the linear regression relationship is expressed by Equation 4:

ak = b0k + b1kSST + b2kSLA + b3kEKE + b4kSST � SLA

+b5kSST � EKE + b6kSLA� EKE
(4)
2.2.2.2 sEOF-CNN method

It is well known that the ocean system is complex and

nonlinear, and using a linear framework to reconstruct the SSP

inevitably introduces systematic errors. To address this limitation,

this study incorporates deep learning techniques to capture

nonlinear relationships between variables, proposing the sEOF-

CNN method (see Figure 4 for the detailed reconstruction

process). In the developed sEOF-CNN framework, we establish a

supervised learning architecture where sea surface parameters (SST,

SLA, and EKE) serve as input features. The CNN is employed to

model the nonlinear relationship between these parameters and the

principal components (PC1, PC2, PC3) derived from EOF

decomposition. In this model, the EOF temporal coefficients serve
Frontiers in Marine Science 06
as the target output variables, while the sea surface environmental

parameters constitute the input feature space. Thus, the primary

objective of this model is to train a CNN capable of accurately

predicting EOF temporal coefficients based on sea surface

environmental parameters. Notably, the predicted EOF temporal

coefficients generated by the trained CNN model are directly

utilized for SSP matrix reconstruction without further

involvement in the training process. The final reconstruction

involves: (1) linear combination of the predicted temporal

coefficients with EOF spatial modes, and (2) superposition with

the climatological mean sound speed field, thereby achieving

complete three-dimensional sound speed field reconstruction.

2.2.2.3 3dCNN method

To further evaluate the improvement in sound speed

reconstruction by incorporating underwater average density, this

paper builds the 3dCNN model. Unlike the 3dCNN-DEN model,

which incorporates the underwater density field, the 3dCNN model

directly uses the sea surface environmental factors (SST, SLA, and EKE)

as input for regional 3D sound speed field reconstruction. The 3dCNN

model follows a similar technical process as the 3dCNN-DEN model,

with the only difference being the inclusion of density as a model input.

3 Modeling and experimental analysis

3.1 Data preprocessing

This study selects the region east of the Luzon Strait (18°-23°N,

124°-136°E) as the research area. The SLA and EKE data from
FIGURE 4

Technical process of the sEOF-CNN method.
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AVISO, SST data from NOAA, and temperature-salinity data from

CMEMS share the same resolution. However, there is a 0.125°

difference in the grid latitude and longitude between these datasets,

resulting in spatial mismatches between the sea surface remote

sensing data and the temperature-salinity profile data. To address

this issue, the surrounding sea surface data points around each

CMEMS grid point are averaged, and masking treatments are

applied to handle invalid values at various depths. This process

ensures spatial consistency among the four data types, all with a

resolution of 0.25° × 0.25°.

Ninety percent of the dataset, covering the period from January

1993 to December 2019 (a total of 27 years with a temporal

resolution of one month), are allocated as the training set. The

remaining ten percent, spanning from January 2020 to December

2022 (a total of 3 years with a monthly temporal resolution), are

designated as the testing set. The reconstruction capability and

validation of the 3dCNN-DEN model are assessed based on the

specified procedures.
3.2 Sound speed reconstruction modeling
process

The key step in the 3D sound speed field reconstruction

methods based on CNN (the 3dCNN method and 3dCNN-DEN

method) is the construction of the CNN. This study uses Matlab’s

Deep Learning Toolbox to build a five-layer network. The first layer

is the input layer, where the data are normalized and flattened

before being processed. The second layer is a convolutional layer,

with a kernel size of 3×1, generating 16 convolutions. The third

layer is a pooling layer, with a kernel size of 2×1 and a stride of 2.

The fourth layer is a fully connected layer consisting of 50 neurons.

Finally, the fifth layer is the regression layer, used to calculate

loss values.

For the station-by-station SSP reconstruction methods based on

the EOF method (sEOF-r method and sEOF-CNN method), the

critical aspect is selecting the appropriate EOF modal order for

sound speed. As shown in Table 2, the variance contribution rate of

the first three modes following sound speed EOF decomposition is

94.29%, indicating that only the temporal coefficients of these three

modes are needed to meet the SSP reconstruction requirements.
3.3 Analysis of sound speed reconstruction
results

A comparative analysis of the reconstruction performance of

four methods was conducted, and Figure 5 presents the MAE and

RMSE of the reconstructed sound speed at various depth layers.
Frontiers in Marine Science 07
Overall, the CNN-based sound speed field reconstruction models

(3dCNN-DEN and 3dCNN) outperform the traditional grid-by-

grid SSP reconstruction models (sEOF-CNN and sEOF-r). The EOF

method’s use of principal mode extraction for sound speed

modeling results in some information loss, thereby reducing

reconstruction accuracy.

The improvements in reconstruction capability presented by

the models proposed in this paper are particularly notable at depths

shallower than 1200 m, with significant gains at depths shallower

than 100 m. SSP reconstruction in shallow waters faces multiple

challenges: boundary effects, tidal mixing, wave stirring, and intense

air-sea interactions collectively induce high dynamism and spatial

heterogeneity in vertical sound speed distributions. Conventional

EOF methods suffer from inherent limitations, exhibiting reduced

modal convergence in nonstationary fields (typically with the first

three modes explaining<65% variance). Compounded by the

scarcity of historical profile data in shallow waters (only 20-30%

of deep-water quantities), neural network training encounters

small-sample constraints, jointly contributing to increased SSP

reconstruction errors. The proposed 3dCNN-DEN model

innovatively incorporates mean seawater density as a key input

parameter, enabling multimodal data fusion with sea surface

environmental factors. This approach significantly enhances

modeling accuracy for temperature-salinity-pressure coupling

effects on sound speed. Experimental results demonstrate that in

shallow waters (<100 m), 3dCNN-DEN achieves a sound speed

error of 0.8398 m/s, representing reductions of 18.5%, 74.7%, and

82.6% compared to the baseline models 3dCNN (1.031 m/s), sEOF-

CNN (3.3229 m/s), and sEOF-r (4.8392 m/s), respectively,

confirming its superior performance in shallow regions. In

intermediate depths (100–650 m), the sEOF-CNN method

exhibits a relative advantage, with a reconstruction error of

1.5771 m/s771tru lower than 3dCNN’s 2.1264 m/s. Notably, by

incorporating vertical seawater density information, 3dCNN-DEN

further reduces the error to 0.9234 m/s, achieving a 56.6%

improvement over 3dCNN. As depth increases, performance

differences between models gradually diminish: in deep waters

(>780 m), all models stabilize with errors below 1 m/s, and at

1150 m, errors converge to within 0.5 m/s, indicating stronger

spatiotemporal stability in deep-water sound speed fields.

Table 3 shows the average reconstruction accuracies of the four

models, ranked as 3dCNN-DEN > 3dCNN > sEOF-CNN > sEOF-r.

The 3dCNN-DEN model proposed in this paper improves

reconstruction accuracy by 77.1% compared to the traditional

sEOF-r method. Among the two SSP reconstruction models based

on the EOF method, the nonlinear framework constructed using

deep learning (sEOF-CNN) outperforms the traditional linear

framework (sEOF-r), with a 42.4% improvement in model

reconstruction accuracy. Comparing the two sound speed field

reconstruction models based on CNN, the introduction of

underwater average density enhances the reconstruction accuracy

by 42.4%, significantly boosting the model’s performance.

Table 4 presents the research efforts of several scholars in the field

of sound speed reconstruction. It is evident that the current

mainstream approach involves combining sEOF with machine
TABLE 2 Variance contribution rates of the first five modes.

Mode number 1 2 3 4 5

Variance contribution rate 64.50% 21.00% 8.79% 3.04% 0.99%
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learning, and regardless of the specific machine learning framework

used, the typical accuracy of SSP reconstruction models based on sEOF

remains around 1~2 m/s. Although sound speed reconstruction errors

can be reduced to below 1 m/s in certain regions, the overall

development trend has reached a bottleneck. The 3dCNN-DEN

model proposed in this study departs from traditional point-by-point

reconstruction methods by innovatively incorporating average density

fields as model inputs. This reduces the overall sound speed
Frontiers in Marine Science 08
reconstruction error to 0.7572 m/s, significantly enhancing the

precision and efficiency of underwater sound speed reconstruction.

Furthermore, CNNs have demonstrated exceptional performance in
TABLE 3 The vertical average MAE and RMSE of four sound speed
reconstruction models.

Reconstruction model MAE (m/s) RMSE (m/s)

sEOF-r 2.5169 4.1527

sEOF-CNN 1.4498 2.2914

3dCNN 0.9998 1.2427

3dCNN-DEN 0.5759 0.7572
TABLE 4 The related work of other scholars.

Author Method RMSE
(m/s)

Region

Li et al. (2022) sEOF-SOM 1.69 Southeast
Indian Ocean

Feng
et al. (2024)

sEOF-MLR 1.63

The South China Sea

sEOF-SVR 1.53

sEOF-XGBoost 1.16

Zhao
et al. (2024)

sEOF-LSTM 1.76

Liu et al. (2024) sEOF-GRNN 1.50 Luzon Strait
FIGURE 5

Average MAE and RMSE of sound speed at various depth layers for four sound speed reconstruction methods, with the dashed lines in
corresponding colors representing the mean sound speed error for each method.
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FIGURE 6

(a–t) Sound speed errors at different depths for the four sound speed reconstruction methods. Columns 1–4 represent errors for sEOF-r, sEOF-
CNN, 3dCNN, and 3dCNN-DEN, respectively, and rows 1–5 show errors at depths of 0.5 m, 53.85 m, 97 m, 120 m, and 411 m.
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sound field reconstruction tasks, providing new tools and

methodologies for marine acoustic research.

To further compare the reconstruction effects of the four sound

speed reconstruction methods, Figure 6 presents the sound speed

reconstruction errors at different depths. The sEOF-r method

exhibits large overall sound speed errors, with a scattered error

distribution, and some regions showing sound speed errors greater

than 10 m/s. In contrast, the errors of the sEOF-CNN, 3dCNN, and

3dCNN-DEN methods were relatively smooth in space and better

represent the spatial distribution characteristics of sound speed. At

near-surface layers, the CNN-based 3D sound speed field

reconstruction models significantly outperform the traditional

grid-by-grid SSP reconstruction models, particularly in the upper

layers of the sea. At depths of 97 m, 120 m, and 411 m, the

reconstruction accuracy of the sEOF-CNN method is slightly better

than that of the 3dCNN method. Under the same sea surface

environmental input data, the 3dCNN model’s reconstruction

capability in the upper ocean layers could be improved, as is

evident from the MAE and RMSE distribution in Figure 5. By

incorporating average density field, the 3dCNN-DEN method

further enhances the model’s reconstruction accuracy, especially

in the upper ocean layers, where a substantial reduction in sound

speed error is observed.

Figure 7 shows the full ocean-depth average MAE and RMSE

distribution for the four sound speed reconstruction methods,

which mirrors the pattern observed in Figure 6. The

reconstruction accuracies of the models are ranked: 3dCNN-DEN

> 3dCNN > sEOF-CNN > sEOF-r. The sEOF-r method exhibits

larger overall sound speed errors with a scattered distribution, while

the other models display smoother errors in space, better restoring

the overall spatial distribution characteristics of sound speed, but

there are still some differences in the fine structure of the sound
Frontiers in Marine Science 10
speed distribution across regions. At the same time, because the

reconstruction is performed on a per-grid-point basis, it is

challenging to accurately depict the regional impacts of large-scale

and mesoscale oceanic dynamical phenomena on sound field

reconstruction. Compared to the 3dCNN model, the inclusion of

vertical seawater density significantly enhances the reconstruction

capability of the 3dCNN-DENmodel. Notably, the areas with larger

reconstruction errors are concentrated in two circular regions

between 20°-21.5°N, 125.5°-127°E, and 20.5°-22°N, 133°-136°E.

We initially guessed that the abnormal error was caused by the

perennial existence of mesoscale eddies in these two regions.
3.4 Anomalous error analysis and
discussion

Although the 3dCNN-DEN model developed in this study has

significantly improved overall sound speed reconstruction accuracy,

certain areas exhibit notably large errors. To verify the previously

mentioned hypothesis about anomalous error regions, Figure 8a

shows the multi-year average EKE distribution of the study area. It

is evident that in two circular regions—20°–21.5°N, 125.5°–127°E and

20.5°–22°N, 133°–136°E—the EKE values are significantly higher

than in other areas, indicating the persistent presence of two strong

mesoscale eddies. Meanwhile, we performed a multi-year average of

the SLA and surface current field in this region from the testing set

and identified them using the traditional Okudo-Weiss (OW)

algorithm (Isern et al., 2003). It was found that these two circular

regions highly coincide with the areas where mesoscale eddies are

located (the black curves in Figure 8a represent the boundaries of the

mesoscale eddies, and the white stars indicate the eddy centers). This

indicates that within the influence region of mesoscale eddies, the
FIGURE 7

(a–h) Full ocean-depth average MAE and RMSE distribution for the four sound speed reconstruction methods.
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sound speed reconstruction error of the 3dCNN-DEN model is

significantly larger. To more intuitively demonstrate the impact of

mesoscale eddies on sound speed reconstruction, within the

mesoscale eddy at 20°–21.5°N, 125.5°–127°E, five stations (S1-S5)

were selected, while two stations (S6-S7) were chosen outside the

eddy. Figures 8b–h display the variations in the reconstructed sound

speed with depth at these stations, and Table 5 presents the average
Frontiers in Marine Science 11
MAE of the reconstructed sound speed. For the grid-by-grid SSP

reconstruction method based on the EOF approach, the sound speed

reconstruction accuracy shows no significant difference inside versus

outside the mesoscale eddy. However, for the 3D CNN-based

reconstruction methods, the errors at stations within the eddy are

significantly larger, particularly for the 3dCNN-DEN model

proposed here. Despite its high overall accuracy, the performance
FIGURE 8

(a) Distribution of EKE and mesoscale eddies within the study area; (b–h) Comparison of reconstructed SSP using four methods at the seven
selected stations.
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difference between inside and outside the eddy is most pronounced

for the 3dCNN-DEN model.

To further analyze the impact of mesoscale eddies on the

reconstruction performance of the 3dCNN-DEN model, cross-
Frontiers in Marine Science 12
sectional analyses were conducted along both the longitudinal

and latitudinal axes at the center of the mesoscale eddy located at

20.75°N, 127°E, as shown in Figures 9, 10. In the 127°E cross-

section (Figure 9), the mesoscale eddy extends between 20° and
TABLE 5 Average MAE of reconstructed sound speed for the four sound speed reconstruction methods at seven stations.

Station
MAE/(m/s)

sEOF-r sEOF-CNN 3dCNN 3dCNN-DEN

Inside eddy

S1 4.8183 4.9290 3.6080 4.3852

S2 9.0384 4.9502 3.4620 4.3205

S3 6.9195 5.4592 3.6954 4.3032

S4 9.0384 4.9502 3.4630 4.3205

S5 9.5852 5.3678 3.9052 4.9532

Average MAE inside eddy 7.8800 5.1313 3.6265 4.4565

Outside eddy
S6 5.4698 5.3619 3.0218 2.3544

S7 9.8914 5.0730 2.5648 1.8562

Average MAE outside eddy 7.6806 5.2175 2.7933 2.1068
FIGURE 9

(a–d) Sound speed error distribution for the four sound speed reconstruction methods at the 127°E cross-section.
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21.5°N, as indicated by the black dashed line in Figure 9d, with the

red dashed line marking the eddy center. It was observed that the

large error areas in the reconstructed sound speed using the sEOF-r

and sEOF-CNN methods are concentrated in the upper ocean layer

(0–100 m) and show little correlation with the eddy region. The

average MAE for sound speed within this depth range is 5.4792 m/s

and 3.2997 m/s, respectively, which is significantly higher than the

average MAE of the 3dCNN and 3dCNN-DEN models at the same

depth (1.4758 m/s and 1.2857 m/s, respectively).

The large error areas in the reconstructed sound speed from

the 3dCNN method are not located within the mesoscale eddy

range but are instead concentrated between the 100–160 m and

300–500 m depths, closely aligning with the higher MAE and

RMSE values shown in Figure 5. The average MAE for sound

speed in these depth ranges is 2.4393 m/s and 1.9288 m/s,

respectively. Conversely, the 3dCNN-DEN model’s large error

areas are concentrated within the mesoscale eddy’s range,

extending from the surface down to 500 m, and possibly

affecting depths of up to 1000 m. The highest average MAE at
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the eddy center is 2.3232 m/s. Within the mesoscale eddy, the

average MAE for the reconstructed sound speed is 1.5058 m/s,

slightly higher than the 0.9548 m/s outside the eddy region.

For the 20.5°N cross-section (Figure 10), the mesoscale eddy’s

range is between 125.5° and 127°E, as indicated by the black dashed

line in Figure 10d, with the red dashed line marking the eddy center.

The error distribution across the four sound speed reconstruction

methods at the corresponding depths is similar to that in Figure 9.

The mesoscale eddy has little impact on the reconstruction accuracy

of the sEOF-r, sEOF-CNN, and 3dCNN methods, but it

significantly affects the accuracy of the 3dCNN-DEN method.

The affected depth ranges from the surface down to 500 m, with

possible effects reaching as deep as 1000 m. At the eddy center, the

average MAE of the reconstructed sound speed reaches a maximum

of 1.9244 m/s.

All in all, the reconstruction accuracy of the 3dCNN-DEN

model is significantly influenced by mesoscale eddies, with regions

of anomalously high sound speed errors closely matching the depth

and range of eddies. One possible explanation for this is that density
FIGURE 10

(a–d) Sound speed error distribution for the four sound speed reconstruction methods at the 20.75°N cross-section.
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structure within mesoscale eddies differs significantly from the

average density. By contrast, in regions outside of mesoscale

eddies, the 3dCNN-DEN model exhibits significantly higher

reconstruction accuracy than the 3dCNN model, further

demonstrating that the inclusion of underwater average density

greatly enhances the model’s reconstruction capabilities. This

finding provides a crucial direction for the optimization of future

ocean models, particularly in handling complex ocean dynamic

phenomena, where the incorporation of vertical density parameters

may prove essential. Given the significant role of mesoscale eddies

in ocean dynamics and their impact on sound speed fields, this is

critical for applications such as ocean acoustic detection and ocean

circulation modeling. Therefore, in marine environmental research,

special attention should be paid to the temperature-salinity

characteristics of mesoscale eddies and their influence on model

accuracy to enhance the precision of ocean observations

and predictions.
4 Conclusion

This paper proposes a region-oriented reconstruction

model for 3D sound speed field using the CNN (3dCNN-DEN).

The model incorporates not only sea surface environmental

information (SST, SLA, and EKE) but also underwater

information (average density) for reconstruction. To test the

validity of the proposed model, we compared it with traditional

sEOF methods (sEOF-r and sEOF-CNN) and a sound speed field

reconstruction model based on deep learning (3dCNN). The

results showed the following:
Fron
1. The 3D sound speed field reconstruction models based on

CNN (3dCNN-DEN and 3dCNN) significant ly

outperformed the grid-by-grid SSP reconstruction models

based on EOF (sEOF-r and sEOF-CNN), particularly in the

upper seawater layers (0–100 m), where reconstruction

errors were smaller. The 3dCNN-DEN model achieved an

average MAE of 0.5759 m/s and an average RMSE of 0.7572

m/s, representing reductions of 77.1% in both MAE and

RMSE values compared to the sEOF-r method. Besides, the

reconstruction errors of 3dCNN-DEN are smoother and

more consecutive in space, which can better represent the

spatial distribution characteristics of sound speed.

2. Compared to the 3dCNN model, the 3dCNN-DEN

model further improved reconstruction accuracy by

42.4%, demonstrating that the inclusion of underwater

average density significantly enhanced the reconstruction

performance. Within strong mesoscale eddies, the density

structure usually differs significantly from the average

density (that is background field), leading to poorer

reconstruction performance within the eddies’ influence

range and depth. In the future research, we will focus

on proposing a specialized model for the mesoscale eddy

and improving SSP reconstruction in mesoscale

eddy regions.
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