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The increase in atmospheric carbon dioxide (CO2) over the last 200 years has

largely been mitigated by the ocean’s function as a carbon sink. However, this

continuous absorption of CO2 by seawater triggers ocean acidification (OA), a

process in which water becomes more acidic and more depleted in carbonate

ions that are essential for calcifiers. OA is well-studied in open ocean

environments; however, understanding the unique manifestation of OA in

coastal ecosystems presents myriad challenges due to considerable natural

variability resulting from concurrent and sometimes opposing coastal

processes—e.g. eutrophication, changing hydrological conditions,

heterogeneous biological activity, and complex water mass mixing. Developing

a mechanistic understanding of carbonate chemistry variability and its drivers

across different time scales is a critical first step in identifying the anthropogenic

OA signal against background variability and predicting future OA in coastal

systems. This study analyzed high temporal resolution pH data collected during

2022 and 2023 from Narragansett Bay, RI—a mid-sized, urban estuary that since

2005 has undergone a 50% reduction in nitrogen loading—with weekly, discrete

bottle samples to verify sensor data. Over a year’s worth of data revealed a

distinct diurnal cycle of pH, with pH increasing during the day and decreasing

during the night, with an average daily range between 0.05 and 0.1 pH units.

Further, we observed a strong seasonal cycles with higher mean pH in winter

(8.07 ± 0.15) and lower mean pH in summer (7.72 ± 0.07). By separating the

drivers of pH variability into effects from temperature, salinity, water mass mixing,

biological activity, and air-sea gas flux, we determined that biological production

has the most significant influence on pH from daily to annual timescales and in

episodic pH changes. To a lesser extent, the seasonal air-sea CO2 exchange and

temperature cycle further modified pH on monthly to seasonal timescales. The

dominant influence of biological activity in modulating pH has allowed

Narragansett Bay’s nutrient reductions, which have been successful in

increasing bottom water DO and pH conditions, to modestly reduce

summertime surface pH through reduced primary production. This study offers
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an in-depth understanding of Narragansett Bay’s natural carbonate variability and

highlights the sensitivity of an estuary to water management policy. These

findings will benefit future OA prediction and will ultimately assist in making

environmental management decisions in coastal estuaries with implications for

multiple coastal stakeholders.
KEYWORDS

ocean acidification, carbonate chemistry, estuarine biogeochemistry, nutrient
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1 Introduction

Since the Industrial Revolution, carbon dioxide (CO2)

emissions from fossil fuel burning and land use changes have

increased atmospheric CO2 from preindustrial levels of around

280 ppm to an annual average of 421 ppm in 2023 (Lan et al., 2023).

Since 1850 the ocean has removed 26% of anthropogenic emissions

from the atmosphere (Friedlingstein et al., 2022). As the ocean

continues to take up excess atmospheric CO2, a cascade of chemical

reactions beginning with CO2 gas dissolving in water, summarized

in Equation 1, increases hydrogen ion concentration ([H+]) into the

water column, thus lowering pH and reducing carbonate ion

concentration. This process is known as ocean acidification (OA)

and has decreased global surface ocean pH by more than 0.1 units

since the preindustrial age, a change corresponding to a 30-40%

increase in [H+] (Doney et al., 2009; Feely et al., 2023; Jiang et al.,

2019).

CO2(gas) +H2O⇌
K0
H2CO3⇌

K1
H+ +HCO−

3⇌
K2
2H+ + CO2−

3 (1)

Ongoing OA research continues to improve our understanding

of its drivers in the global ocean and its deleterious effects on the

ecological community, particularly calcifying organisms (Orr et al.,

2005; Kroeker et al., 2010; Jiang et al., 2019; Kwiatkowski and Orr,

2018). For example, the increased acidity of ocean water stresses

marine biota—damaging calcifying organisms as small as

coccolithophores and as large as coral reefs, altering the

development and physiology of many fish species, and disrupting

the balance of marine food webs (Esbaugh, 2018; Beaufort et al.,

2011; Orr et al., 2005; Jellison and Gaylord, 2019; Mollica et al.,

2018; Doney et al., 2020). These changes have cascading effects on

human communities, as commercial fishing and aquaculture

enterprises suffer economic losses, and weakened biodiversity and

ecosystem resilience reduce water quality (Narita et al., 2012; Hall-

Spencer and Harvey, 2019). However, our understanding of OA in

coastal systems and estuaries remains limited, due to the unique

challenges presented by the coastal ocean’s considerable natural

variability resulting from concurrent and sometimes opposing

coastal processes—e.g. eutrophication, changing hydrological

conditions, highly dynamic biological activity, complex water
02
mass mixing, and on-shore land use changes, all of which can

obscure the signal of anthropogenic acidification (Pacella et al.,

2024; Cai et al., 2021). An in-depth, mechanistic understanding of

carbonate variability in the coastal ocean is critical for

anthropogenic acidification detection and future estuary water

quality management, especially in communities that heavily rely

on the coastal ocean’s resources.

Cai et al. (2017) summarize pH’s sensitivity to changing

physical parameters (e.g. temperature and salinity) and carbonate

parameters (e.g. dissolved inorganic carbon [DIC] and total

alkalinity [TA]) in Equation 2, all of which can vary greatly in

coastal systems. While temperature and salinity effects on pH are

primarily thermodynamic (Millero, 1995), pH variation from

changing DIC and TA result from a number of processes. First,

the mixing of different water masses can modulate pH by mixing

fresh riverine water—which is generally weakly buffered with low

TA/DIC—with marine water—which has higher TA/DIC, and a

stronger buffering capacity. Strength of mixing alone can vary with

tidal cycle, extent of runoff due to precipitation, and strength of

wind and coastal upwelling (Hunt et al., 2022; Pacella et al., 2024;

Rewrie et al., 2023). This results in a gradient of buffering capacities

throughout the estuary, with buffering capacity weakening inland as

salinity decreases and the ratio of TA/DIC decreases. Generally

speaking, low and even mid-salinity regions have a weak enough

buffering capacity to make these ecosystems particularly sensitive to

pH decreases (Hu and Cai, 2013; Cai et al., 2021; Wallace et al.,

2014).

dpH =
∂ pH
∂T

dT +
∂ pH
∂ S

dS +
∂ pH
∂DIC

dDIC +
∂ pH
∂TA

dTA +⋯ (2)

In addition to water mass mixing, biological processes (i.e.

photosynthesis and respiration) modify DIC and TA (Lowe et al.,

2019; Baumann and Smith, 2018). The net metabolism of the

ecological community describes the balance between

photosynthesis and respiration and reveals the extent to which

biological processes increase or decrease DIC and TA (Caffrey et al.,

2014). When an estuary’s net metabolism is autotrophic, meaning

dominated by photosynthesis over respiration, the consumption of

CO2 by photosynthesis reduces [H+]. Conversely, when the net

metabolism is heterotrophic, meaning dominated by respiration,
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the release of CO2 from respiration increases [H+]. As such, pH and

pCO2 covary, and estuaries can become more basic or acidic on

daily to seasonal timescales as the net metabolism changes, often

resulting in pH that tracks well with dissolved oxygen (DO). One

study of 16 systems in the National Estuarine Research Reserve

System that includes US estuaries on the Pacific coast, Atlantic

coast, and Gulf of Mexico coast, found that DO was a highly

significant predictor (p < 0.01) of pH at all sites (Baumann and

Smith, 2018). However, the relationship between pH and DO can be

non-linear, especially on short timescales and after extreme weather

events, because of CO2’s much slower equilibration rate compared

to O2.

Air-sea CO2 flux (ASF) can further impact estuary pH. While

estuaries tend to be CO2 sources, supplying CO2 to the

atmosphere and decreasing [H+] (Cai et al., 2011), they can

become seasonal CO2 sinks, like during periods of high primary

production. Seasonally reduced CO2 release and/or increased

estuarine CO2 uptake may increase pCO2 and [H+]. This has

more drastic effects on the amplitude and seasonality of pH in

poorly buffered, estuarine water than marine water (Cai et al.,

2017, 2011).

Further complicating estuarine pH dynamics is the role of land

use and water quality management. For instance, high nutrient

concentrations, whether from wastewater or agricultural runoff,

may temporarily enhance local production through eutrophication.

However, the eventual remineralization of eutrophication driven

algal blooms in deeper waters can lead to hypoxia [DO < 2 mg L−1

(Breitburg et al., 2018)], a problem that has already been observed

in Narragansett Bay (Oviatt et al., 2017). Most famously, this has

been documented in the Gulf of Mexico, where the remineralization

of organic matter, fueled by high nutrient concentrations delivered

by the Mississippi River, depletes bottom DO and reduces bottom

pH (Jiang et al., 2024; Hu et al., 2017; Wang et al., 2020). Reducing

surface nutrient inputs increase DO and pH in the bottom waters as

remineralization and oxygen consumption are reduced, but this

effect may be accompanied by a decrease in surface pH and DO due

to a decline in primary production (Wang et al., 2024). Such

feedbacks from nutrient reductions have manifested in many

estuaries. For example, Buzzard’s Bay, Massachusetts experienced

decreases in aragonite saturation state that were attributed to

increased organic matter production and rates of remineralization

following eutrophication (Rheuban et al., 2019). Conversely,

reduced nutrient loading in Chesapeake Bay, Virginia has

decreased summertime surface pH and aragonite saturation state

in the mid- and lower bay, an effect that is nearly equal to

Chesapeake Bay’s response to rising atmospheric CO2 (Da

et al., 2021).

As coastal systems continue to implement strategies to reduce

excess nutrient loading and mitigate hypoxia (Codiga et al., 2022;

Irby et al., 2018), it is essential to consider the potential impacts on

surface water chemistry. Identifying the drivers of pH variability,

such as the relative contributions from physical conditions, air-sea

CO2 flux, or biological processes, is the first step in assessing how

human activities might further impact pH levels and for developing

effective water quality management strategies.
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In this study, we explicitly analyzed the drivers of pH variability

in Narragansett Bay, a mid-sized estuary in Rhode Island, using

high resolution time series at two sites in the middle and northern

regions of the bay. Narragansett Bay is an ideal case study in coastal

ocean acidification because Narragansett Bay experiences a similar

carbonate seasonality to other estuaries around the United States

(Baumann and Smith, 2018) and has recently reduced its

anthropogenic nitrogen load by 50% to successfully reduce

hypoxia (Chintala et al., 2015; RIDEM, 2016; Oviatt et al., 2022;

Codiga et al., 2022). Recent studies (Pimenta et al., 2023; Wang

et al., 2024; Stoffel and Langan, 2019) have begun to characterize

Narragansett Bay’s carbonate system in the last decade and have

already detected a strong biological influence on pH through the

close coupling of pH and DO. However, previous studies in

Narragansett Bay have been based on coarsely resolved

observations, generally taken monthly, and have yet to explicitly

and quantitatively investigate drivers of its carbonate variability.

We leveraged for the first time autonomous pH observations,

taken every 10 to 15 minutes and verified by weekly to monthly

discrete samples, and identified patterns of variability from daily to

seasonal timescales. The high resolution dataset has enabled a

mechanistic understanding of this variability, disentangling the

impacts of biological production, air-sea gas exchange,

temperature, salinity, and mixing using a first order Taylor series

deconvolution, paired with a calculation of net ecosystem

metabolism. We found that from daily to seasonal timescales

community metabolism is the dominant driver of pH variability

in the Narragansett Bay estuary, with additional contributions from

air-sea gas exchange and temperature. Given the strong metabolic

controls on pH in Narragansett Bay, we further investigated the

effects of recent nutrient management decisions, finding that

surface summertime pH has modestly decreased since nutrient

load reductions. These findings underscore the complex interplay

between anthropogenic forcings (e.g. nutrient management) and

pH dynamics in biologically productive estuaries like Narragansett

Bay. While nutrient reduction efforts have successfully improved

water quality by mitigating hypoxia, they also reveal the need for

ongoing monitoring to fully understand their broader effects over

the whole water column.
2 Methods

2.1 Site description

Narragansett Bay is the largest New England estuary with an

area of 328 km2. It has an average depth of 8.31 meters, is generally

well-mixed or weakly stratified, and has a flushing rate of 26 days

(Pilson, 1985). Its watershed (4708 km2) extends through much of

Rhode Island and into Massachussetts (Pilson, 1985). The average

freshwater input to the bay is 104.8 m3 s−1, 75% of which comes

from five main rivers—Blackstone, Pawtuxet, Woonasquatucket,

Moshassuck and Taunton (Pilson, 1985; Chintala et al., 2015).

Like many estuaries, Narragansett Bay is highly productive and

experiences a wintertime phytoplankton bloom (Oviatt et al., 2002).
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As a heavily populated, urbanized estuary, Narragansett Bay

historically has been over polluted and over fertilized, with a large

amount of nitrogen (approximately 3 − 6 × 106 kg yr−1 for 2005-

2012; Codiga et al., 2022) coming primarily from wastewater

treatment (Chintala et al., 2015; Nixon et al., 2008), an issue that

has long been identified as a cause of hypoxia in Narragansett Bay

(Codiga et al., 2022, 2009; Oviatt et al., 2022; RIDEM, 2016). Since

the early 2000s, Rhode Island Department of Environmental

Management (RIDEM) has endeavored to reduce nutrient input

into the bay, particularly by updating wastewater treatment

(Chintala et al., 2015). Beginning in 2012, Narragansett Bay

successfully met its goal of a 50% reduction in nitrogen loading,

and by 2014 the efforts were successful in reducing the strength and

frequency of hypoxic events (RIDEM, 2016; Oviatt et al., 2022;

Codiga et al., 2022). Additionally, bottom DO and pH both

increased significantly following the nutrient reduction (Wang

et al., 2024).
2.2 Data

2.2.1 Autonomous observation system
We collected a time series of pH in Narragansett Bay beginning

in January 2022 using four independent, highly temporally-resolved

pH sensors. The four sensors correspond to two regions of

Narragansett Bay—the Mnt. View (MV) and Potowomut

Hydrocat sensors correspond to Greenwich Bay (GB) in north
Frontiers in Marine Science 04
region of Narragansett Bay where salinity is approximately 28 PSU,

and the Quonset Point (QP) and Conanicut Hydrocat sensors

correspond to a slightly more southern region of the bay near

Jamestown where salinity is approximately 29.5 PSU. Figure 1

shows the locations of each of the sensors.

The Conanicut Hydrocat and Potowomut Hydrocat sensors are

HydroCAT-EP (SeaBird) that measure pH, along with temperature,

salinity, and DO, every 15 minutes approximately 1 meter below the

surface, and were co-located with sensors measuring meteorological

conditions (e.g. maximum precipitation, average wind speed,

maximum gust wind speed, and air temperature) 2.4 meters

above the surface every 10 minutes.

The sensors were deployed year-round and were recovered after

periods of no longer than 3 months for maintenance, at which point

the flow path and the conductivity cell are flushed with 1% Triton

detergent followed by vigorous flushing with DI water. Following

the cleaning, a zero conductivity check and a two point calibration

are performed for conductivity. For pH, the probe was cleaned and

a three point calibration was done with standards of pH 4, 7, and 10.

Data from the Conanicut and Potowomut sensors were first

subjected to a global range check to ensure that measurements

were within the range of values measured across all marine

environments using the dataset provided by OOI (NSF Ocean

Observatories Initiative, 2018), followed by a local range test

using data from the Narragansett Bay Long-Term Plankton Time

Series data (https://web.uri.edu/gso/research/plankton/; see Section

2.2.2). The range suggested by the Narragansett Bay Long-Term
FIGURE 1

Map of sensor and sample collection sites in Narragansett Bay (NOAA, 1998). Sensor-measured pH measurements were first checked for spurious
values and then verified against in situ samples. Conanicut Hydrocat (green star) and Quonset Point (yellow star) were compared to weekly samples
collected from the Narragansett Bay Long Term Phytoplankton Time Series site (purple box). Potowomut Hydrocat (blue star) and Mt. View (pink
star) were compared to monthly samples collected from the Potowomut site (blue star).
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Plankton Time Series, with only a weekly resolution, could be overly

restrictive, so a ±0.1 variance was permitted, which encompassed

most of the daily variability observed in the sensor data. This

ensured that some high or low pH values, mostly associated with

short-term variability, were not erroneously deemed spurious. The

data was then despiked to remove spurious values, and subjected to

a stuck value test, comparing each measurement with the 5

preceding measurements to ensure there were no repeated

measurements indicating sensor error (Kelley and Richards, 2023).

The MV and QP sensors were YSI brand multi-parameter

sondes (EXO V2 and 6-series-6600EDS, respectively) and

maintained by the Narragansett Bay Fixed Station Monitoring

Network (NBFSMN; RIDEM, 2020). Each sensor, located 1 m

below the surface, measures pH, along with temperature, salinity,

and DO, every 15 minutes and were deployed seasonally (spring to

fall) and removed during winter months. These data were subject to

quality assurance measures including verification of calibrations

and consistency among multiple instruments, corrections for sensor

drift and biases due to biofouling, removal of outliers, and

interpolation across selected intervals of missing data, in

accordance with the Rhode Island Department of Environmental

Management’s (RIDEM) Quality Assurance Plan (RIDEM, 2020).

Protocols for calibration, field maintenance, and quality assurance

and quality control (QA/QC) procedures are consistent with

National Estuarine Research Reserve System-Wide Monitoring

Program standard operating procedures (Mensinger, 2019).

Stations were serviced by swapping the deployed instruments

with newly calibrated instruments on a 2-week interval.

Calibrations and sensor drift corrections were verified through a

three-point comparison: data from the retrieved sonde were

compared to the newly calibrated sonde, as well as an

independent profiling sonde, all at the deployment depth. Outliers

and data errors were removed based on criteria set in the RIDEM

Quality Assurance Project Plan (RIDEM, 2020). Gaps in coverage,

affecting up to 6% of the record at an individual station in a given

year, were filled by linear interpolation following protocols detailed

in the Quality Assurance Project Plan (RIDEM, 2020).

The high temporal resolution of the time series enabled us to

detect patterns of variability across multiple timescales. We used the

Prophet forecasting model software (Taylor and Letham, 2018) to

identify diurnal (i.e. daily) patterns. Other timescales of variability

(e.g. monthly and seasonal) were identified using timemeans. The

historical summertime (June, July, and August [JJA]) pH data for

2005 to 2019 from NBFSMN sites (QP and MV; Figure 1), in

addition to the more recent data from the Conanicut and

Potowomut sites for 2021 and 2022, were analyzed for multi-year

trends. Unlike the recent (2022 - 2023) NBFSMN data, which were

measured every 15 minutes, the historical (2005 - 2019) NBFSMN

data from QP and MV were provided as daily means. The

Conanicut and Potowomut data used in the historical analysis

were processed as daily means in order to correspond with the

historical NBFSMN data. The historical NBFSMN data were subject

to quality assurance protocols previously outlined for the MV and

QP sensors, as set forth by RI Department of Environmental

Management, NBFSMN, and NERRS (RIDEM, 2020; Mensinger,
Frontiers in Marine Science 05
2019). We conducted change-point detection—with change-points

indicating where the properties of the time series abruptly change—

using the ruptures Python package (Truong et al., 2020). This

analysis was applied to mean summertime pH and maximum

daily summertime pH to identify carbonate system shifts in

Narragansett Bay over the last two decades, especially in the wake

of nutrient reductions to Narragansett Bay (RIDEM, 2016).
2.2.2 Discrete bottle samples
Discrete bottle samples were collected to verify the sensor data.

Samples for the southern region of the bay (i.e. near QP and

Conanicut buoy; see Figure 1) were collected weekly as part of the

Narragansett Bay Long Term Phytoplankton Time Series (PLT),

which is located just off the Conanicut buoy. The time series

typically collects samples on Monday mornings at approximately

7:30am, barring weeks when inclement weather conditions delayed

or canceled sampling. Samples for the northern region of the bay

(i.e. Greenwich Bay near MV and Potowomut buoy), a region in

which hypoxic events occur seasonally during the summer due to

terrestrial nutrient inputs (Oviatt et al., 2017), were collected

approximately once a month. After collection, samples were

poisoned with 100 µM of saturated mercuric chloride solution

and stored in the refrigerator until analysis for DIC and TA. DIC

and TA were measured according to Dickson et al. (2007) using the

Apollo SciTech Model AS-C6L Dissolved Inorganic Carbon

Analyzer and the Apollo SciTech Model AS-ALK3 Total

Alkalinity Titrator. Instruments were calibrated to Certified

Reference Materia l (CRM) from Scripps Inst i tute of

Oceanography at room temperature (21 - 22°C). For DIC

analysis, a sample of CRM was run prior to and at the end of

sample analysis for quality control. TA analysis was calibrated to

CRM, and either a sample of CRM or aged open ocean water was

run at beginning of daily analysis and end of daily analysis for

quality control. Lab-based measurements carry a ±0.2% uncertainty

for alkalinity and ±0.1% uncertainty for DIC.
2.2.3 Quality assurance and control
First, we performed a gross range test on sensor data to

eliminate unrealistic data (i.e. pH measurements less than 5 or

greater than 10, or DO less than 1 mg L−1) that indicate biofouling

or other sensor malfunction. We then despiked the data by

removing any data points that were more than 3 standard

deviations greater or less than the sensor’s annual mean or any

data points that were more than 1.5 standard deviations greater

than or less than the sensor’s 24-hour moving mean.

Autonomous pH observations were compared to pH values

calculated from DIC and TA in the discrete samples (see Section 2.3

for calculation). Periods of sensor data that diverged from bottle

sample data with consistent, identifiable bias—for instance, a

consistent underestimation or overestimation of pH by a value

less than 0.1 pH unit or a dynamic bias less than 0.1 pH unit that

changes with temperature or time—were corrected. In the case of

QP, we corrected this by adjusting all the sensor data points by the

mean difference between sensor pH and bottle pH, specifically
frontiersin.org
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lowering QP pH by 0.084 units. The Conanicut Hydrocat buoy

overestimated pH in January-March 2023 when temperatures were

lowest. We applied a more dynamic correction as a third order

polynomial function of temperature, such that sensor pH was

adjusted to be lower at colder temperatures. Figure 2 presents the

corrected data from all four sensors with discrete bottle data.

Conanicut Hydrocat and QP sensors were compared to PLT

bottle samples, whereas Potowomut Hydrocat and MV sensors

were compared to GB bottle samples.
2.3 Carbonate chemistry calculations

Solving the marine carbonate systems requires at least two

known parameters from the following: DIC, TA, pH, and pCO2.

The autonomous monitoring system provided only one carbonate

parameter: pH. However, a strong, linear relationship between

salinity and alkalinity permitted a robust estimate of alkalinity for

sufficiently high salinity values. Equation 3, as reported by Pimenta

et al. (2023), describes the alkalinity-salinity relationship for

Narragansett Bay, which is valid for mid- to high salinities found

throughout most of Narragansett Bay (i.e. S ≥ 15). The data from

this study fit well with this linear model. Using Equation 3, we

estimated alkalinity from salinity (TAS). Then, with salinity,

temperature, pH, and TAS, we determined the marine carbonate

system—namely for DIC, hydrogen ion concentration ([H+]),

pCO2, and all associated errors —using PyCO2SYS (Humphreys

et al., 2022). We used carbonate equilibrium constants from Lueker

et al. (2000) and estimated total borate according to Uppström

(1974).

TAmix = 477:62 + 51:99*S (3)
Frontiers in Marine Science 06
2.4 Air-sea CO2 flux

Using pCO2 calculated from pH and TAS, hereafter referred to

as pCOcalc
2 , we solved for the ASF of carbon according to Equation 4

(Sarmiento and Gruber, 2006; Wanninkhof, 2014). For this, we

assumed atmospheric pCO2 to be 410 µatm (Lan et al., 2023). While

the assumption of a constant atmospheric pCO2 does neglect the

seasonal variability in atmospheric pCO2, this variability is much

smaller than the observed seasonal variability in surface water

pCO2, which can change by several hundred ppm from winter to

summer. We calculated solubility (Ksolubility) using sensor-measured

temperature and salinity according to Weiss (1974) and transfer

velocity (Kt) according to Equation 5 (Wanninkhof, 2014) using

sensor-measured 15 minute wind speed. Wind speed was measured

at a height of 2.4 meters, but was adjusted to a height of 10 meters

(for U10), according to Atlas et al. (2011). Note that Sc refers to the

Schimdt number.

f = Kt*Ksolubility(pCO
calc
2 − pCOair

2 ) (4)

Kt = 0:251 U2
10

� � Sc
660

−0:5

(5)

Notably, Equation 4 yields an ASF in units of µmolCm−2 time−1;

however, for our later Taylor series deconvolution analysis (described

in Section 2.5), we required units of µmolC kg−1 time−1. To achieve

this, we normalized ASF by dividing by total water depth, which we

considered to be an adequate estimate of the mixed layer depth in

estuaries like Narragansett Bay that are either well-mixed or weakly

stratified, and divided by density r. We calculated CO2 ASF for each

available time step (i.e. every 15 minutes) and, for a seasonal

perspective, integrated that over one month, such that fluxes for

every time-step were in units of µmolC kg−1 month−1. Over the
FIGURE 2

Outer: Time series of pH in Narragansett Bay. Sensors in the norther region of the Bay (i.e. Greenwich Bay) are Potowomut Hydrocat 720 (blue) and
MV (pink) and correspond to GB bottle samples (oranges circles). Sensors in the southern region of the bay are Conanicut Hydrocat 620 (green) and
QP (yellow) and correspond to Narragansett Bay Long Term Phytoplankton Time Series (PLT) bottle samples (purple circles). Inner: Differences
between sensor-measured pH within 30 minutes of sampling time and in situ sample. Green bar represents uncertainty of the pH sensors.
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course of a whole month, ASF should affect the full depth of the water

column, as the CO2 transfer velocity is generally around 2 m day−1.

For a daily perspective, we similarly integrated each 15 minute flux

over 24 hours, such that fluxes for every time-step were in units of

µmolC kg−1 day−1. While the typical CO2 transfer velocity of 2 m

day−1 is not large enough to assume that ASF affects the full depth on

daily time scales, using this daily analysis for periods of high wind,

during which the CO2 transfer velocity increases to as much as 10 m

day−1, can minimize any potential overestimations of ASF. The

equation for ASF is shown in Equation 6, where i indicates each

time-step over a given period t, which, in the case of this analysis, is

either 1 month or 1 day, and whereH indicates the local height of the

water (i.e. between 7 and 9 m, depending on location) and r indicates
the in-situ density.

DICASF = �f t =
1
tHo

i
n=1Kti *Ksolubilityi (pCO

calc
2i − pCOair

2i )*
t
r

���� (6)
2.5 pH driver analysis

In order to disentangle the various drivers of pH variability, we

first considered pH change in terms of change of [H+], to avoid

issues with the nonlinearities in the pH scale (Fassbender et al.,

2021). We then employed a first order Taylor series deconvolution

of drivers, based on Kwiatkowski and Orr (2018); Ma et al. (2023),

and Cai et al. (2021), of either monthly [H+] variability for our

seasonal analysis or daily [H+] variability for an analysis of an

extreme weather event that occurred over the course of one week in

December 2022. Similar use of Taylor series deconvolutions for the

carbonate system were used by Wright-Fairbanks and Saba (2022);

Pacella et al. (2024), and Rheuban et al. (2019). We identified seven

potential drivers: temperature, salinity, the biological component of

alkalinity and DIC from net metabolism, the mixing component of

alkalinity and DIC primarily from tides, and the ASF of CO2. The

Taylor series deconvolution is given in Equation 7. We assumed any

residual term implied by the Taylor series is small, as other

processes contributing to [DH+] in Narragansett Bay, namely

carbonate formation and dissolution, are minor. Note that the

DICASF term does not include D, since DICASF already represents

a flux over time.

D½H+� ≈ ½∂½H+�
∂T DT� + ½∂½H+�

∂ S DS� + ½½∂½H+�
∂TA DTAbio� + ½∂½H+ �

∂DIC DDICbio��bio
+½½∂½H+�

∂TA DTAmix� + ½∂½H+�
∂DIC DDICmix��mix + ½∂½H+�

∂DIC DDICASF�
(7)

Using PyCO2SYS’s built-in functionality, we differentiated [H+]

in terms of temperature and salinity (i.e. ∂½H+�
∂T and ∂½H+�

∂ S ).

Multiplying the partial derivatives by discretizations of

temperature and salinity over time (i.e. DT and DS) gave

components of D[H+] for temperature and salinity (i.e. D½H+�T
and D½H+�S)

With total DIC calculated from pH and TAS, along with its

uncertainty, we solved for the DIC components of Equation 7 and

further broke DIC down into its mixing, ASF, and biological
Frontiers in Marine Science 07
components (i.e. D½H+�DICASF
, D½H+�DICmix

, and D½H+�DICbio
). First

we isolated the effect of mixing on DIC by using the relationship

between DIC and salinity in Narragansett Bay found by Pimenta

et al. (2023), given in Equation 8.

DDICmix = 397:65 + 50:59*DS (8)

We isolated the ASF component of DIC according to Equation

6, as previously discussed in Section 2.4 (Sarmiento and Gruber,

2006; Wanninkhof, 2014), and normalized it to a mixed layer depth

equal to local water column depth—7 meters in the mid-bay near

Conanicut and QP sensors, and 9 meters slightly northward near

the Potowomut and MV sensors. Note that this assumes

Narragansett Bay is well-mixed year-round. This is a reasonable

assumption given that the central and southern regions of

Narragansett Bay tend to be well-mixed or weakly stratified

(Pilson, 1985; Oviatt et al., 2002). However, this may lead to

slight overestimation when Narragansett Bay is weakly stratified.

The biological component of DIC—that is, the net amount of

DIC metabolically consumed and produced by the local

biological community of bacteria, phytoplankton, zooplankton,

etc.—was assumed to be the remainder of DIC, after accounting

for mixing and ASF (Equation 9). Each component of DIC,

except for ASF, which already describes a change in carbon

over time, was then discretely differentiated over time, by

month for the seasonal analysis and by day for the analysis of a

week-long weather event.

DDICbio = DDIC − DICASF − DDICmix (9)

The mixing and biological components of TA were separated,

first, by employing Equation 3 (Pimenta et al., 2023) to solve for the

mixing component. The biological component—the net amount of

alkalinity metabolically consumed and produced by the local

biological community—was solved by multiplying DICbio by the

Redfield ratio (i.e. −16
107 ; see Equation 10; Anderson & Sarmiento,

1994; Sarmiento and Gruber, 2006). We assumed carbonate

production and dissolution were negligible, because of the strong

linear relationship between alkalinity and salinity. Finally, the sum

of the effects of mixing on DIC and total alkalinity represent a net

mixing component D½H+�mix; likewise, the sum of the biological

effects on both DIC and alkalinity represent the net impact of NEM

as D½H+�bio.

DTAbio =
−16
107 *

DDICbio (10)
2.6 Net ecosystem metabolism

In order to independently verify our calculations for DICbio

(Equation 9), we estimated the net metabolic production of carbon

of the whole ecosystem from the diurnal cycle of DO. A time series

dataset of DO, as measured by the Conanicut Hydrocat and

Potowomut Hydrocat sensors, was used to estimate net ecosystem

metabolism (NEM), the balance between primary production and

respiration integrated over the whole ecosystem (Caffrey et al.,
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2014). We used a simplified one-dimensional mass balance method

as described in Caffrey et al. (2014) and Oviatt et al. (2017). The

change of DO ( dDOdt ) is the sum of the air-sea interface exchange (J),

biological production (P), and respiration (R), as shown in

Equation 11. Notably, this formulation makes the a priori

assumption that in relatively well-mixed and shallow estuaries,

the mixing of oxygen will be negligible compared to oxygen’s

metabolic and gas exchange contributions.

dDO
dt

= P − R + J (11)

As NEM is the net effect of production and respiration, we

rearranged Equation 11 as Equation 12. This revealed that, not only

can NEM be calculated from gross production and respiration, but

can also be calculated using the total change in DO minus oxygen

air-sea gas exchange.

NEM = P − R =
dDO
dt

− J (12)

The daily change of DO was defined as the change between

dawns, which accounts for seasonally varying day lengths. Air-sea

oxygen flux (J) was estimated from an empirical transfer coefficient

(K; Equation 13) and oxygen saturation deficit (SD; Equation 14),

both based on Kremer et al. (2003). The calculation of K required

wind speed at 10 meters (U10). We obtained wind speed at a height

of 2.4 meters from sensors collocated with Conanicut Hydrocat and

Potowomut Hydrocat sensors at 10 minute intervals. Wind speed

data was then normalized to 10 meters following Atlas et al. (2011),

as described in Section 2.4.

K = 0:55e0:15*U10 (13)

SD = pOatm
2 *

DOsat − DOobs

DOsat
,   pOatm

2 = 0:209   atm (14)

The contribution of collapsing bubbles on air-sea exchange of

oxygen cannot be ignored. Bubble injection terms for small, fully

collapsing bubbles (Fc) and large, partially collapsing bubbles (Fp),

as described in Bushinsky and Emerson (2018), were added to

calibrate the bubble impact on air-sea oxygen flux. Thus, the total

air-sea exchange of oxygen is given in Equation 15.

J = K*SD + Fc + Fp (15)

We calculated NEM for days with at least 22 hours of DO and

wind data; fluxes were extrapolated for any gaps shorter than 2

hours without notable error. Since Narragansett Bay tends to be

well-mixed or only weakly stratified (Pilson, 1985), we took mixed

layer depth as the total depth of the local water column, as we did in

the calculation of ASF and DICbio (Section 2.4). This assumption

could potentially overestimate NEM during periods in which

Narragansett Bay is weakly stratified, rather than well-mixed.

However, the choice ensured consistency between our oxygen-

based calculation of NEM and DICbio. NEM was then integrated

over longer time periods (e.g. months) and converted from oxygen

units to carbon units using a ratio of 150 units of oxygen to 106
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units of carbon (Anderson, 1995), enabling us to independently

verify our calculations for DICbio.
3 Results

Figure 2 shows the full pH time series across all sensors after

QA/QC. Autonomous pH corresponds closely with in situ samples.

The mean difference between QP and PLT discrete samples was

0.00002, between Conanicut Hydrocat and PLT discrete samples

was 0.008, between MV and GB discrete samples was -0.02, and

between Potowomut Hydrocat and GB discrete samples was -0.06.

The mean difference overall across all sites is -0.002. The more

northern sites (MV and Potowomut) likely have higher pH

discrepancies when compared to discrete data due to less frequent

samples being taken at the GB site. All the discrepancies are less

than the ±0.1 uncertainty introduced by the pH sensors (SeaBird

Scientific, 2023). A distinct signal of diurnal and seasonal pH

variability was observed in all four time series. In the following

sections, we analyze these patterns of variability and their drivers.
3.1 Diurnal cycle

Figure 3 shows the isolated diurnal cycles of temperature, DO,

and pH for each season, averaged across our four pH sensors in local,

Eastern Standard Time, plus 1 standard deviations (shaded bands),

with all other timescales of variability longer than a day being

removed. The diurnal cycle is shown as anomalies about the daily

mean. Temperature (Figure 3A) on average decreased from the daily

mean by 0.21 ± 0.11°C by 3:22AM and increased from the daily mean

by 0.23 ± 0.11°C by 10:58AM. DO (Figure 3B) decreased from the

daily mean by 0.20 ± 0.19 mg L−1 by 2:39AM and increased from the

daily mean by 0.24 ± 0.26 mg L−1 by 12:54PM. On average, pH

(Figure 3C) decreased from the daily mean by 0.02 ± 0.02 by 2:17AM

—over an hour before the daily temperature minimum and less than

half an hour before the daily DO minimum. pH then increased from

the daily mean by 0.02 ± 0.02 by 1:08PM—over 2 hours after the daily

temperature maximum and less than half an hour after the daily DO

maximum. The diurnal cycle of pH, which had a range of 0.05 to 0.1

units, tracked closely with both temperature and DO. A linear

correlation between daily temperature variation and daily pH

variation yielded an R2 value of 0.47, and a linear correlation

between daily variations in DO and pH yielded an R2 value of 0.83.

The diurnal cycles of temperature, DO, and pH varied across

seasons in amplitude. The timing of daily temperature and DO

minima and maxima remained roughly consistent across seasons,

varying by approximately an hour. Summer experienced the largest

range of daily temperature and DO variability, 0.66 ± 0.04°C and

0.79 ± 0.13 mg L−1, respectively. Following these patterns, timing of

pH daily minima and maxima remained approximately the same

across all seasons, and pH was most variable in summer, ranging by

0.06 ± 0.01 pH units throughout the day. pH was least variable in

spring, ranging by 0.02 ± 0.01 pH units.
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3.2 Seasonal cycle

Monthly pH from all four sites in Narragansett Bay revealed a

distinct seasonal cycle (Figure 4C). pH was highest in the
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wintertime, reaching a maximum in February (pHFeb = 8:2 ± 0:1).

pH was lowest in the summertime, reaching a minimum in August

(pHAug = 7:7 ± 0:1). The seasonality of pH corresponded with the

seasonality of DO (Figure 4B), yet the inverse of temperature
FIGURE 4

Monthly averages of (A) temperature, (B) dissolved oxygen, and (C) pH with 1 standard error from all 4 sensors.
FIGURE 3

Diurnal cycle of (A) temperature, (B) dissolved oxygen, and (C) pH, calculated using Prophet (Taylor and Letham, 2018), for each season, averaged
across all sensors. Time is given as local Eastern Standard Time (EST). Shaded bands represent 1 standard deviation.
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(Figure 4A). These seasonalities in Narragansett Bay found in this

study agree with Pimenta et al. (2023) based on monthly survey

from January 2017 to December 2019.
3.3 Net ecosystem metabolism

Figure 5A compares monthly NEM with monthly DICbio. NEM

was calculated from the diurnal cycle of oxygen (Equation 12) and

converted to units of mmolC m−3 month−1. Note that positive NEM

values, when in carbon units, indicate heterotrophy. DICbio was

calculated from the DIC mass balance (Equation 9) in order to

independently verify the calculation of DICbio used in the Taylor

series deconvolution (see Equation 7 and Section 3.4). The entirety

of NEM and DICbio is presented in Figures 5B, C.

We fitted the data with a linear model intersecting the origin,

which had a slope of 0.51 (R2 = 0.663). This indicated that for every

1 mmolC m−3 month−1 increase in NEM, DICbio increased by 0.51

mmolC m−3 month−1. Since we expected the relationship between

NEM in carbon units and DICbio to be one-to-one, the 0.51 slope

suggests DICbio underestimated NEM and [H+] changes resulting

from biological activities, or vice versa.

While oxygen-based calculations of NEM in the winter did not

reflect wintertime autotrophy, we considered DICbio to be more

accurate in these circumstances, given the existing, extensive

research supporting a wintertime phytoplankton bloom in

Narragansett Bay (Oviatt et al., 2002, 2017; Baumann and Smith,

2018), as well large wintertime chlorophyll concentrations

(Figure 6B). However, the overall consistency between oxygen-

based NEM and DICbio increased confidence in the accuracy and

reliability of the DICbio calculations. In this study we used DICbio to

represent a more conservative NEM estimation to maintain

alignment with other processes that impact the DIC pool.

By integrating the monthly NEM and DICbio values over the

whole year we obtained the annual metabolic carbon budget

(Figure 5D). At Conanicut Hydrocat, the ecological community

produced 5.05 ± 6.3 molC m−2 yr−1, when calculated from NEM,

and 1.78 ± 6.52 molC m−2 yr−1, when calculated from DICbio. At

Potowomut Hydrocat, the ecological community produced 5.74 ±

7.58 molC m−2 yr−1, when calculated from NEM, and 4.59 ± 9.89

molC m−2 yr−1, when calculated from DICbio. Overall, this indicated

that Narragansett Bay on annual timescales is heterotrophic, with

some months of autotrophy during the wintertime phytoplankton

bloom. The annual metabolic carbon budgets in Narragansett Bay

largely agreed with the heterotrophic annual metabolic carbon

budgets in the Mid-Atlantic Bight, Gulf of Maine, and along the

entire US East Coast (Herrmann et al., 2015), though Narragansett

Bay’s budget demonstrated higher variability than these sites, which

can be expected of an estuary.
3.4 Seasonal pH drivers

The analysis of the monthly drivers of pH variability through a

first order Taylor series deconvolution (Equation 7) demonstrated a
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similar seasonality to what is described in Section 3.2 and Figure 4.

The results of this deconvolution, averaged across all sensors, are

shown in Figure 6A, along with monthly averaged observed

chlorophyll concentration from the Narragansett Bay Long Term

Phytoplankton Time Series (Figure 6B) and ASF, calculated

according to Equations 4 and 5 (Figure 6C).

Wintertime pH in December, January, and February, as shown

through change in [H+] (Figure 6A), is dominated by biological/

metabolic processes (i.e. photosynthesis and respiration) and CO2

ASF. Wintertime biological activity, as part of Narragansett Bay’s

winter-spring phytoplankton bloom (Oviatt et al., 2002), decreased

[H+] (i.e. higher pH) and accounted for an average of 67% of

wintertime [DH+] decrease. Further, the wintertime uptake of CO2

through ASF (Figure 6C), which had a maximum rate of 72.68 µmolC

kg−1 month−1 in February 2022, increased [H+] (i.e. lower pH), in

opposition to the effect of biological activities; wintertime ASF

accounted for 100% of the [DH+] increase. Temperature had a

small, slightly basifying effect in the winter, depending on the extent

of cooling each month, representing on 23% of winter [DH+] decrease.

The combined effect of biological processes and ASF in the wintertime

varied month to month, but generally was slightly basifying.

Spring (i.e. March, April, and May) was a transitional period in

Narragansett Bay. Narragansett Bay gradually switched from a CO2

sink to source and released CO2 at a rate of 69.95 µmolC kg−1

month−1 by May, partially offsetting acidification from biology and

temperature. CO2 uptake had a slightly weaker effect than in winter,

representing 27% of the increase in [H+] toward more acidic

conditions. Metabolic processes, which became increasingly more

dominated by organic matter respiration throughout the spring,

remained the one of the largest drivers of [DH+], accounting for

100% of the increase in [H+], toward more acidic conditions, unlike

winter. Warming temperatures were responsible for 61% of

springtime [H+] increase. The combined springtime effect of all

the drivers was acidifying.

When pH was lowest in the summer (i.e. June, July, and

August), biology contributed most to the observed increase in

[H+] through net heterotrophy, an observation reinforced by

persistently low chlorophyll concentrations leading into and

lasting throughout the summer (Figure 6B). Net heterotrophy

comprised 93% of [H+] increase and was decisively acidifying in

the summer. This coincided with the acidifying effect of warming

temperatures in the summer, which represented 6% of [H+]

increase, though this temperature effect abated by the end of

summer. The CO2 outgassing in the summer (Figure 6C), with an

seasonal average rate of 106.2 µmolC kg−1 month−1 responsible for

100% of the [H+] decrease, reduced CO2 accumulation and had a

basifying effect that nearly offset the thermodynamically- and

biologically-induced acidification. The combined effect of all the

drivers in the summer was acidifying.

By fall (i.e. September, October, and November), chlorophyll

levels modestly increased to values greater than 10 µg L−1

(Figure 6B), indicating a slight increase in primary production.

The metabolism was, however, still net heterotrophic, though

slightly more weakly so, accounting for 100% of [H+] increase

and decreasing pH. Cooling beginning in September, in addition to
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ongoing CO2 release (Figure 6C), opposed the slightly acidifying

effect of declining heterotrophy in the fall. Respectively, cooling and

CO2 release accounted for 12% and 87% of [H+] decrease. However,

the effect of ASF diminished by the end of fall, as CO2 release

weakened from 148.99 µmolC kg−1 month−1 in October to 51.02 ±

0.8 µmolC kg−1 month−1 in November. The combined effect of all

the drivers in the fall was weakly basifying, leading into

Narragansett Bay’s more basic wintertime regime.
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3.5 Winter storm pH drivers

In addition to our seasonal analysis, we specifically focused on a

week-long winter storm that occurred from December 19th through

26th, 2022. Over this period, wind speeds increased to as much as

17.6 m s−1 (39.4 mph) on December 23 and water temperatures

decreased by as much as 3.9°C from December 19 to December 26,

with most of that decline occurring on or after December 24.
FIGURE 5

Monthly net ecosystem metabolism. (A) Comparison of monthly net ecosystem metabolism, calculated from dissolved oxygen (Equation 12) and
converted to units of mmolC m−3 month−1, with monthly DICbio (Equation 9). Recall that positive NEM values, when in carbon units, indicate
heterotropy. Stars indicate values from Conanicut Hydrocat 620. X-marks indicate values from Potowomut Hydrocat 720. Points are colored by
month of the year. Only months with a minimum of 25 days of data are included, and values are scaled to 30 days. A linear trendline intersecting the
origin relating DICbio and NEM has a slope of 0.51 (R2 = 0.663). (B, C) All monthly values of DICbio (teal) and NEM (red) for Conanicut Hydrocat 620
(B) and Potowomut Hydrocat 720 (C) prior to scaling to 30 days, where point size corresponds to number of days with data in each month. Bold
points have at least 25 days of data and were included in (A, D) Annual metabolism at Conanicut Hydrocat 620 (teal) and Potowomut Hydrocat 720
(red), calculated using oxygen-based NEM (triangles) and DICbio (circles). Annual metabolisms from Herrmann et al. (2015) for the Mid-Atlantic Bight,
East Coast, and Gulf of Main—shown as green, purple, and yellow shaded bars, respectively—are provided for reference.
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Precipitation was moderate—totaling approximately 50 mm over

the course of the week and occurring primarily on December 22 and

December 23.

Over the course of the week, pH increased at both sites by 0.045 pH

units (Figure 7B). The lowest average hourly pH occurred on the

morning of December 19 at both sites: 8.01 ± 0.01 at the Conanicut

Hydrocat buoy and 7.93 ± 0.01 at the Potowomut Hydrocat buoy. The

highest average hourly pH occurred later in the week: 8.1 ± 0.01 at the

Conanicut Hydrocat buoy on the night of December 24 and 8.02 ± 0.01

at the Potowomut Hydrocat buoy in the evening of December 26.

During this event, pH anomalies were weakly and negatively correlated

with temperature anomalies (r = -0.36) and were moderately and

positively correlated with dissolved oxygen (r = 0.45).

Using the first order Taylor series deconvolution of [H+]

(Equation 7) to analyze the drivers of pH change (Figure 7A), we

found that the major contributor to changes in [H+] during this

winter storm was increasing biological respiration, despite the net

autotrophy at the beginning of this storm (i.e. prior to December

24). Toward the beginning of the week (December 20 to December

23, excluding December 21 when metabolism is briefly

heterotrophic), an autotrophic metabolism dominated [H+]
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change, tending to decrease [H+] (i.e. higher pH). The average

change in [H+] due to biological metabolism from December 20 to

December 23 (excluding December 21) was 0.00014 ± 0.00005 µmol

kg−1, corresponding to an average of 71% of [H+] decrease.

By the end of the week (December 24 to December 26), biological

respiration increased. The metabolism becamemore heterotrophic and

began to increase ½H+� (DHbio
Dec 26
Dec 24 = 0:00027 ± 0:00011 mmol kg − 1
��

). On average, biological processes were responsible for 94% of the

increase [H+] over this period.

Other drivers, primarily temperature and salinity, only partially

offset the effects of biological processes. In the beginning of the week

(i.e. prior to December 24), gradually cooling temperatures and

decreasing salinity due to precipitation tended to compound the

basifying effects of photosynthesis, except for on December 23 when

temperatures briefly increase (DHT
Dec 22
Dec 19

�� = 0.000036 ± 0.000002 m
mol   kg−1; DHS

Dec 23
Dec 19

�� = 0.000011 ± 0.000002 mmol   kg−1). This

resulted in a net basifying effect through the beginning of the week,

excluding December 21 (when net change in [H+] was 0 µmol kg−1).

However, by the end of the week (i.e. December 24 to December

26), when the metabolism became more heterotrophic, cooling

temperatures offset the increased [H+] from biological activity
FIGURE 6

Drivers of seasonal [H+] variability (A) Results from first order Taylor series deconvolution (Equation 7), averaged across all sensors, describing drivers
of hydrogen ion concentration change on monthly timescales. Increases in hydrogen ion concentration correspond with lower pH and acidification.
(B) Mean monthly chlorophyll concentration from the Narragansett Bay Long Term Phytoplankton Time Series. (C) Air-sea flux of carbon dioxide as
carbon, calculated according to Equations 4 and 5 (Wanninkhof, 2014). The positive direction indicates marine carbon dioxide uptake and vice versa.
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through ½H+� decrease (DHT
Dec 26
Dec 24

�� = 0.00025 ± 0.00011 mmol   kg−1

); the net effect then became weakly acidifying. The week, on the

whole, demonstrated a decrease in [H+]/pH increase, with a

dampened trend toward higher pH values late in the week.
3.6 Long term pH trends

Figure 8 shows long-term summertime pH trends from the MV

and QP sites. Mean daily summertime pH (Figure 8A) decreased at
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bothMV and QP and showed change points at in 2015-2016, nearly a

decade after nutrient reductions first began, with decreases of 0.08 pH

units and 0.04 pH units, respectively. Maximum daily mean pH

(Figure 8B) similarly decreased at both MV and QP. MV showed a

change point in 2016, associated with a 0.13 unit decrease in

maximum daily pH; QP showed a change point in 2015, associated

with a 0.11 unit decrease in maximum daily pH. As such, both sites

experienced systematic decreases in surface pH 3 to 4 years after the

successful implementation of nitrogen loading reductions, where

both sites became slightly more acidic in the surface.
FIGURE 7

Drivers of [H+] variability during a December 2022 storm. (A) Results from first order Taylor series deconvolution (Equation 7), averaged across two
sensors with available wintertime data (Conanicut Hydrocat 620 and Potowomut Hydrocat 720), describing the drivers of hydrogen ion
concentration change on a daily timescale during a winter storm occurring from December 20, 2022 to December 26, 2022. A decrease in
hydrogen ion concentration equates to higher pH and basification, and vice versa. Time series of (B) pH (C) temperature, (D) dissolved oxygen, and
(E) wind speeds are shown as anomalies. Thin lines are 1 hour moving means. Thick lines are 6 hour moving means, to reduce noise. Anomalies are
calculated as moving mean minus total mean.
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4 Discussion

4.1 Diurnal cycle

The close correspondence of daily DO variability and pH

variability (Figure 3) was the first evidence that pH variability in

Narragansett Bay has been largely controlled by biological

production, underscoring the importance of biological activity on

this estuarine carbonate system. Specifically, pH decreased at night

when light availability limits photosynthesis and increased during

the day when photosynthesis occurs. This broadly agrees with the

results fromWang et al. (2018), who found that in the Duplin River

(GA, USA) DIC tended to increase (corresponding to a pH

decrease) through the night while DO decreased, indicating

respiration dominated the metabolism outside of daylight hours.

Secondarily, pH positively correlated with temperature, such that

daily pH increased as daily temperature increased. This was

contrary to the typical thermal response of pH to temperature, in

which increasing temperatures lower pH. We suggest, in this

circumstance, temperature was merely an artifact of light

availability. This strong, positive correlation between pH and DO

on diurnal timescales has been observed in multiple NERRS

habitats (Baumann and Smith, 2018). Note that pH and DO daily

variability are highest in summer, represented by the largest

difference in daily minima and maxima (Figure 3). We suggest

that this high variability was due to summer’s weak carbonate buffer

capacity resulting from the strong heterotrophic state (Figure 5), but
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could also be due to increased rates of biological production and

respiration with warmer temperatures.
4.2 Drivers of monthly and seasonal
carbonate variability

The large control of biology through its metabolism on

carbonate variability in Narragansett Bay extends to monthly and

seasonal timescales as well (Wang et al., 2018; Baumann and Smith,

2018; Rheuban et al., 2019; Wallace et al., 2014). As suggested by

Figure 4 and explicitly shown in Figure 6, biological activity was the

dominant driver of [H+] concentration change on monthly

timescales, but was closely followed by CO2 ASF. Temperature

change from month to month was a smaller, yet still notable driver.

The effect of temperature was more intuitive on monthly to seasonal

time scales than on daily timescales, as it follows thermodynamic

effects—warmer temperatures correspond with more

acidic conditions.

In the following we discuss the three main drivers of pH

variability on monthly to seasonal timescales—biological activity

(i.e. the net metabolism), ASF, and temperature. However, we must

note the other drivers included in our analysis: mixing and salinity.

In the deconvolution of pH drivers (Equation 7; Figure 6), the

effects of DIC and alkalinity mixing have been summed for a total

effect of mixing. While the respective contributions of DIC and

alkalinity mixing varied from month to month, they compensated
FIGURE 8

Long-term pH summer (JJA) pH time series for NBFSMN sites, Quonset Point (green) and Mnt. View (purple). All historical data (2005-2019) was
subjected to the QA/QC protocol outlined in RIDEM (2020); additionally, 2021 and 2022 data were further verified against in situ samples. (A) Mean
summertime pH and (B) maximum summertime daily mean pH value were are analyzed for change points using ruptures (Truong et al., 2020). The
period of nutrient reductions from 2005 to 2012 is highlighted in pink. A period of freshening, observed by Wang et al. (2024), from 2017 to 2019 is
highlighted in yellow.
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for one another such that the total mixing effect was near zero and

never accounted for more than 2% of the change in [H+]. Salinity

also had a relatively small effect on monthly timescales (i.e. an

average of 1.58% of the monthly change in [H+]), but notably may

have had a larger effect on shorter time scales that can temporally

resolve rain or drought events.

4.2.1 Biology & metabolism
Our comparison of oxygen-based NEM and DICbio showed that

our calculations for DICbio were reasonably accurate, based on the

oxygen budget, though may slightly underestimate heterotrophy.

The underestimation was reasonable given the much slower CO2

ASF compared to oxygen (Sarmiento and Gruber, 2006). Generally,

oxygen measurements are more sensitive to short-term changes in

respiration and photosynthesis, while the DIC pool reflects the

monthly average change. Regardless, we contend that biological

acidification during summer and fall, when Narragansett Bay is

typically heterotrophic, may have be stronger than reported.

However, this discrepancy has not changed the leading role

community metabolism has in driving seasonal acidification; if

anything, it underscored its intensity.

Throughout the year in Narragansett Bay, biological activity

was the strongest driver of [H+] change, based on calculations of

DICbio. By mid-winter around January, biological activity, which

has become increasingly dominated by photosynthesis through

winter, begun to decrease [H+] in Narragansett Bay (shown by

green bars in Figure 6), making the water column more basic. This

period coincided with the onset of Narragansett Bay’s winter

phytoplankton bloom in January and February, when a more

autotrophic net metabolism consumed CO2 and released DO

(see Figure 4B).

After the decline of the winter-spring phytoplankton bloom,

primary production abated due to nutrient limitation (Oviatt et al.,

2002), and the net community metabolism becames heterotrophic

through the summer. This was confirmed by low concentrations of

DO (i.e. below saturation) in summer and fall (Figure 4B). The

enhanced respiration, in turn, elevated pCO2 and [H+], peaking

during the summer months. However, by fall, hetetrotrophy

weakened, resulting in decreased biologically-induced acidification

that was overcome by the effect of other drivers, and the net change

of [H+] change was negative (i.e. weakly basifying).

4.2.2 Air sea flux
Estuaries functioning as annual CO2 sources is well-

documented in some of the world’s largest estuary systems, like

Chesapeake Bay and the Pearl River Estuary (Liu et al., 2022;

Herrmann et al., 2020), though these estuaries are seasonal CO2

sinks during bloom periods. As Liu et al. (2022) suggest, CO2 ASF,

at least in part, is a response to an estuary’s NEM, since NEM is one

of the most influential sources/sinks of carbon in estuaries. We have

found a similar dynamic in Narragansett Bay, where ASF was the

second largest driver of [DH+]. Through summer and fall and even

into the beginning of winter, CO2 outgassing worked to oppose the
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acidifying effect of biology’s net heterotrophy. Because of warm

waters decreasing CO2 solubility and increased respiration

providing a seasonal source of dissolved CO2, pCO2 was higher

than atmospheric levels, often in excess of 500 µatm in the summer.

The loss of excess CO2 to the atmosphere, which averaged 87.23

µmolC kg−1 month−1 from May to December, mitigated

acidification. The magnitude of summertime [DH+] due to CO2

outgassing was almost large enough to offset the effect of biological

processes, yet it fell slightly short because CO2 ASF is slower than

metabolic processes.

By mid-winter, Narragansett Bay switched from a CO2 source to

CO2 sink. From December 2022 to February 2023, ASF in

Narragansett Bay changes from a release of 44.06 µmolC kg−1

month−1 to an uptake of 55.39 µmolC kg−1 month−1. The

combination of greater CO2 solubility in cold, winter waters and

greater air-sea interface turbulence from characteristically stronger

wintertime wind increased uptake of CO2 beginning in January

through much of the spring. The addition of CO2 to the water

column from the atmosphere subsequently released [H+]. Through

winter, uptake of CO2 was not large enough to overcome the basifying

effect of net photosynthesis —the inverse of summer’s and fall’s ASF

effect. Thus, year-round, ASF was the second largest driver of [DH+],

tending to oppose the seasonal effect of biological activities. However,

the consistent near-equal opposition by ASF to biological activities

may be somewhat overestimated due to (A) DDICbio being calculated

from DICASF and DDICmix (see Equation 9) and thus containing a

small residual term and (B) the assumption of the mixed layer being

equal to the water column.

4.2.3 Temperature
The third largest driver of [H+] change in Narragansett Bay was

temperature. From a thermodynamics perspective, warming

decreases CO2 solubility, while also increasing the carbonate

system’s dissociation reactions. Specifically with warming, H2CO3

more readily dissociates into HCO−
3 , resulting in the release of a

hydrogen ion. HCO−
3 even more readily dissociates into CO2−

3 ,

resulting in the release of an additional hydrogen ion. Decreased

CO2 solubil i ty under warming may work against the

thermodynamic effect on HCO−
3 and CO2−

3 , but CO2 gas exchange

is slow to equilibrate pCO2 with the atmosphere, while chemical

equilibration is nearly instantaneous (Cai et al., 2011; Millero,

1995). Thus, the immediate effect of warming/cooling observed in

Narragansett Bay was increased/decreased acidity, and

temperature’s effect of hydrogen ion concentration followed

annual patterns of cooling and warming.
4.3 December storm drivers

The community metabolism was the main contributor to the

change in [H+] during the 2022 winter storm, followed closely by

temperature (Figure 7). During the beginning of the week, from

December 20 through December 23, biological activity tended to
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basify the water column as the storm reaches its climax (i.e. a short

warm front with increasing wind speeds and brief precipitation on

December 23). This suggests a more autotrophic metabolism during

the beginning of the week, likely enabled by water column mixing

bringing nutrients and primary producers into the euphotic zone.

However, the metabolism became more heterotrophic by the end of

the week. This is similar to the response to Chesapeake Bay to

Hurricane Isabel in the summer of 2003. High winds during

Hurricane Isabel drove water column mixing that increased

primary production. However, the mixing of ammonium to the

surface enabled a diatom bloom that more than offset enhanced

primary production and led to a 0.2 to 0.3 unit decrease in surface

pH (Hall et al., 2023). Decreases in pH following storms may also

have been due to enhanced runoff from precipitation delivering

more nutrients, DIC, and organic matter to the estuary, as was

observed in Texas’s Baffin Bay, Nueces Estuary, Guadalupe Estuary,

and Lavaca-Colorado Estuary (Montagna et al., 2018), or from the

mixing of bottom water organic matter. While a pulse of nutrients

may have initially spurred primary production, the delivery of DIC

and organic matter to respire ultimately resulted in more

acidic conditions.

Temperature was the second most significant driver, initially

causing an increase in [H+] before quickly leading to a decrease,

contributing to 12.84% of the total [H+] changes. In contrast to its

impact on monthly timescales (Figure 6), ASF played a minimal role

during this event due to the slow exchange rate. Additionally, unlike

the monthly timescale, salinity exerted a moderate influence during

the storm, due to precipitation. Overall, the December 2022 storm

illustrated that while biology predominantly drove the carbonate

system over short timescales as well as longer timescales, temperature

and, to some extent, salinity, became more significant factors.
4.4 Long term trends under nutrient
reduction

Nitrogen loading reductions since 2005 have successfully

alleviated bottom water hypoxia and increased bottom water pH

(Codiga et al., 2022, 2009; Oviatt et al., 2017, 2022; Wang et al.,

2024), which has beneficial for the overall health of the bay’s

ecosystem. Our previous discussions have confirmed the

dominant role of biological processes in driving pH changes from

weekly to monthly timescales. Therefore, nutrient reduction should

naturally reduce surface pH, alongside the observed increases in

bottom DO and pH conditions.

Interestingly, Wang et al. (2024) found no significant changes in

the bay-mean annual average surface pH, despite the combined

effects of anthropogenic CO2 dissolution and declining surface

primary production, both of which typically lower pH. This lack

of significant change was attributed to strong natural variability.

However, the data treatment in Wang et al. (2024) (i.e. annual bay-

wide average) may have smoothed out the signal of nutrient

reduction when its effects are most pronounced. To address this,

we adopted two indices—the seasonal maximum pH and the
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seasonal mean—from the summer months, when nutrient

reductions have been most successful in reducing hypoxia.

Using these two new approaches, we found that the maximum

summertime pH, directly linked to primary productivity, has

decreased since nitrogen reduction efforts began (Figure 8B). This

provided strong evidence of the impact that strict nutrient

reduction has on primary productivity and, subsequently, on

surface pH, especially when the pH is naturally low in the

summer. However, the decreasing trend was less pronounced for

the mean summertime pH, which showed only a modest decline

around 2015 compared to the maximum pH. This discrepancy may

have been due to the freshening of Narragansett Bay observed

between 2017 and 2019. As reported by Wang et al. (2024), bay-

wide salinity during this period was 3 PSU lower than average,

resulting from increased precipitation and river discharge, which

may have increased pH by approximately 0.05 units. In other words,

natural variability makes it difficult to discern the changes in mean

summer pH caused by nutrient reduction.

Notably, Narragansett Bay’s response to nutrient reductions

(i.e. the decreases in mean and maximum summertime pH)

appeared to occur 3 to 4 years after the 50% nitrogen load

reductions were achieved in 2012 (RIDEM, 2016; Oviatt et al.,

2022; Codiga et al., 2022). With change points detected in 2015 at

QP and 2016 at MV (Figure 8), a decade after nitrogen reductions

were first implemented and 3 to 4 years after nitrogen reduction

goals were first met, we observed that Narragansett Bay’s carbonate

system has a delayed response—and a response that is likely still

developing—to nutrient management. Previous studies have found

that estuaries with reduced external nutrient loading can have a

sluggish biogeochemical response as a result of a “legacy” of

nutrients remaining in the sediment, to be released and recycled

for years to come (Testa et al., 2022; Cormier et al., 2023; Pitkänen

et al., 2001). This is particularly relevant in Narrganasett Bay, as

summertime benthic nutrient regeneration in the Providence River

Estuary and upper bay supply 5–30% of the phytoplankton nitrogen

demand (Fulweiler et al., 2010). This is to say, the delayed and likely

evolving biogeochemical response of Narragansett Bay to reduced

external nitrogen loads is not unexpected and underscores the

importance of internal nutrient loading in management decisions.

Narragansett Bay demonstrates the complicated biogeochemical

response to watershed management and nutrient reduction efforts.

On one hand, nutrient reductions can increase pH and DO

concentrations in bottom water, while also improving water clarity

and light penetration, which may further increase bottom pH and

DO through increased production. On the other hand, nutrient

reductions may modestly decrease surface production and surface

pH, particularly in the summer when pH is naturally low. Indeed,

nutrient management shifts the balance between surface and bottom

water productivity. As nutrient reductions continue to be

implemented, more research is needed to fully understand how

these changes will affect ecosystem services in the whole water

column, such as fisheries, aquaculture, and carbon sequestration, as

well as the resilience of the ecosystem to future stressors like climate

change and ocean acidification.
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5 Conclusion

Using four high temporal resolution pH time series, we found

that like many other estuaries, pH in Narragansett Bay fluctuates

both daily and seasonally, following general patterns of estuarine

productivity. pH tended to be higher during periods of peak

production, such as daytime or during a winter-spring algal

bloom. While the impact of temperature on surface pH was

relatively minor, especially on longer timescales (i.e. seasonal to

annual), and the impact of salinity even more minor, nutrient

reduction played a significant role in driving surface pH changes on

interannual timescales, especially in estuarine environments.

Looking ahead, future warming may have a minor effect on pH.

However, anthropogenic forcings like nutrient reduction are likely

to be a more crucial factor in shaping estuarine surface pH changes

alongside the uptake of anthropogenic CO2. This study captures the

effects of nutrient reduction on surface pH during the summer

months when these interventions are most impactful, providing a

clearer picture of the ongoing carbonate chemistry changes in the

context of climate change and active human management.
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et al. (2023). Acidification of the global surface ocean. Oceanography 36, 120–129.
doi: 10.5670/oceanog.2023.222

Friedlingstein, P., Jones, M. W., O’sullivan, M., Andrew, R. M., Bakker, D. C., Hauck,
J., et al. (2022). Global carbon budget 2021. Earth System Sci. Data 14, 1917–2005.
doi: 10.5194/essd-14-1917-2022

Fulweiler, R. W., Nixon, S. W., and Buckley, B. A. (2010). Spatial and temporal
variability of benthic oxygen demand and nutrient regeneration in an
Frontiers in Marine Science 18
anthropogenically impacted New England estuary. Estuaries Coasts 33, 1377–1390.
doi: 10.1007/s12237-009-9260-y

Hall, N., Testa, J., Li, M., and Paerl, H. (2023). Assessing drivers of estuarine pH: A
comparative analysis of the continental USA’s two largest estuaries. Limnology
Oceanography 68, 2227–2244. doi: 10.1002/lno.v68.10

Hall-Spencer, J. M., and Harvey, B. P. (2019). Ocean acidification impacts on coastal
ecosystem services due to habitat degradation. Emerging Topics Life Sci. 3, 197–206.
doi: 10.1042/ETLS20180117

Herrmann, M., Najjar, R. G., Da, F., Friedman, J. R., Friedrichs, M. A., Goldberger, S.,
et al. (2020). Challenges in quantifying air-water carbon dioxide flux using estuarine
water quality data: Case study for Chesapeake Bay. J. Geophysical Research: Oceans 125,
e2019JC015610. doi: 10.1029/2019JC015610

Herrmann, M., Najjar, R. G., Kemp, W. M., Alexander, R. B., Boyer, E. W., Cai, W.-J.,
et al. (2015). Net ecosystem production and organic carbon balance of US East Coast
estuaries: A synthesis approach. Global Biogeochemical Cycles 29, 96–111. doi: 10.1002/
2013GB004736

Hu, X., and Cai, W.-J. (2013). Estuarine acidification and minimum buffer zone—a
conceptual study. Geophysical Res. Lett. 40, 5176–5181. doi: 10.1002/grl.v40.19

Hu, X., Li, Q., Huang, W.-J., Chen, B., Cai, W.-J., Rabalais, N. N., et al. (2017). Effects
of eutrophication and benthic respiration on water column carbonate chemistry in a
traditional hypoxic zone in the Northern Gulf of Mexico. Marine Chem. 194, 33–42.
doi: 10.1016/j.marchem.2017.04.004

Humphreys, M. P., Lewis, E. R., Sharp, J. D., and Pierrot, D. (2022). PyCO2SYS v1. 8:
marine carbonate system calculations in Python. Geoscientific Model Dev. 15, 15–43.
doi: 10.5194/gmd-15-15-2022

Hunt, C. W., Salisbury, J. E., and Vandemark, D. (2022). Controls on buffering and
coastal acidification in a temperate estuary. Limnology Oceanography 67, 1328–1342.
doi: 10.1002/lno.12085

Irby, I. D., Friedrichs, M. A., Da, F., and Hinson, K. E. (2018). The competing impacts
of climate change and nutrient reductions on dissolved oxygen in Chesapeake Bay.
Biogeosciences 15, 2649–2668. doi: 10.5194/bg-15-2649-2018

Jellison, B. M., and Gaylord, B. (2019). Shifts in seawater chemistry disrupt trophic
links within a simple shoreline food web. Oecologia 190, 955–967. doi: 10.1007/s00442-
019-04459-0

Jiang, L.-Q., Carter, B. R., Feely, R. A., Lauvset, S. K., and Olsen, A. (2019). Surface
ocean pH and buffer capacity: past, present and future. Sci. Rep. 9, 18624. doi: 10.1038/
s41598-019-55039-4

Jiang, Z.-P., Qin, C., Pan, Y., Le, C., Rabalais, N., Turner, R. E., et al. (2024). Multi-
decadal coastal acidification in the northern Gulf of Mexico driven by climate change
and eutrophication. Geophysical Res. Lett. 51, e2023GL106300. doi: 10.1029/
2023GL106300

Kelley, D., and Richards, C. (2023). oce: Analysis of Oceanographic Data, R package
version 1.8-2.

Kremer, J. N., Reischauer, A., and D’Avanzo, C. (2003). Estuary-specific variation in
the air-water gas exchange coefficient for oxygen. Estuaries 26, 829–836. doi: 10.1007/
BF02803341

Kroeker, K. J., Kordas, R. L., Crim, R. N., and Singh, G. G. (2010). Meta-analysis
reveals negative yet variable effects of ocean acidification on marine organisms. Ecol.
Lett. 13, 1419–1434. doi: 10.1111/j.1461-0248.2010.01518.x

Kwiatkowski, L., and Orr, J. C. (2018). Diverging seasonal extremes for ocean
acidification during the twenty-first century. Nat. Climate Change 8, 141–145.
doi: 10.1038/s41558-017-0054-0

Lan, X., Tans, P., and Thoning, K. (2023). Trends in globally-averaged CO2 determined
from NOAA global monitoring laboratory measurements. Version 2023-11.
doi: 10.15138/9N0H-ZH07

Liu, S., Gao, Q., Wu, J., Xie, Y., Yang, Q., Wang, R., et al. (2022). Spatial distribution
and influencing mechanism of CO2, N2O and CH4 in the Pearl River Estuary in
summer. Sci. Total Environ. 846, 157381. doi: 10.1016/j.scitotenv.2022.157381

Lowe, A. T., Bos, J., and Ruesink, J. (2019). Ecosystem metabolism drives ph
variability and modulates long-term ocean acidification in the Northeast Pacific
coastal ocean. Sci. Rep. 9, 963. doi: 10.1038/s41598-018-37764-4

Lueker, T. J., Dickson, A. G., and Keeling, C. D. (2000). Ocean pCO2 calculated from
dissolved inorganic carbon, alkalinity, and equations for K1 and K2: validation based
on laboratory measurements of CO2 in gas and seawater at equilibrium.Marine Chem.
70, 105–119. doi: 10.1016/S0304-4203(00)00022-0

Ma, D., Gregor, L., and Gruber, N. (2023). Four decades of trends and drivers of
global surface ocean acidification. Global Biogeochemical Cycles 37, e2023GB007765.
doi: 10.1029/2023GB007765

Mensinger, M. (2019). National Estuarine Research Reserve System-Wide Monitoring
Program (Georgetown, SC: NOAA National Estuarine Research Reserve System).

Millero, F. J. (1995). Thermodynamics of the carbon dioxide system in the oceans.
Geochimica Cosmochimica Acta 59, 661–677. doi: 10.1016/0016-7037(94)00354-O
frontiersin.org

https://doi.org/10.1016/0967-0637(95)00072-E
https://doi.org/10.1029/93gb03318
https://doi.org/10.1175/2010BAMS2946.1
https://doi.org/10.1007/s12237-017-0321-3
https://doi.org/10.1038/nature10295
https://doi.org/10.1126/science.aam7240
https://doi.org/10.1016/j.dsr.2018.09.005
https://doi.org/10.1007/s12237-013-9701-5
https://doi.org/10.1146/annurev-marine-010419-011004
https://doi.org/10.1038/ngeo1297
https://doi.org/10.1038/s41467-017-00417-7
https://doi.org/10.1007/s12237-009-9165-9
https://doi.org/10.3389/fmars.2022.930347
https://doi.org/10.1007/s10661-023-11621-y
https://doi.org/10.1029/2021JC017239
https://doi.org/10.1146/annurev-environ-012320-083019
https://doi.org/10.1146/annurev.marine.010908.163834
https://doi.org/10.1146/annurev.marine.010908.163834
https://doi.org/10.1007/s00360-017-1105-6
https://doi.org/10.1007/s00360-017-1105-6
https://doi.org/10.5194/bg-18-1407-2021
https://doi.org/10.5670/oceanog.2023.222
https://doi.org/10.5194/essd-14-1917-2022
https://doi.org/10.1007/s12237-009-9260-y
https://doi.org/10.1002/lno.v68.10
https://doi.org/10.1042/ETLS20180117
https://doi.org/10.1029/2019JC015610
https://doi.org/10.1002/2013GB004736
https://doi.org/10.1002/2013GB004736
https://doi.org/10.1002/grl.v40.19
https://doi.org/10.1016/j.marchem.2017.04.004
https://doi.org/10.5194/gmd-15-15-2022
https://doi.org/10.1002/lno.12085
https://doi.org/10.5194/bg-15-2649-2018
https://doi.org/10.1007/s00442-019-04459-0
https://doi.org/10.1007/s00442-019-04459-0
https://doi.org/10.1038/s41598-019-55039-4
https://doi.org/10.1038/s41598-019-55039-4
https://doi.org/10.1029/2023GL106300
https://doi.org/10.1029/2023GL106300
https://doi.org/10.1007/BF02803341
https://doi.org/10.1007/BF02803341
https://doi.org/10.1111/j.1461-0248.2010.01518.x
https://doi.org/10.1038/s41558-017-0054-0
https://doi.org/10.15138/9N0H-ZH07
https://doi.org/10.1016/j.scitotenv.2022.157381
https://doi.org/10.1038/s41598-018-37764-4
https://doi.org/10.1016/S0304-4203(00)00022-0
https://doi.org/10.1029/2023GB007765
https://doi.org/10.1016/0016-7037(94)00354-O
https://doi.org/10.3389/fmars.2025.1552350
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Baskind et al. 10.3389/fmars.2025.1552350
Mollica, N. R., Guo, W., Cohen, A. L., Huang, K.-F., Foster, G. L., Donald, H. K., et al.
(2018). Ocean acidification affects coral growth by reducing skeletal density. Proc. Natl.
Acad. Sci. 115, 1754–1759. doi: 10.1073/pnas.1712806115

Montagna, P. A., Hu, X., Palmer, T. A., and Wetz, M. (2018). Effect of hydrological
variability on the biogeochemistry of estuaries across a regional climatic gradient.
Limnology Oceanography 63, 2465–2478. doi: 10.1002/lno.10953

Narita, D., Rehdanz, K., and Tol, R. S. (2012). Economic costs of ocean acidification:
a look into the impacts on global shellfish production. Climatic Change 113, 1049–1063.
doi: 10.1007/s10584-011-0383-3

Nixon, S. W., Buckley, B. A., Granger, S. L., Harris, L. A., Oczkowski, A. J., Fulweiler,
R. W., et al. (2008). “Nitrogen and phosphorus inputs to Narragansett Bay: past,
present, and future,” in Science for ecosystem-based management: Narragansett Bay in
the 21st century (New York: Springer), 101–175.

NOAA (1998). Narragansett Bay, RI (M020) bathymetric digital elevation model (30
meter resolution) derived from source hydrographic survey soundings collected by NOAA
(Silver Springs, MD: National Centers for Environmental Information).

NSF Ocean Observatories Initiative (2018). Data product specification for pH of
seawater (Washington DC: NSF Ocean Observatories Initiative).

Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. A., et al. (2005).
Anthropogenic ocean acidification over the twenty-first century and its impact on
calcifying organisms. Nature 437, 681–686. doi: 10.1038/nature04095

Oviatt, C., Keller, A., and Reed, L. (2002). Annual primary production in
Narragansett Bay with no bay-wide winter–spring phytoplankton bloom. Estuarine
Coastal Shelf Sci. 54, 1013–1026. doi: 10.1006/ecss.2001.0872

Oviatt, C., Smith, L., Krumholz, J., Coupland, C., Stoffel, H., Keller, A., et al. (2017).
Managed nutrient reduction impacts on nutrient concentrations, water clarity, primary
production, and hypoxia in a north temperate estuary. Estuarine Coastal Shelf Sci. 199,
25–34. doi: 10.1016/j.ecss.2017.09.026

Oviatt, C., Stoffel, H., Huizenga, K., Reed, L., Codiga, D., and Fields, L. (2022). A tale
of two spring blooms in a northeast estuary of the USA: how storms impact nutrients,
multiple trophic levels and hypoxia. Hydrobiologia 849, 1131–1148. doi: 10.1007/
s10750-021-04768-7

Pacella, S. R., Brown, C. A., Kaldy, J. E., Labiosa, R. G., Hales, B.,MochonCollura, T. C., et al.
(2024). Quantifying the combined impacts of anthropogenic CO2 emissions and watershed
alteration on estuary acidification at biologically-relevant time scales: a case study from
Tillamook Bay, OR, USA. Front. Marine Sci. 11, 1293955. doi: 10.3389/fmars.2024.1293955

Pilson, M. E. (1985). On the residence time of water in Narragansett Bay. Estuaries 8,
2–14. doi: 10.2307/1352116

Pimenta, A., Oczkowski, A., McKinney, R., and Grear, J. (2023). Geographical and
seasonal patterns in the carbonate chemistry of Narragansett Bay, RI. Regional Stud.
Marine Sci. 62, 102903. doi: 10.1016/j.rsma.2023.102903

Pitkänen, H., Lehtoranta, J., and Räike, A. (2001). Internal nutrient fluxes counteract
decreases in external load: the case of the estuarial eastern Gulf of Finland, Baltic Sea.
AMBIO: A J. Hum. Environ. 30, 195–201. doi: 10.1579/0044-7447-30.4.195

Rewrie, L. C., Baschek, B., van Beusekom, J. E., Körtzinger, A., Ollesch, G., and
Voynova, Y. G. (2023). Recent inorganic carbon increase in a temperate estuary
driven by water quality improvement and enhanced by droughts. Biogeosciences 20,
4931–4947. doi: 10.5194/bg-20-4931-2023
Frontiers in Marine Science 19
Rheuban, J. E., Doney, S. C., McCorkle, D. C., and Jakuba, R. W. (2019).
Quantifying the effects of nutrient enrichment and freshwater mixing on coastal
ocean acidification. J. Geophysical Research: Oceans 124, 9085–9100. doi: 10.1029/
2019JC015556

RIDEM (2016). Major Wastewater Pollutant Reduction Efforts in RI Since Meeting
Secondary Treatment Standards (Providence, RI: Rhode Island Department of
Environmental Management).

RIDEM (2020). Quality Assurance Project Plan: Narragansett Bay Fixed Station
Monitoring Network Seasonal Monitoring (Providence, RI: Rhode Island Department of
Environmental Management).

Sarmiento, J. L., and Gruber, N. (2006). Ocean biogeochemical dynamics (Princeton,
NJ : Princeton university press).

SeaBird Scientific (2023). HydroCAT-EP V2 user manual. Version F.

Stoffel, H., and Langan, J. (2019). pH trends in Narragansett Bay using Narragansett
Bay Fixed-Site Monitoring Network data (Narragansett, RI : Rhode Island Department
of Environmental Management & University of Rhode Island Coastal Institute).

Taylor, S. J., and Letham, B. (2018). Forecasting at scale. Am. Statistician 72, 37–45.
doi: 10.1080/00031305.2017.1380080

Testa, J. M., Boynton, W. R., Hodgkins, C. L., Moore, A. L., Bailey, E. M., and Rambo,
J. (2022). Biogeochemical states, rates, and exchanges exhibit linear responses to large
nutrient load reductions in a shallow, eutrophic urban estuary. Limnology
Oceanography 67, 739–752. doi: 10.1002/lno.12037

Truong, C., Oudre, L., and Vayatis, N. (2020). Selective review of offline change point
detection methods. Signal Process. 167, 107299. doi: 10.1016/j.sigpro.2019.107299

Uppström, L. R. (1974). The boron/chlorinity ratio of deep-sea water from the Pacific
Ocean. Deep Sea Res. A 21, 161–162. doi: 10.1016/0011-7471(74)90074-6

Wallace, R. B., Baumann, H., Grear, J. S., Aller, R. C., and Gobler, C. J. (2014). Coastal
ocean acidification: The other eutrophication problem. Estuarine Coastal Shelf Sci. 148,
1–13. doi: 10.1016/j.ecss.2014.05.027

Wang, H., Codiga, D. L., Stoffel, H., Oviatt, C., Huizenga, K., and Grear, J. (2024).
Effect of nutrient reductions on dissolved oxygen and pH: a case study of Narragansett
Bay. Front. Marine Sci. 11, 1374873. doi: 10.3389/fmars.2024.1374873

Wang, S. R., Di Iorio, D., Cai, W.-J., and Hopkinson, C. S. (2018). Inorganic carbon
and oxygen dynamics in a marsh-dominated estuary. Limnology oceanography 63, 47–
71. doi: 10.1002/lno.10614

Wang, H., Lehrter, J., Maiti, K., Fennel, K., Laurent, A., Rabalais, N., et al. (2020).
Benthic respiration in hypoxic waters enhances bottom water acidification in the
northern Gulf of Mexico. J. Geophysical Research: Oceans 125, e2020JC016152.
doi: 10.1029/2020JC016152

Wanninkhof, R. (2014). Relationship between wind speed and gas exchange over the
ocean revisited. Limnology Oceanography: Methods 12, 351–362. doi: 10.4319/
lom.2014.12.351

Weiss, R. (1974). Carbon dioxide in water and seawater: the solubility of a non-ideal
gas. Marine Chem. 2, 203–215. doi: 10.1016/0304-4203(74)90015-2

Wright-Fairbanks, E., and Saba, G. (2022). Quantification of the dominant drivers of
acidification in the coastal Mid-Atlantic Bight. J. Geophysical Research: Oceans 127,
e2022JC018833. doi: 10.1029/2022JC018833
frontiersin.org

https://doi.org/10.1073/pnas.1712806115
https://doi.org/10.1002/lno.10953
https://doi.org/10.1007/s10584-011-0383-3
https://doi.org/10.1038/nature04095
https://doi.org/10.1006/ecss.2001.0872
https://doi.org/10.1016/j.ecss.2017.09.026
https://doi.org/10.1007/s10750-021-04768-7
https://doi.org/10.1007/s10750-021-04768-7
https://doi.org/10.3389/fmars.2024.1293955
https://doi.org/10.2307/1352116
https://doi.org/10.1016/j.rsma.2023.102903
https://doi.org/10.1579/0044-7447-30.4.195
https://doi.org/10.5194/bg-20-4931-2023
https://doi.org/10.1029/2019JC015556
https://doi.org/10.1029/2019JC015556
https://doi.org/10.1080/00031305.2017.1380080
https://doi.org/10.1002/lno.12037
https://doi.org/10.1016/j.sigpro.2019.107299
https://doi.org/10.1016/0011-7471(74)90074-6
https://doi.org/10.1016/j.ecss.2014.05.027
https://doi.org/10.3389/fmars.2024.1374873
https://doi.org/10.1002/lno.10614
https://doi.org/10.1029/2020JC016152
https://doi.org/10.4319/lom.2014.12.351
https://doi.org/10.4319/lom.2014.12.351
https://doi.org/10.1016/0304-4203(74)90015-2
https://doi.org/10.1029/2022JC018833
https://doi.org/10.3389/fmars.2025.1552350
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

	Unraveling natural carbonate variability in Narragansett Bay, RI using multiple high temporal resolution pH time series
	1 Introduction
	2 Methods
	2.1 Site description
	2.2 Data
	2.2.1 Autonomous observation system
	2.2.2 Discrete bottle samples
	2.2.3 Quality assurance and control

	2.3 Carbonate chemistry calculations
	2.4 Air-sea CO2 flux
	2.5 pH driver analysis
	2.6 Net ecosystem metabolism

	3 Results
	3.1 Diurnal cycle
	3.2 Seasonal cycle
	3.3 Net ecosystem metabolism
	3.4 Seasonal pH drivers
	3.5 Winter storm pH drivers
	3.6 Long term pH trends

	4 Discussion
	4.1 Diurnal cycle
	4.2 Drivers of monthly and seasonal carbonate variability
	4.2.1 Biology &amp; metabolism
	4.2.2 Air sea flux
	4.2.3 Temperature

	4.3 December storm drivers
	4.4 Long term trends under nutrient reduction

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Correction note
	Publisher’s note
	References


