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Introduction: Exposure to phthalate esters has previously been documented in

bottlenose dolphins (Tursiops truncatus) inhabiting an urban estuary (Sarasota

Bay, FL, USA; 2010-2019). Phthalates are chemicals commonly added to plastic

products and consumer goods to enhance qualities such as flexibility, fragrance,

and stability. Chemical leaching from products into the marine environment

leaves wildlife vulnerable to reproductive, developmental, and metabolic

impairment. Environmental phthalate exposure has been shown to vary relative

to human activity and urbanization.

Methods: To evaluate potential differences in dolphin exposure risk, urine was

collected from free-ranging bottlenose dolphins residing in an urban (Sarasota

Bay, FL, USA; 2010-2024; n=71) and rural estuary (Barataria Bay, LA, USA; 2011-

2023; n=45). Urinary phthalate metabolite concentrations were quantified with

high-performance liquid chromatography (HPLC; Agilent 1100; WatersXBridge

BEH C18, 2.5 mm, 2.1x50 mm analytical column) coupled to a triple quadrupole

mass spectrometer (MS; Applied Biosystems Sciex API 4000) with an electrospray

ionization (ESI negative) interface.

Results: The magnitude of MEHP detection did not differ significantly between

sampling sites (p=0.97); however, MEHP was detected more frequently in

Sarasota Bay dolphins (73.24%; n=52; 95% CI: 61.20-82.73) than Barataria Bay

dolphins (33.33%; n=15; 95% CI: 20.00-48.95%). Dolphins from Sarasota Bay may

be exposed to a greater diversity of phthalates compared to Barataria Bay

dolphins, indicated by differences in the detected phthalate metabolite profile.
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Discussion: Notably, dolphins from Barataria Bay were impacted by the

Deepwater Horizon oil spill, with evidence suggesting long-term negative

health outcomes. The endocrine-disrupting effects of phthalates could

exacerbate metabolic, reproductive, or immune dysfunction in dolphins,

especially those with compromised health. The higher phthalate detection

frequency in Sarasota Bay dolphins suggests increased urban exposure risks;

however, detection in dolphins from Barataria Bay raises concerns for dolphins

in recovering ecosystems. Further research is needed to assess potential

synergistic impacts of chemical mixtures, and targeted mitigation strategies in

contaminated environments.
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1 Introduction

Phthalates are synthetic additives commonly used to increase

plastic flexibility (Wormuth et al., 2006; ATSDR, 2019) and added

to personal care products as solvents and stabilizers (ATSDR, 1995;

Hauser and Calafat, 2005). There are approximately 21 commonly

used phthalates that have a basic structure comprising two ester

groups attached to consecutive carbons on a benzene ring (Zhang

et al., 2015a). The most common phthalates observed in the marine

environment are dimethyl phthalate (DMP), diethyl phthalate

(DEP), di-n-butyl phthalate (DBP), benzyl butyl phthalate (BBP),

and di(2-ethylhexyl) phthalate (DEHP; Gao and Wen, 2016).

Phthalates are not chemically bound to the products to which

they are added, allowing them to easily separate from the product

and leach into the environment (Heudorf et al., 2007). For example,

some phthalates (e.g., DEP, DEHP, and DBP) have been reported to

leach out of materials composed of polyvinyl chloride (PVC) and

polyethylene, as well as car parts, plastic toys, food packaging,

paints, glues, and cosmetics (Paluselli et al., 2019; ATSDR, 2022).

Phthalates can enter the marine environment via degradation of

plastic pollution (Paluselli et al., 2019), agricultural waste (Zhang

et al., 2015a), commercial and industrial runoff and waste (Bergé

et al., 2014; Langdon et al., 2019), or wastewater discharge (Clara

et al., 2010). For example, Paluselli et al. (2019) observed the release

of phthalates from fragments of polyethylene garbage bags, which

continue to be a major contributor to marine plastic pollution

(Suaria et al., 2020; Thushari and Senevirathna, 2020). In laboratory

conditions, phthalates readily leach from plastic material into

seawater, reaching peak concentrations within two weeks of

introduction; light and bacteria increased aqueous concentrations

5-fold (Paluselli et al., 2019). Agricultural environments are often

contaminated with phthalates, particularly during the summer

months when plastic mulching films are used to protect crops

and improve crop yield (Zhang et al., 2015b; Viljoen et al., 2023).

Further, DEHP is a common component of most organic fertilizers

(Zornıḱová et al., 2014), and due to its low solubility in water, this
02
phthalate can accumulate in agricultural soils (Cartwright et al.,

2000; Niu et al., 2014). Additionally, environmental contamination

from industrial and commercial sources can include leachate or

runoff from improper disposal of electronic waste or parts (Liu et al.,

2009). This is particularly true for phthalates that are more

hydrophilic (e.g., MEP) and easily mobilize from the soil via

leachate or runoff into nearby waterways (Langdon et al., 2019).

Researchers have also examined environmental pollution relative to

manufacturing plants. For example, high concentrations of DEHP

have been found in the Houjing River at multiple sampling

locations near two different industrial parks in southern Taiwan

(20.22 mg/kg and 8.93 mg/kg, respectively; Kaewlaoyoong et al.,

2018). Phthalates are also present in influent and effluent

wastewater. Across 15 sampled wastewater treatment plants, DEP,

DEHP, and BBP were present in 100% of influent wastewater

samples, and DEHP and BBP remained present in 100% of

treated wastewater samples while DEP remained present in 80%

of treated samples (Clara et al., 2010).

Following exposure, mammals rapidly metabolize phthalates to

their monoester form. Metabolism occurs through a series of steps,

including phase I hydrolysis followed by phase II conjugation

(Frederiksen et al., 2007; Choi et al., 2013). Long-branched

phthalates, such as DEHP, often require further hydroxylation

and oxidation before proceeding to the conjugation phase

(Frederiksen et al., 2007). Generally, the more a compound is

reduced, the less cytotoxic it becomes, which may be the impetus

for metabolic rapidity (Staples et al., 1997). In the case of DEHP,

however, metabolism increases toxicity (Gray and Gangolli, 1986;

Fan et al., 2010; Gupta et al., 2010). Following metabolism,

phthalate metabolites are excreted through urine and feces, where

they are able to be detected and quantified (Frederiksen et al., 2007;

Choi et al., 2013). Because of the metabolic process, phthalates are

not expected to bioaccumulate (Staples et al., 1997; Heudorf et al.,

2007); however, ongoing use and release of phthalates into the

environment may result in chronic exposure opportunities for

wildlife. In humans, urine is the preferred matrix for assessing
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phthalate exposure due to the reduced potential for contamination

from the parent compound (Koch and Calafat, 2009) and the ability

to detect metabolites in low concentrations (Blount et al., 2000).

Phthalate exposure has been implicated in many adverse health

outcomes, including endocrine disruption (Monneret, 2017; Qian

et al., 2020), reproductive impairment (Toft et al., 2012; Ye et al.,

2014), and abnormal development (Lyche et al., 2009; Radke et al.,

2019). The mechanism of endocrine disruption involves

competitive inhibition, in which phthalates bind to endocrine

receptors and prevent their target hormones from binding (Lee

et al., 2013). The result is a disruption of the normal production,

transport, and activity of hormones throughout the body. For

example, BBP can bind to estrogen receptors and substantially

reduce estrogenic activity (Lee et al., 2013), and DEHP can bind to

thyroid signaling hormone receptors and result in hypothyroidism

(Zhang et al., 2021). This endocrine disruption can lead to

downstream reproductive impacts including infertility (Latini

et al., 2003, 2006; Tranfo et al., 2012), poor semen motility

(Jurewicz et al., 2013; Axelsson et al., 2015), decreased fecundity

(Buck Louis et al., 2014; Seyoum and Pradhan, 2019; Yang et al.,

2021), decreased testosterone levels (Kim et al., 2003; Meeker and

Ferguson, 2014; Chang et al., 2015), and genital defects in males

(Parks et al., 2000; Pant et al., 2014; Radke et al., 2018). For example,

among men, exposure to DEHP, DBP, and DEP has been associated

with decreased anogenital distance, reduced semen quality, and

impacts on sperm motility (Pant et al., 2014; Radke et al., 2018;

Yang et al., 2023). Among women, decreased fecundity (Hauser

et al., 2016; Jukic et al., 2016), spontaneous abortion (Jukic et al.,

2016; Messerlian et al., 2016), and preterm birth (Ferguson et al.,

2014, 2019; Shoaff et al., 2016) were associated with exposure to

certain phthalates, including DEHP, DBP, and DEP. Impacts on

growth and metabolism are also reported, including an increased

risk of obesity (Majeed et al., 2017; Stojanoska et al., 2017) and Type

II diabetes (Chevalier and Fénichel, 2015; Zhang et al., 2023; Yang

et al., 2025). These impacts are likely mediated through the thyroid

as it is a target for phthalates, resulting in the abnormal production

or secretion of hormones such as triiodothyronine (T3) thyroxine

(T4), and insulin-like growth factor 1 (IGF-I;Boas et al., 2010).

Bottlenose dolphins (Tursiops truncatus) inhabiting Sarasota Bay,

FL, USA have been the focus of several studies to understand phthalate

exposure, given the embayment’s proximity to agricultural, industrial,

and residential centers (Hart et al., 2018; Dziobak et al., 2021, 2022a).

Nearly 75% of sampled dolphins (n = 51) were exposed to at least one

type of phthalate, and exposure was not limited to a particular sex or

age class (Dziobak et al., 2021). Among the eight compounds screened

(monomethyl phthalate (MMP), monoethyl phthalate (MEP), mono

(2-ethylhexyl) phthalate (MEHP), mono(2-ethyl-5-oxohexyl) phthalate

(MEOHP), mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP),

monobenzyl phthalate (MBzP), monobutyl phthalate (MBP), and

mono-isobutyl phthalate (MiBP)), the most commonly detected

metabolites were MEP and MEHP (Hart et al., 2018; Dziobak et al.,

2021), which are metabolites of parent compounds commonly added

to personal care products (Hauser and Calafat, 2005) and plastic goods,

respectively (Paluselli et al., 2019). When compared to data collected as
Frontiers in Marine Science 03
part of the Centers for Disease Control and Prevention’s (CDC)

National Health and Nutrition Examination Survey (NHANES),

Sarasota bottlenose dolphin urinary concentrations of MEHP were

significantly higher than human samples (Hart et al., 2020). While the

exact sources and implications of this exposure are currently unknown

for Sarasota Bay dolphins, there is evidence of plastic ingestion

(particularly transparent films and white foams; Hart et al., 2022)

and thyroid disruption (Dziobak et al., 2022b).

Barataria Bay, LA, USA, is located in the northern Gulf of

Mexico, approximately 80 miles south of New Orleans, LA, USA.

The bay is bordered by mainland Louisiana to the north and Grand

Isle to the south. Compared to the urban environment and coastal

development of Sarasota Bay, Barataria is a more remote location

with a much smaller human population primarily restricted to the

barrier island of Grand Isle. In 2010, an offshore oil rig exploded in

the Gulf of Mexico causing the largest domestic marine oil spill in

history (Deepwater Horizon; Liu et al., 2011), and bottlenose

dolphins in Barataria Bay have since been the focus of long-term

monitoring to assess the impacts of oil exposure on health

(Schwacke et al., 2017; Smith et al., 2017), movement (Takeshita

et al., 2021), and survival (McDonald et al., 2017; Schwacke et al.,

2022). This long-term monitoring has included catch-and-release

health assessments, providing the opportunity to collect urine

samples from free-ranging dolphins.

Phthalate use is extensive, and contamination has been

documented in every environmental matrix (e.g., air; Adibi et al.,

2008; Lee et al., 2019; sediment; Arfaeinia et al., 2019; Lee et al., 2019;

Weizhen et al., 2020; biota; Valton et al., 2014; Fourgous et al., 2016;

Baini et al., 2017; Hart et al., 2018; freshwater; (Fatoki et al., 2010;

Cheng et al., 2019); seawater; Zhang et al., 2018) across urban and

rural locations (Wang et al., 2014); however, the distribution of

phthalates has been shown to vary across locations. For example,

studies conducted in China have observed increased phthalate

pollution along a rural-urban gradient, with the highest

concentrations found in the most urbanized areas (Lan et al., 2012;

Hongjun et al., 2013). These findings are supported by other studies

that detected increased phthalate concentrations in urban and

industrialized areas compared to rural (Sun et al., 2013; Wang

et al., 2018; Karamianpour et al., 2023). Notably, many studies of

phthalates in soils or sediments that documented differences between

sites still had detection in the majority of all samples, highlighting the

ubiquity of environmental phthalate pollution (Sun et al., 2013;

Duong et al., 2014). Similar relationships between phthalate

exposure and urbanization have been detected in humans, where

urban human populations have higher phthalate metabolite

concentrations compared to rural locations (Prasad et al., 2022;

Runkel et al., 2022). This is also mirrored in aquatic environments,

potentially due to phthalate contamination discharged from

industrial effluents and untreated wastewater (Zhang et al., 2015b).

Given widespread phthalate pollution in the environment,

contamination is expected for dolphins residing in both urban

and rural locations, though the variation between sites is currently

unknown. Therefore, the objective of this study is to characterize

and compare phthalate exposure among urban Sarasota Bay,
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Florida dolphins compared to rural Barataria Bay, Louisiana

dolphins to better understand the impacts of human activity on

environmental pollution and subsequent exposure.
2 Methods

2.1 Site selection

Dolphins sampled for this study were from the Barataria Bay

Estuarine System Stock occupying Barataria Basin as well as

dolphins from the National Marine Fisheries Service (NMFS)

stock that includes dolphins using SSB, and Little SSB (Tyson and

Wells, 2016). Although both locations are estuarine systems, the

barrier islands of BAR are much less populated than the city of

Sarasota (1,005 residents compared to ~55,000, respectively (US

Census Bureau, 2024b, a). Further, land bounding the Barataria

Basin is primarily privately owned, with 22% of the basin developed

(CWPPRA, 2022), while land in Sarasota County is zoned for

agricultural, residential, commercial, and industrial use (City of

Sarasota, 2024). Therefore, dolphins residing in BAR were identified

as “rural” while dolphins residing in SSB were identified as “urban”.

However, it should be noted that BAR has a high concentration of

petrochemical infrastructure and activity, with most operations

based out of Grand Isle and Port Fourchon. Dolphins from both

BAR and SSB are known to exhibit year-round site fidelity (Wells,

2009; McDonald et al., 2017), thus contaminant exposure is

expected to reflect their local environments.
Frontiers in Marine Science 04
2.2 Urine collection

Dolphins sampled for this study were individuals considered to

be resident to Sarasota Bay, Florida (SB; n~170; Wells, 2009; Lacy

et al., 2021) and Barataria Bay, Louisiana (BB; n~2,000; Mullin et al.,

2018; Figure 1). Urine was collected opportunistically via

catheterization from dolphins sampled during catch-and-release

health assessments. For BAR dolphins, urine was collected via

urinary catheterization, using an 8.5Fr 60 cm multipurpose

drainage catheter (Cook Medical, Bloomington, Indiana) for males

and a 10.2Fr 45 cmmultipurpose drainage catheter (CookMedical) or

a 10Fr 90 cm Foley catheter (Mila International, Erlanger, Kentucky)

for females. For SSB dolphins, urine was collected either from free

catch using a 50 ml conical vial or via urinary catheterization, using a

lubricated (surgilube) 8Fr 22 in (adults) or 5Fr 16 in (juveniles)

Kendall Sovereign Feeding Tube and Urethral Catheter (Patterson

Veterinary, Loveland, CO). For both locations, samples were frozen

with liquid nitrogen for transport in vapor shippers and stored below

−20°C until analysis. Health assessments were conducted in BAR

during 2011, 2013-2014, 2017-2018, and 2023 as a result of the

Deepwater Horizon oil spill, as well as routinely in SSB during 2010-

2019, 2022-2024. Some dolphins (n=15) were sampled repeatedly

during these health assessments; however, repeated samples were not

included in analysis. Health assessment methods have been described

elsewhere (Wells et al., 2004, Barratclough et al., 2019). Briefly,

dolphins were encircled and temporarily restrained to collect a

variety of biological, physiological, and morphological samples/

data. Health assessments in BAR were conducted under NMFS
FIGURE 1

Bottlenose dolphins study sites: (A) Sarasota Bay, Florida and (B) Barataria Bay, Louisiana. Map created using Esri ArcGIS Pro basemap, Esri, TomTom,
Garmin, FAO, NOAA, USGS, © OpenStreetMap contributors, and the GIS User Community.
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Scientific Research Permits Nos. 932-1905, 18786, and 24539. Health

assessments in SSB were conducted under NMFS Scientific Research

Permits Nos. 522-1785, 15543, 20455, and 26622.
2.3 Sample processing and analysis

Each urine sample was screened for seven phthalate metabolites

(MEHP, MEHHP, MEOHP, MBzP, MiBP, and MBP). Male samples

containing sperm were centrifuged at 3,000 rpm for 5 minutes prior

to solid phase extraction (SPE) to separate the urine from the sperm

and prevent clogs in the SPE cartridge. Urine samples (1 mL) were

spiked with isotopically labeled internal standards and extracted via

SPE (Agilent Bond Elute Nexus) and quantified with high-

performance liquid chromatography (HPLC; Agilent 1100;

WatersXBridge BEH C18, 2.5 mm, 2.1 x 50 mm analytical column)

coupled to a triple quadrupole mass spectrometer (MS; Applied

Biosystems Sciex API 4000) with an electrospray ionization (ESI

negative) interface. Sample integrations were performed using

Analyst software (Sciex, ver 1.5). Prior to the acquisition of sample

data, the instrument was calibrated (standard reference material

(SRM) 3060: monoester phthalates in acetonitrile); coefficients of

determination (r2) for all metabolites were ≥ 0.995.

As reported by Hart et al. (2018), quality assurance/quality

control (QA/QC) samples (reagent blanks, reagent spikes, matrix

spikes, SRM 3672 Organic Contaminants in Smokers’ Urine, and

field blanks) were processed alongside the urine samples. Reagent

blank values were subtracted from the determined concentration

value to account for any metabolite contamination resulting from

laboratory processes. Available field blank metabolite concentrations

were not found to be statistically different from each other by year or

by metabolite. Field blank concentrations were averaged for each

metabolite and subtracted from urine samples for any contamination

due to sample collection materials (e.g., catheters). Acceptable QA/

QC criteria for spike (reagent and matrix) and SRM recoveries were

70%-130%. The limit of detection (LOD) was determined for each

metabolite and is based on the lowest point on the calibration curve

that could be detected on the instrument divided by the volume of

the sample extracted (Dziobak et al., 2025).
2.4 Statistical analysis

Descriptive statistics were used to summarize phthalate

metabolite concentrations and calculate the proportion of dolphins

with concentrations above the LOD (“detectable concentrations”;

Dziobak et al., 2025. For dolphins sampled more than once, only the

sample most recently obtained was used for analysis. All statistical

analyses were conducted using R (Version 4.3.2, R Foundation for

Statistical Computing, Vienna, Austria) and R Studio (Posit Software,

BBC) software packages. For metabolites with greater than 20% of

concentrations above LOD, means and standard deviations were

calculated using robust regression on order statistics (Helsel, 2006)

using the NADA (Lee and Helsel, 2022) and NADA2 (Julian and

Helsel, 2023) packages. Previous work demonstrated no demographic
Frontiers in Marine Science 05
differences in phthalate metabolite detection, but used a small sample

size (Dziobak et al., 2021). Therefore, summary statistics were

calculated overall and by demography (female, male, immature,

and mature) within each site to retest relationships with a larger

sample size. Immature dolphins were differentiated from mature

dolphins on the basis of sexual maturity, which was determined based

on several measures, including age, calving history, pregnancy

diagnosis via ultrasonography, testis size from ultrasound, and sex

hormone concentrations (Wells et al., 1987, 2025; Wells, 2014).

Dolphin ages were determined by either life history from photo-

identification (id) surveys, analysis of dentinal growth layer groups

(Hohn et al., 1989), or analysis of pectoral flipper radiography

(Barratclough et al., 2019). The proportion of detectable

concentrations was compared between demographic groups and

between sites using a Peto-Peto test (NADA and NADA2 R

packages; (Helsel, 2006; Dziobak et al., 2021). Among dolphins

with detectable concentrations, distribution of concentrations was

evaluated using a Shapiro-Wilk test, and means were compared

between sites using either an independent t-test or a Mann-

Whitney U test, depending on Gaussian distribution. Statistical

significance in observed differences was determined using a = 0.05.
2.5 Spatial analysis

Sighting data from BAR were not abundant (compared to SSB, for

example) as routine photo-id surveys are not conducted. Instead,

location data resulted from a variety of efforts, including photo-id

surveys, biopsy locations, radio tracking, stranding locations, health

assessment locations, satellite-linked telemetry, and fecundity studies.

Because some BAR dolphins had very few observations (some fewer

than 10), all available records were used to estimate spatial usage.

Sighting data for dolphins residing in SSB was obtained from

standardized photo-id surveys (Wells, 2009; Tyson and Wells, 2016)

conducted by the Sarasota Dolphin Research Program (SDRP) and

included more than 20,000 individual sighting records. In humans,

phthalate metabolism is rapid; daily fluctuations have been observed in

urine samples (Hauser et al., 2004; Teitelbaum et al., 2008). However,

single spot samples can be used as a predictive metric to obtain average

metabolite concentrations representative of the previous 3-6 (Hauser

et al., 2004; Teitelbaum et al., 2008). Therefore, SSB sighting data were

restricted to one calendar year prior to urine sampling to generate the

most conservative spatial use estimate for the dolphins.

Spatial analyses were performed to compare spatial usage between

dolphins with detectable urinary metabolite concentrations (hereafter

referred to as “detects”) and dolphins with urinary metabolite

concentrations below LOD (hereafter referred to as “nondetects”) to

identify potential areas of phthalate contamination in Barataria and

Sarasota Bays. Spatial analyses were based on methods described in

Takeshita et al. (2021). Briefly, kernel density estimates (KDEs) were

calculated using the adehabitatHR package in R (Calenge, 2006), to

determine 50% and 95% percent volume contours (PVCs) which

represent the core (50% PVC), and total (95% PVC) area usage for

detects and nondetects. The bandwidth parameter was determined

using a rule-based ad-hoc approach (Kie, 2013).
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3 Results

3.1 Barataria Bay

Urine for phthalate metabolite analysis in BAR was collected

from 45 individual dolphins sampled during catch-and-release

health assessments conducted in Barataria Bay, LA, USA in 2011,

2013, 2014, 2017, 2018, and 2023 (Table 1; Figure 2). Detectable

concentrations of at least one metabolite were observed in 33.33%

(n = 15; 95% CI: 20.00 - 48.95%) of samples. Metabolite detection

was limited to three compounds including MEHP, MBzP, and

MEHHP; none of the dolphins sampled had detectable
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concentrations of MBP, MEOHP, MEP, or MiBP (Table 1). The

most commonly detected metabolite was MEHP (n = 14) with

concentrations ranging from 1.40 µg/L to 16.46 µg/L (Tables 1, 2).

Given low detection frequencies for the majority of the metabolites,

MEHP was the only metabolite that was statistically evaluated for

differences in detection relative to demographic characteristics.

There was a nearly even distribution of sexes (23 female, 22 male)

and age classes (21 immature, 24 mature) sampled (Table 2). The

majority of samples were collected in 2011 (n =14), and subsequent

years exhibited variability in the number of samples screened

(ranging from 2 to 8 samples; Table 2). Regardless, phthalate

metabolites were detected in at least one individual from each
FIGURE 2

Percent volume contours (PVCs) determined for bottlenose dolphins sampled (n = 45) from Barataria Bay (2011, 2013-2014, 2017-2018, 2023) using
all sighting histories. (Detect and Nondetect maps) Core (50% PVC) and total (95% PVC) spatial usage respectively for dolphins with detectable and
undetectable urinary mono(2-ethylhexyl) phthalate MEHP concentrations with black points representing individual sighting records. (50% PVC and
95% PVC maps) Core (50% PVC) and Total (95% PVC) spatial usage respectively for dolphins with detectable urinary MEHP concentrations overlayed
with spatial usage for dolphins with nondetectable urinary MEHP concentrations.
TABLE 1 Frequency of detection of all metabolites in urine samples collected from bottlenose dolphins (Tursiops truncatus) in Barataria Bay,
Louisiana (n=45; 2011, 2013, 2014, 2017, 2018, 2023).

MBP MBzP MEHHP MEHP MEOHP MEP MiBP

# Above LOD 0 1 1 14 0 0 0

% Above LOD
(95% CI)

0.00 2.22 (0.06-11.77) 2.22 (0.06-11.77) 31.11 (18.17-46.65) 0.00 0.00 0.00
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sampling year except 2013 (Table 2). There were no significant

differences in the percentage of females (26.09%; 95% CI: 10.23-

48.41%) and males (36.36%; 95% CI: 17.20-59.34%) with detectable

concentrations of MEHP (p=0.50; Table 2). Mean concentrations of

MEHP for females and males were 1.10 µg/L (s.d. = 1.70 µg/L) and

2.62 µg/L (s.d. = 4.48 µg/L; Table 2), respectively. Similarly, there were

no significant differences in the percentage of sampled dolphins with

detectable MEHP between mature and immature dolphins (33.33%

vs. 29.17%; p=0.80; Table 2). Both age classes had the same mean

concentration (immature dolphins: 1.81 µg/L, s.d. = 3.14 µg/L;

mature dolphins: 1.81 µg/L, s.d. = 3.80 µg/L; Table 2).

MEHP was the most frequently detected metabolite in BAR

dolphin urine samples, so variations in bay usage were compared

between dolphins with MEHP concentrations above LOD

(“detects”) and equal to or below LOD (“nondetects”). Overall

little variation in habitat usage was observed in BAR between

detects and nondetects (Figure 2). Both had core (50%) ranging

patterns around the barrier islands (e.g., Grand Isle), and total

(95%) ranging patterns that extended into BAR (e.g., Caminada

Bay; Figure 2). Nondetects appeared to have a range that extended

further east past Grand Isle towards Grand Terre than detects, who

were not sighted past Barataria Pass (Figure 2).
3.2 Sarasota Bay

Urine for phthalate metabolite analysis in SSB was sampled

from 71 individual dolphins during catch-and-release health

assessments conducted during 2010-2019, and 2022-2024
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(Figure 3), of which 73.24% (n= 52; 95% CI: 61.41-83.06%); had

concentrations of at least one metabolite above LOD. Among

dolphins with detectable concentrations, one to five metabolites

were detected. Six of the seven metabolites screened for were

detected, including MBP, MBzP, MEHHP, MEHP, MEOHP,

MEP (Table 3). Similarly to previous studies of phthalate

exposure in SSB dolphins, the most common metabolites detected

were MEHP (n=41, 57.75%; 95%CI: 45.44-69.39%) andMEP (n=13,

18.31%; 95% CI: 10.13-29.27%), and none of the dolphins had

detectable concentrations of MiBP (Table 3). Similar to samples

from BAR, MEHP was the only metabolite analyzed for

demographic differences as the other metabolites had too low

detection frequencies.

The demographic distribution of dolphins was similar by sex (38

female, 33 male); however, there were almost twice as many mature

dolphins (n = 44) than immature dolphins (n = 27). Across years, there

were variations in the number of dolphins sampled, ranging from 1

(2013) to 15 (2024). There were no significant differences in the

proportion of dolphins with detectable MEHP concentrations by sex

(63.16% of females; 95% CI: 45.99 - 78.19%; 51.52% of males; 95% CI:

33.54-69.20%; Table 4) or by age class (62.96% of immature dolphins;

95% CI: 42.37-80.60%; 54.55% of mature dolphins; 38.85-69.61%;

Table 4). The mean MEHP concentration for females was 9.77 µg/L

(s.d. = 16.20 µg/L; Table 4), which was higher than males (3.74 µg/L;

s.d., = 9.90 µg/L; Table 4). The mean MEHP concentration was also

higher in mature dolphins (9.36 µg/L; s.d. = 16.60 µg/L; Table 4)

compared to immature dolphins (3.11 µg/L; s.d. 6.20 µg/L; Table 4).

Since MEHP was also the most frequently detected metabolite

in SSB, variations in bay usage were evaluated between detects and
TABLE 2 Frequency of detection, ROS mean and standard deviation, minimum, and maximum values of mono-2-ethylhexyl phthalate (MEHP) above
the limit of detection (LOD; “detects”) by demography in bottlenose dolphins sampled in Barataria Bay during 2011, 2013, 2014, 2017, 2018, 2023.

Variable Total (n=45) n (%
of Total)

MEHP detects (n=14) n
(%; 95% CI)

p1 Mean MEHP
(s.d.)2 (µg/L)

Minimum MEHP
(µg/L)3

Maximum MEHP
(µg/L)3

Sex 0.50

Female 23 (51.11) 6 (26.09; 10.23-48.41) 1.10 (1.70) 1.64 7.32

Male 22 (48.89) 8 (36.36; 17.20-59.34) 2.62 (4.48) 1.40 16.46

Age Class 0.80

Immature 21 (46.67) 7 (33.33; 14.59-56.97) 1.81 (3.14) 1.40 16.46

Mature 24 (53.33) 7 (29.17; 12.62-51.09) 1.81 (3.80) 1.49 11.96

Year 0.07

2011 14 (31.11) 6 (42.86; 17.66-71.14) 7.32 (5.88) 1.49 16.46

2013 8 (17.78) 0 (0.00) – – –

2014 8 (17.78) 3 (37.50; 8.52-75.51) 3.36 (1.53) 1.64 4.59

2017 2 (4.44) 2 (100.00; 15.81-100.00) – 1.40 1.65

2018 2 (4.44) 1 (50.00; 1.26-98.74) – 2.88 2.88

2023 11 (24.44) 2 (18.18; 2.28-51.78) – 2.19 10.33
1From Peto Peto test (Helsel, 2006).
2Calculated for all values using robust ROS (Helsel, 2006).
3Determined only for concentrations >LOD.
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nondetects. Detects appeared to be more likely to use more of SSB

than nondetects, as illustrated by a larger total area (95% PVC) used

(Figure 3). Areas associated with detects included Anna Maria

Sound, Palma Sola Bay, and part of SSB, as well as between New

Pass and Venice Inlet (Figure 3). Although nondetect ranges were

similar to detects in the northern part of the bay, the southern

extension seemed to be limited to Siesta Key and did not go as far as

Venice Inlet (Figure 3). Further, detects had core (50%) ranging

patterns that were observed in the southern part of the bay near

Venice, while nondetects were concentrated around Palma Sola Bay

(Figure 3). Overall, the dolphin ranging patterns seemed to be

consistent with ranging patterns previously reported (Dziobak et al.,

2022a), where detects were more likely to be found in the southern
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portion of the bay compared to nondetects. Both groups, however,

were likely to use the northern portion of the bay near Palma Sola

(Figure 3), which was consistent with findings from a previous

study (Dziobak et al., 2022a).
3.3 Barataria Bay vs. Sarasota Bay

To explore the potential influence of urbanization on phthalate

exposure, urinary MEHP concentrations were compared between

BAR and SSB dolphins. MEHP was detected more frequently

amongst SSB dolphins (n=41; 57.75%; 95% CI: 45.44-69.39%)

than BAR dolphins (n = 14; 31.11%; 95% CI: 18.17-46.65%;
FIGURE 3

Percent volume contours (PVCs) determined for bottlenose dolphins sampled (n = 71) from Sarasota Bay (2010-2019, 2022-2024) using photo-
identification sighting histories. (Detect and Nondetect maps) Core (50% PVC) and total (95% PVC) spatial usage respectively for dolphins with
detectable and undetectable urinary mono(2-ethylhexyl) phthalate MEHP concentrations with black points representing individual sighting records.
(50% PVC and 95% PVC maps) Core (50% PVC) and Total (95% PVC) spatial usage respectively for dolphins with detectable urinary MEHP
concentrations overlayed with spatial usage for dolphins with nondetectable urinary MEHP concentrations.
TABLE 3 Frequency of detection of all metabolites in urine samples collected from bottlenose dolphins (Tursiops truncatus) in Sarasota Bay, Florida
(n=71; 2010-2019; 2022-2024).

MBP MBzP MEHHP MEHP MEOHP MEP MiBP

# Above LOD 4 3 2 41 5 13 0

% Above LOD (95% CI) 5.63 (1.56-13.80) 4.23 (0.88-11.86) 2.82 (0.34-9.81) 57.75 (45.44-69.39) 7.04 (2.33-15.67) 18.31 (10.13-29.27) 0.00
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p=0.005; Table 5). However, detectable concentrations of urinary

MEHP did not differ significantly by site (BARMEHPmean (s.d.) =

5.18 (4.66) µg/L; SSB MEHP mean (s.d.) = 11.95 (16.67) µg/L;

p=0.97; Table 5, Figure 4), indicating similarities in the magnitude

of DEHP exposure.
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4 Discussion

4.1 Phthalate exposure

Of the 45 individual BAR dolphins screened, one-third had

detectable concentrations of at least one phthalate metabolite in

their urine. Our findings demonstrate a lower level of phthalate

exposure in BAR dolphins compared to a previous study in

bottlenose dolphins living near an urban environment with

extensive coastal development (Dziobak et al., 2022a). Although

there is fishery and petrochemical activity throughout the Barataria

estuarine system, the smaller coastal community of residents,

workers, and tourists is mostly concentrated around Grand Isle.

Most of the dolphins in this study were assessed near Grand Isle and

likely spend much of their time near the barrier islands, however

some of the animals likely show high site fidelity to the northern, less

developed areas of Barataria Basin (Figure 2; Takeshita et al., 2021).

Among bottlenose dolphins sampled in SSB, phthalate metabolites

were detected in 73% of urine samples (95% CI: 61.20-82.73). SSB

dolphins exhibited exposure to a diverse array of phthalates, with

detectable concentrations determined for six of the seven metabolites
TABLE 5 Comparison of detectable urinary mono(2-ethylhexyl)
phthalate (MEHP) concentrations between dolphins sampled in Barataria
Bay (2011, 2013-2014, 2017-2018, 2023) and Sarasota Bay (2010-2019,
2022-2024).

BAR MEHP SSB MEHP p

No. At or Above LOD 14 41 –

% Detect (95% CI)
31.11
(18.17-46.65)

57.75
(45.44-69.39) 0.0052

Mean (s.d.)1 (µg/L) 5.18 (4.66) 11.95 (16.67) 0.973

Minimum1 1.40 0.26 –

Maximum1 16.46 76.60 –
1Calculated among individuals with concentrations >LOD.
2Calculated using Peto Peto test (c2 = 7.80, df=1).
3Calculated using Mann-Whitney U test.
TABLE 4 Frequency of detection, ROS mean and standard deviation, minimum, and maximum values of mono-2-ethylhexyl phthalate (MEHP) above
the limit of detection (LOD; “detects”) by demography in bottlenose dolphins sampled in Sarasota Bay during 2010-2019 and 2022-2024.

Variable Total (n=71) n (%
of Total)

MEHP detects (n=41) n
(%; 95% CI)

p1 Mean MEHP
(s.d.)2 (µg/L)

Minimum MEHP
(µg/L)3

Maximum MEHP
(µg/L)3

Sex 0.30

Female 38 (53.52) 24 (63.16; 45.99 - 78.19) 9.77 (16.20) 0.55 76.60

Male 33 (46.48) 17 (51.52; 33.54-69.20) 3.74 (9.90) 0.26 49.20

Age Class 0.50

Immature 27 (38.03) 17 (62.96; 42.37-80.60) 3.11 (6.20) 0.26 28.40

Mature 44 (61.97) 24 (54.55; 38.85-69.61) 9.36 (16.60) 0.39 76.60

Year 0.002

2010* 4 (5.63) 1 (25.00; 0.63-80.59) – 0.26 0.26

2011* 2 (2.82) 0 (0.00) – – –

2012* 3 (4.23) 1 (33.33; 0.84-90.57) – 1.90 1.90

2013* 1 (1.41) 0 (0.00) – – –

2014* 5 (7.04) 5 (100.00; 47.82-100.00) 40.00 (23.70) 16.00 76.60

2015* 5 (7.04) 5 (100.00; 47.82-100.00) 32.10 (4.47) 28.10 37.00

2016* 6 (8.45) 1 (16.67; 0.42-64.12) – 1.50 1.50

2017* 9 (12.68) 5 (55.60; 21.20-86.30) 2.76 (1.91) 1.00 5.90

2018* 6 (8.45) 0 (0.0) – – –

2019* 7 (9.86) 6 (85.71; 42.13-99.64) 2.62 (2.24) 0.39 6.35

2022 3 (4.23) 2 (66.67; 9.43-99.16) – 0.64 2.76

2023 5 (7.04) 4 (80.00; 28.36-99.49) 8.87 (7.41) 3.34 19.30

2024 15 (21.13) 11 (73.33; 44.90-92.21) 5.21 (7.53) 0.71 21.30
1From Peto Peto test (Helsel, 2006).
2Calculated for all values using robust ROS (Helsel, 2006).
3Determined only for concentrations >LOD.
* Urinary phthalate metabolite data obtained during 2010-2019 has previously been reported in Dziobak et al., 2021.
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screened. These metabolites come from parent compounds commonly

added to plastic products (e.g., DEHP, DBzP) and personal care

products (e.g., DEP). Consistent with previous investigations of SSB

dolphins, MEHP was the most frequently detected phthalate

metabolite. The majority of land around the SSB watershed is

considered to be built up (USF, 2020). Urbanization has been linked

with increased environmental phthalate pollution (Teil et al., 2014), so

the development and human activity in the SSB area could contribute

to marine contamination.
4.2 Comparison of phthalate exposure
between Sarasota Bay and Barataria Bay
dolphins

Although differing in the frequencies of detection, dolphins

from both SSB and BAR exhibited exposure to phthalates, as

evidenced by the detection of MEHP, MEHHP, and MBzP. The

parent compounds (i.e., DEHP and BzBP) are most commonly

added to plastic, which could be the exposure source. When studied

in seawater conditions, plastics degraded by at least 85%, leaching

large concentrations of these compounds into the aquatic

environment (Paluselli et al., 2019). For example, MEHP was

detected the most frequently in BAR dolphins in 2011, which

coincided with cleanup efforts from the Deepwater Horizon oil

spill. Materials deployed during this time period included

polypropylene-filled sorbent booms (Kokaly et al., 2013; Blum

et al., 2014) and containment booms, which can be composed of

polypropylene, polyurethane, nylon, and PE (Schrader, 1991;

Dadhich and Lalu, 2018; Pagnucco and Phillips, 2018). Phthalates

such as DEHP, DMP, DEP, DiBP, and DnBP are known to leach

from these synthetic materials (Paluselli et al., 2019; Zhong et al.,

2023) and could have contributed to the increased exposure

observed in BAR dolphins.
Frontiers in Marine Science 10
Beyond the materials used in BAR, plastic contamination in the

ocean is extensive, with global abundance estimated at 82–358

trillion plastic particles weighing as much as 4.9 million tonnes

(Eriksen et al., 2023). Regardless of worldwide ubiquity,

contamination skews higher in urban regions with extensive

coastal development (Kwon et al., 2020; Wardlaw et al., 2022).

For example, Wardlaw et al. (2022) reported a higher concentration

of microplastic fragments and fibers in urban waters compared to

rural waters of the Thames River in Ontario, Canada (31–1882

fragments/kg sediment, 15–562 fibers/kg sediment in urban areas,

7–46 fragments/kg sediment, 46–216 fibers/kg sediment in rural

areas). Similarly, urban waters of coastal South Korea exhibited

higher concentrations of microplastic pollution (2.85 particles/m3)

than rural waters (1.86 particles/m3; Kwon et al., 2020). MEHP was

detected in BAR dolphins at similar concentrations to dolphins in

SSB (Table 5), but the proportion of detects was lower (Table 5,

Figure 4), possibly due to differences in land use and development

between the two locations. As BAR is relatively remote and has little

commercial or residential development use, there are likely fewer

sources of plastic pollution compared to SSB. Further, BAR is much

larger, covering over 1,600 km2 compared to 114.00 km2 covered by

SSB (GulfBase, 2024a, b). Therefore, it is possible that any phthalate

inputs to BAR are diluted throughout the bay prior to

dolphin exposure.

Phthalate contamination may be more diverse in urban areas

compared to areas with less coastal development. MEHP, MBzP,

and MEHHP were detected in dolphins from both locations, while

MEP and MBP were exclusively detected in SSB dolphins. In

particular, MEP was the second most common phthalate

metabolite detected in SSB dolphin urine samples (% detect). The

parent compound, DEP, is commonly used as a fragrance enhancer

for a variety of consumer products, including personal care and

cleaning products, laundry detergents, and pet cleansers (Hubinger,

2010; Guo and Kannan, 2013; Guo et al., 2014). As a result, DEP is

often found in industrial and domestic effluents (Bergé et al., 2014;

Sengupta et al., 2014). Several studies have demonstrated a

correlation between levels of DEP in wastewater and proximity to

urban development (González-Mariño et al., 2017; Du et al., 2018;

Li et al., 2020). Li et al. (2020) observed a strong relationship

between DEP and industrial development, where lakes adjacent to

industrial activity demonstrated higher median concentrations

(14.728 µg/L) than lakes in areas with little industrial

development or land use (8.684 µg/L). Similarly, González-

Mariño et al. (2017) observed that DEP was the most abundant

phthalate in residential wastewater, with a significantly higher

average daily exposure load compared to all other measured

phthalates. This was further supported by Du et al. (2018), who

observed a positive correlation between population density and

levels of DEP in samples collected from wastewater treatment

plants. Remote areas often lack the commercial and industrial

infrastructure that introduces phthalates into the environment.

Given the remote location of BAR and the surrounding small

population, the lack of MEP detection among dolphins in this

rural area may further suggest a relationship between

environmental DEP contamination and human activity.
FIGURE 4

Comparison of urinary MEHP concentrations (>LOD) between
bottlenose dolphins sampled in Barataria Bay, LA (BAR) and Sarasota
Bay, FL (SSB). Box plot displays median and quartiles, black points
represent concentrations above the limit of detection, and red
diamond represents mean among concentrations above the limit
of detection.
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4.3 Significance

The number of dolphins with evidence of overall phthalate and

MEHP exposure in BAR was not as great as it was in SSB; however,

the magnitude of exposure in phthalate-positive dolphins was

consistent across sites (Table 5, Figure 4). Hart et al. (2020) found

significantly higher urinary MEHP concentrations in SSB dolphins

compared to human reference populations, so these findings

suggest that BAR dolphin exposure may also be higher than

values reported by the Centers for Disease Control and

Prevention. MEHP has been associated with reproductive,

metabolic, and developmental health effects in humans (Boas

et al., 2010; Toft et al., 2012; Tranfo et al., 2012; Pant et al., 2014;

Radke et al., 2019), marine mammals (Routti et al., 2021; Dziobak

et al., 2022b), fish (Mathieu-Denoncourt et al., 2015), and

laboratory rodent studies (Weaver et al., 2020; Wang et al., 2021;

Adam and Mhaouty-Kodja, 2022). Given that the health of BAR

dolphins is already compromised due to oil and associated chemical

exposure, exposure to MEHP could exacerbate pre-existing

conditions such as impaired stress response, suppressed endocrine

activity, inflammation, and hypoglycemia (Schwacke et al., 2014;

Smith et al., 2017) and further impact reproductive success (Kellar

et al., 2017) and population recovery (Schwacke et al., 2024).

The types of phthalate metabolites observed in biological and

environmental samples may reveal sources of contamination or

environmental stressors. For example, Li et al. (2020) screened for

phthalates in lakewater collected from 16 Chinese provinces with

varying degrees of industrial and agricultural activity. While there

was considerable overlap in the mixture of metabolites detected in

water regardless of land use, DIBP concentrations were significantly

higher in lakes adjacent to industrial sites, suggesting that detection

of this particular phthalate could be indicative of certain human

activities (Li et al., 2020). Findings from our study suggest that MEP

could similarly characterize coastal or marine ecosystems that differ

in the level or types of anthropogenic influence. MEHP has been

observed in marine studies globally, including the United States

(Brock et al., 2016; Hart et al., 2018; Dziobak et al., 2021), France

(Valton et al., 2014; Fourgous et al., 2016), China (Hu et al., 2016),

Italy (Fossi et al., 2012), and the Mediterranean Sea (Baini et al.,

2017). Given that DEHP is predominately added to plastic products

and that our oceans are estimated to contain more than 170 trillion

plastic particles (Eriksen et al., 2023), we hypothesize that

widespread detection of MEHP reflects the global ubiquity of

plastic pollution.
5 Conclusion

Exposure to phthalates was compared between dolphins

residing in different geographic regions. Although the magnitude

of exposures were similar, dolphins in urban SSB had a higher

frequency of phthalate metabolite detection compared to rural BAR

(p = 0.005). Specific exposure sources are still widely unknown, but

the metabolites detected could provide clues as to origin. For

example, MEHP was found in both locations, suggesting evidence
Frontiers in Marine Science 11
of widespread plastic pollution, while MEP detected only in

Sarasota Bay dolphins could indicate relationships with human

activity and urbanization. Widespread phthalate contamination and

subsequent exposure is concerning due to endocrine disrupting

properties, as well as the potential for cardiovascular and

neurological impacts. Further research is needed to better

understand phthalate exposure sources and associations with

markers of dolphin health.
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