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Cold-start visualization
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ocean data analysis
Xin Li, Jixiu Liao, Wen Liu*, Yu Miao, Leyu Wang
and Shuqing Sun

China University of Petroleum(East China), Shandong Key Laboratory of Intelligent Oil Gas Industrial
Software, School of Computer Science and Technology, Qingdao, Shandong, China
Introduction: Marine data is typically large-scale and complex, requiring

effective visualization recommendation systems for data filtering and value

extraction. The primary challenge in visualization automatic recommendation

lies in the conflict between the inherent ambiguity of user intentions and the

limitations of precise interaction methods. In the initial phase, users often lack

well-defined analytical goals for the dataset, necessitating a cold-start and

iterative interaction to clarify their goals. Moreover, although existing

interaction methods are diverse, their precise control fails to effectively convey

users' ambiguous intentions.

Methods: To address these issues, we introduce a novel cold-start visualization

recommendation system that integrates a Large Language Model (LLM) and a

Grammar Variational Autoencoder (GVAE). The LLM generates initial exploratory

goals and visualization recommendations based on data descriptions, while the

GVAE produces visual summary projections to verify the extent of user intent

fulfillment. Additionally, users can roll back to previous record point to establish

new analytical paths. This forms a comprehensive analysis framework for

observation, reasoning, and backtracking. Users can adjust their exploration

goals and refine their intent expressions based on projections through the

LLM, iterating until the analysis is complete. The GVAE analyzes chart

correlations and latent patterns, while the LLM converts ambiguous intentions

into precise representations, with both working together to address the cold-

start problem.

Results and discussion: The effectiveness of this method in cold-start

visualization recommendations and semantic-driven interactions has been

validated through case studies and evaluations.
KEYWORDS

large language model, visualization recommendation, machine learning, cold-start
recommendation, ocean data
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1 Introduction

Ocean data is vast and highly complex, containing substantial

latent valuable information. However, extracting such information

is often impeded by redundant and noisy data (Speich et al., 2019).

To tackle this challenge, Visualization Recommendation

Systems (VRS) are widely adopted to aid in filtering information

and extracting value. Nevertheless, during visualization

recommendation, the massive data scale, combined with

irrelevant or low-value information and users’ unclear intentions

or ambiguous exploration goals, exacerbates the cold-start problem.

In such cases, traditional interactive data visualization tools

like Tableau and Qlik require user expertise. Thereby, users often

find it challenging to clearly express their intentions, which hinders

the system from recommending suitable visualizations for

ocean data.

Ocean data often contains numerous complex variables, and its

high-dimensional nature complicates data analysis (Moore et al.,

2019). In the early stages of analysis, users often lack clear analytical

goals or guidance, a challenge commonly known as the “cold start

problem.” Recent research has proposed models based on

Variational Autoencoders (VAE) to address this issue, leveraging

clustering and projection analysis for more effective visualization.

VAEs enhance users’ overall comprehension by constructing

vectors and applying dimensionality reduction techniques to

visually represent the distribution of recommended outcomes.

However, during the exploration phase, users can only interact

with VAEs using traditional precise control methods, which fail to

accurately convey their specific intentions (Li et al., 2024).

Natural language is the most effective way to express

human intentions (Subramonyam et al., 2023). VRS such as

DEEPEYE (Luo et al., 2018) and ChartGPT (Tian et al., 2023)

utilize natural language processing to interpret user instructions

and translate them into visualization specifications. Although

natural language interaction is convenient and intuitive, it can

easily cause users to focus too much on specific details,

leading to a loss of the overall perspective on analytical goals

(Lawless et al., 2023).

In summary, despite notable progress in automation and user-

friendliness made by recent advancements in visualization

recommendation methodologies, several challenges persist:

C1: the cold-start problem. In the initial phase, unclear analytical

objectives often prevent the system from gathering enough information

to generate accurate visualization recommendations.

C2: user intent effectiveness. Ambiguous user intentions lead to

precise interaction methods in existing systems struggling to

capture implicit user requirements, potentially causing

misaligned recommendations.

C3: user intent fulfillment. Users lack effective mechanisms to

verify if their intent is accurately captured. Moreover, the lack of

flexible feedback options hinders the system’s ability to refine

recommendations to better meet user expectations.
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To overcome these challenges, this paper introduces a cold-start

visualization recommendation approach that integrates Large

Language Models (LLM) with Grammar Var ia t ional

Autoencoders (GVAE). Initially, the LLM analyzes dataset

attributes to generate comprehensive data summaries and

exploration goals, followed by preliminary visualization

recommendations. GVAE utilizes dimensionality reduction to

create visual summaries. This process effectively solves the cold-

start problem (C1). The LLM interprets users’ natural language

intentions to generate precise visualization recommendations,

ensuring an effective transmission of user intentions (C2).

Additionally, visual summaries helping users to verify the extent

of intent fulfillment. Users can adjust geometric layout of visual

summaries and transmit their intentions to LLM, iteratively refining

recommendation outputs(C3). Even if users find that current state

fails to achieve their exploration goals, they can roll back to a

previous record point to restart their exploration. Our contributions

are categorised as follows:
• We propose a cold-start visualization recommendation

method that combines the intention transmission

capabilities of LLM with the visual summaries provided

by GVAE. This iterative exploration helps users clarify their

intentions and achieve optimal recommendation outputs.

• We leverage LLM to generate data summaries, exploration

goals, and visualization recommendations, as natural

language helps users transmit their intentions accurately.

• GVAE constructs visual summaries to enable users to

progressively clarify ambiguous intentions, establishing an

iterative exploration for visualization recommendation.

• The effectiveness of the proposed method is validated

through comprehensive case studies and evaluation

experiments, demonstrating its practical utility.
2 Related work

2.1 Visualization recommendation

Automatically recommending suitable visualizations in

scenarios with extensive analytical possibilities presents a

significant challenge (Jankun-Kelly et al., 2007). Heuristic-based

approaches generally follow a standard process: first, analyzing the

dataset; then, generating a search space of potential visualizations

(Wongsuphasawat et al., 2017); and finally, ranking these

visualizations based on quality attributes before presenting them

to the user (Moritz et al., 2019). For instance, DeepEye (Luo et al.,

2018) systematically evaluates all potential visualizations and

categorizes them as either “good” or “bad,” while Voyager

(Wongsuphasawat et al., 2017) employs heuristic methods to

explore the space of visualizations.
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However, heuristic methods, being dependent on predefined

rules and heuristics, often lack the necessary flexibility to adapt to

varying datasets and user needs. In contrast, end-to-end learning

approaches have emerged as an alternative, enabling the automatic

learning of mappings directly from data to the corresponding

visualizations. For example, Data2Vis (Dibia and Demiralp, 2019)

uses a sequence-tosequence model to learn how to map raw JSON

data, sampled from datasets, to Vega-Lite (Satyanarayan et al.,

2017) specifications, effectively automating the visualization

recommendation process. Similarly, ChartSeer (Zhao et al., 2022)

utilizes deep learning to convert charts into semantic vectors and

vice versa, thereby creating visual summaries of visualizations.

Despite the advancements, current visualization recommendation

methods often exhibit limitations, such as insufficient mechanisms

for fine control over the generated visualizations and the absence of

robust strategies for error detection and correction.
2.2 Visualization similarity

In the generation of visual summaries to represent charts,

assessing the similarity of visualization results is crucial. Existing

studies (Xu et al., 2018) have focused on generating visual

summaries of two-dimensional charts using similarity metrics or

dimensionality reduction methods, such as Multidimensional

Scaling (MDS) (Douglas Carroll and Arabie, 1998) and t-SNE

(van der Maaten and Hinton, 2008).

Another approach to measuring visualization similarity

involves evaluating the operational or transformation costs

between visualizations. For example, Hullman et al (Zhang et al.,

2024). proposed an objective function to minimize the

transformation cost for displaying a sequence of charts.

GraphScape (Kim et al., 2017) introduced a generative model to

infer the similarity and sequence of visualizations. Chart

Constellation (Xu et al., 2018) represented user-generated charts

in a 2D space based on the similarity of four elements. ChartSeer

(Zhao et al., 2022) employed deep learning techniques to map

charts into semantic vectors, thereby measuring chart similarity and

generating visualizations. Inspired by ChartSeer, this study utilizes

GVAE to assess chart similarity and generate visualizations.
2.3 Large language models for data
analysis

Large Language Models (LLMs) have achieved remarkable

progress in recent years, with prominent examples such as Codex

(Chen et al., 2021), GPT-3 (Brown, 2020), and GPT-4 (Cheng et al.,

2023), as well as open-source models like Flan-T5 (Chung et al.,

2024), LLaMa (Touvron et al., 2023a), and LLaMa2 (Touvron et al.,

2023b). LLMs have seen widespread applications across various

domains, including code generation (Chen et al., 2021), story
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generation (Chung et al., 2022) (He et al., 2024), and web design

(Kim et al., 2022).

Several studies have focused on leveraging LLMs to generate

visualization code. For instance, CHAT2VIS (Maddigan and Susnjak,

2023) generates Python visualization code by providing LLMs with

table schemas, column types, and natural language queries. LIDA

(Dibia, 2023) conceptualizes visualization generation as a four-phase

process to systematically generate visualization code.

Moreover, research has also explored the application of LLMs in

data analysis. GPT4-Analyst (Maddigan and Susnjak, 2023) utilizes

prompts to guide GPT-4 in performing tasks such as data collection,

visualization, and analysis. Data-Copilot (Zhang et al., 2024) can

execute appropriate interface tools either sequentially or in parallel,

enabling zero-code analysis for the user. However, these models

exhibit limitations in controllability and stability (Achiam et al.,

2023), and their intrinsic hallucination issue occasionally results in

unstable outputs and incorrect responses (Singh et al., 2024).
3 System overview

This section outlines the design principles of our system,

followed by a high-level overview of our approach. Detailed

technical information is provided in Section 4.
3.1 Design considerations

The primary objective of this system is to facilitate cold-start

visualization recommendations using large language models and to

employ a Grammar Variational Autoencoder (GVAE) to project

recommended results into two-dimensional visual summaries,

thereby guiding users through iterative analysis. The system

design incorporates principles from data analysis, visualization

recommendation, and automatic recommendation systems,

leading to the following key design points:

D1: support for fuzzy search in user intent expression. The

system can interpret and handle ambiguous queries in natural

language input, using large language models to parse user intent

and provide accurate visualization chart recommendations.

D2: provision of visual summaries to mitigate the cold-start

challenge. The system generates visual summaries to assist users in

understanding the visualization charts produced by the large

language model, thereby clarifying the scope of recommendations

and effectively addressing the cold-start challenge.

D3: iterative recommendations based on semantic interaction.

The system captures users’ natural language interactions and view

manipulations, iteratively refining recommendations to deliver

visualizations that more precisely align with user needs.

D4: support for the roll back option. The system provides users

with a roll back option, enabling them to return to a previous state

and explore new analytical paths.
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3.2 System design

The system is structured around three core modules: LLM-

powered visualization generation, GVAEenabled dimensionality

reduction, and semantically-driven interactive exploration, as

depicted in Figure 1. The visualization generation module uses

LLM to overcome cold-start challenges by generating initial

exploration goals from data summaries, interpreting users’ natural

language inputs, and recommending relevant visualizations (D1).

The dimensionality reduction module utilizes GVAE to project

recommended visualizations into a lowerdimensional space,

creating visual summaries that enable users to effectively view

chart distributions within a two-dimensional interface (D2), thus

mitigating cold-start issues. The semantically-driven interaction

module captures user interactions and interprets natural language

intents, providing personalized iterative recommendations (D3).

The system also includes a roll back feature, allowing users to return

to a previous state if the current one does not meet their exploration

goals, enabling them to restart their exploration (D4).
4 A cold-start visualization
recommendation and iterative
exploration method

This section offers a detailed explanation of the technical aspects of

the system architecture, focusing on key components like LLM-powered

visualization recommendation, GVAE-based dimensionality reduction,

and the integration of semantically-driven interactive exploration.
4.1 LLM-driven visualization generation

This section explores the application of LLM in visualization

generation, analyzing how LLM constructs data summaries from

datasets and establishes initial exploration goals to support

visualization recommendations. Drawing inspiration from LIDA

(Dibia, 2023), this paper introduces three key modules for

generating visualization recommendations: data summary
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generation, exploration goal formulation, and visualization

creation (Zhou et al., 2022).

4.1.1 Generation of dataset summaries
Even without prior visualization examples, the LLM can

generate various types of charts. However, the absence of

contextual information may result in visualizations that seem

reasonable initially but fail to effectively convey the intended

insights. To address this issue, this paper adopts the LIDA

approach (Dibia, 2023), which involves providing contextual

information, establishing strict constraints, and incorporating

post-processing mechanisms to refine visual outputs. Specifically,

data analysis tools are used to extract key attributes from the

dataset, which are then systematically organized into a structured

summary, including the dataset name, size, and column

descriptions. This summary is subsequently transformed into

descriptive text, serving as input prompts for the LLM to ensure

the accuracy and relevance of the generated content.

4.1.2 Generation of visualization goals
Utilizing the generated dataset summary, the LLM identifies

potential avenues for data exploration and formulates

corresponding exploration goals. For example, the model might

determine that “The average temperature in North America has

shown a year-on-year increase over the past decade.” Subsequently,

for each identified goal, the model generates potential visualization

implementation plans, supported by logical justifications. For

instance, “A time series chart is recommended to depict the

annual trend in temperature changes, clearly illustrating the

temporal relationship with temperature.” This approach ensures

that the exploration goals are grounded in scientific rigor and

logical coherence.
4.1.3 Generation of visualization charts
After formulating exploration goals, the next step is generating

the actual visualizations. This paper uses Vega-Lite for rendering

charts, with the LLM guided by Vega-Lite code specifications. The

process is further refined through a series of post-processing steps

to ensure the validity and quality of the visualizations. The
FIGURE 1

Schematic of the overall architecture. Our method consists of three key components: LLM-driven visualization generation, VAE-based dimensionality
reduction, and semantic-driven exploration. This figure illustrates how these components integrate to address the cold-start problem and facilitate
iterative user interaction.
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workflow begins by providing the LLM with standardized Vega-Lite

templates. Based on the dataset summary and formulated

exploration goals, the LLM generates multiple Vega-Lite codes,

each accompanied by an explanatory rationale for the

corresponding visualization. These Vega-Lite codes undergo

thorough post-processing and validation, ultimately resulting in

verified Vega-Lite specifications that align with the users’ analytical

needs. This approach ensures that the generated visualizations are

both effective and meet the users’ requirements. To mitigate biases

and hallucinations commonly associated with LLMs, the system

implements rigorous post-processing validation to ensure that

generated visualizations are grounded in the dataset and free

from errors or misleading outputs.
4.2 GVAE-based visual summary
generation

This paper uses GVAE for dimensionality reduction and

projection on charts generated by LLM, constructing a visual

summary that effectively presents recommended visualizations

and addresses coldstart challenges. GVAE is employed to learn

and generate graph-structured data, enabling the clustering of

charts and the automation of data visualization through chart

embedding and generation. During the encoding phase, GVAE

processes the design attributes of the charts, while the LLM

supplements the data attributes. The final visualizations are

rendered using Vega-Lite, a widely adopted visualization

language, ensuring that the generated charts are both accurate

and contextually relevant.

4.2.1 Chart embedding representations
In the encoder component of this study, the GVAE architecture

leverages Convolutional Neural Networks (CNN) and Recurrent

Neural Networks (RNN) to process the structural elements of Vega-
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Lite charts, embedding these components into a latent space. As

illustrated in Figure 2, Vega-Lite rules are transformed into a parse

tree, represented as one-hot vectors, and fed into the RNN model.

The encoder maps the high-dimensional chart structures into

lower-dimensional latent vectors, capturing the similarities and

differences between various charts.

In the decoder component, the latent vectors are decoded into

rule vectors and then reconstituted into specific Vega-Lite chart

representations. Additionally, new charts can be generated to meet

particular analytical needs. By minimizing reconstruction loss, the

GVAE model ensures that the generated charts maintain strong

semantic and structural alignment with the original charts, thereby

preserving the integrity of the visual representation.

4.2.2 Chart clustering
Chart clustering is conducted by measuring similarity within

the latent space, where the similarity between charts is quantified by

calculating the Euclidean distances between their embedding

vectors. Charts with similar designs are positioned close to each

other in this latent space, forming visual summary clusters, as

illustrated in Figure 2. These clustering results effectively facilitate

user-driven exploration by recommending charts that are either

similar to or contextually related to the current visualization. This

study builds on the frameworks of ChartSeer and GVAE, training a

GVAEmodel to learn both the encoding and decoding processes for

charts. The model is further trained on an expanded version of the

ChartSeer dataset, enhancing its generalization capabilities and

enabling it to generate diverse visualization recommendations,

even under cold-start conditions.

In the projection and layout phase, this paper employs a 20-

dimensional Multidimensional Scaling (MDS) technique to construct

a visual summary of the charts. Drawing from the methodologies of

ChartSeer (Zhao et al., 2022) and GotreeScape (Li and Yuan, 2023),

MDS projection is used to preserve local features by weighting the

Euclidean distances between embedding vectors, thereby reflecting
FIGURE 2

Visualization chart dimensionality reduction based on GVAE. This figure illustrates the process of using Grammar Variational Autoencoder (GVAE) to
project high-dimensional visualization charts into a two-dimensional space, enabling clustering and visual summarization.
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the influence of design attributes on these distances. As a result,

charts with similar design attributes cluster more closely together,

while those with differing attributes are positioned further apart,

achieving a clear clustering effect. Finally, this paper presents a visual

summary designed for visualization recommendation projection, as

depicted in Figure 2. This summary not only effectively clusters and

displays the recommended charts but also supports user interactions

within the visual summary interface.
4.3 Semantic-driven interactive exploration

After generating visualizations with LLM and obtaining cold-

start recommendations through GVAE projection, the next step is

to combine LLM and GVAE to enable semantic-driven interactions

through natural language and graphical interfaces, completing the

visualization recommendation process. Further analysis relies on

semantic-driven interactive exploration, where users can iteratively

refine their actions based on system recommendations, achieving

incremental visualization exploration (Singh et al., 2024). The

system integrates user interactions, semantics, and chart positions

to deliver more precise visualization recommendations.

Throughout the visualization generation process, the system

remains focused on the users’ analytical goals. During iterations, the

system ensures that users can clearly refine their intentions at each

step, guiding the recommendation generation. By integrating user

intent with 2D distance factors, the system provides more accurate

visualization recommendations, enabling users to backtrack and

adjust exploration goals during the analysis.
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4.3.1 Initial visualization generation
The initial generation of visualizations is a critical phase in

addressing the cold-start problem. Upon receiving a dataset uploaded

by the user (Figure 3A), the system first leverages the LLM, as discussed

in Section 4.1, to generate preliminary visualization exploration goals

(Figure 3D). Following this, the system creates visual charts aligned

with these goals and maps them into a two-dimensional space using

GVAE, thereby completing the initial cold-start visualization

recommendations (Figure 3E). This approach allows users to

intuitively and simultaneously view multiple exploration goals

alongside their corresponding charts, enabling them to quickly

comprehend the key aspects and data distributions across various

exploration directions. Users can refine the exploration goals proposed

by the LLM according to their needs, such as by modifying keywords,

sharpening analytical focus, or altering the scope of the exploration

goals (Figure 3D). The system then regenerates the corresponding

visualizations based on this user feedback.

4.3.2 Visualization recommendation based on
spatial distance and user semantics

After completing the projection of visualizations and

constructing the two-dimensional view, users can guide the

system in chart recommendations by interacting through clicks

and specifying their intent. The system then uses GVAE and LLM

to generate the final recommended visualizations, as depicted in

Figure 3E. The process unfolds as follows:
• Interaction Capture: When a user clicks within the two-

dimensional view, a coordinate is generated. After
FIGURE 3

The user interface consists of (A) data upload and function buttons, (B) the data table view, (C) the data table filtering view, (D) the exploration goals
panel, (E) the visual summary panel, (F) the chart inspection panel, and (G) the backtracking panel. This figure showcases the system’s interactive
design, enabling users to explore, refine, and backtrack during data analysis.
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Fron
constructing the two-dimensional projection, the system

calculates the vector distance from the user’s click location

and selects a random set of samples within a radius r in the

projection space as candidates for the attributes of the newly

generated visual charts.

• Sample Selection and Distance Calculation: As shown in

Figure 4A, each selected sample’s two-dimensional position

is converted into a high-dimensional vector interpretable by

the chart decoder. The weighted distance Dwis calculated

as follows:
arg min
sh
o
m

i=1
Dl(s, pi) − sh − phi

�� ��� �2
(1)

Dl(s, p) =
sl − pl
�� �� − aJ(s, p)

1 − a
, J(s, p) = 1 −

fs ∩ fp
fs ∪ fp

(2)
• sl and sh represent the two-dimensional projection point of

the chart and its corresponding high-dimensional vector.

The objective function in Equation 1 quantifies the

discrepancies between the high-dimensional and low-

dimensional distances of the sample relative to all other m

existing charts, with the only unknown variable sh.

However, the low-dimensional distance in Equation 1

cannot be directly applied, as it is crucial to ensure that

the distance sh − ph
�� �� excludes any data variable

information. Consequently, the Jaccard distance term

must be omitted, as shown in Equation 2.

• High-Dimensional Vector Calculation: As illustrated in

Figures 4B, C, after the highdimensional vector is
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calculated, it is input into the trained GVAE chart

decoder, which maps the vector back to a Vega-Lite

format chart.

• Data Variable Completion: For each generated Vega-Lite

chart with common tokens, as depicted in Figures 4D, E, the

system employs LLM to populate the actual data variables.

The LLM parses the chart specifications, identifies

placeholders (e.g., NUM and STR), and replaces them

with real data variables.

• Recommended Chart Generation and Validation: The

system verifies the validity of the generated Vega-Lite

specifications and then returns a predefined number of

recommended charts.
This approach effectively integrates spatial distance

with natural language interaction data to enhance cold-start

visualization recommendations.
4.3.3 Distance-based visualization
recommendation

In the click-based recommendation process, users can generate

visualizations by simply interacting with specific regions within the

two-dimensional projection view, without the need for natural

language input. This approach is similar to the method described

in Section 4.3.2, with the key difference being that, instead of using

an LLM to complete the data attributes for the chart with common

tokens, the K-nearest neighbors (KNN) method recommended by

ChartSeer is employed to supplement these attributes. After

capturing user interactions, sample selection, and distance

calculation, the system utilizes the KNN method to extract

relevant data variables from adjacent charts. These variables
FIGURE 4

The flowchart of distance-based and user-semantics-driven visualization recommendation. This figure demonstrates the process of generating
visualizations by combining spatial distance calculations with user semantics, highlighting the role of GVAE and LLM in recommendation refinement.
The components of the flowchart are as follows: (A) Sampling, (B) Reverse Projection, (C) Decoding, (D) Filling in Variables, (E) Recommended Chart
Generation, (F) Iterative Exploration.
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replace the generic placeholders (e.g., NUM and STR) in the Vega-

Lite specification, thereby ensuring that the resulting visualizations

are both data-driven and contextually meaningful. If adjacent charts

do not provide sufficient data, the system will select new,

unexplored variables from the dataset, ensuring the diversity and

comprehensiveness of the visualizations.

4.3.4 Chart inspection and backtracking
The system allows data analysts to edit the charts it

recommends. Upon selecting a chart, the inspection panel

displays the chart’s visualization, explanation, and corresponding

Vega-Lite code. Analysts can modify the chart using natural

language commands or by directly editing the Vega-Lite code,

preview the changes, and then choose to update the existing chart

or add it as a new one.

During analysis, analysts can check at any time if the

recommended charts meet their exploration goals. If they do not,

the backtracking feature allows them to review and adjust their

goals. After backtracking, the visual summary panel displays

historical summaries based on the results.
5 Case study: cold-start visualization
recommendation

In this section, we assess the practical utility of the system through

a case study. We enlisted an expert user, Z, who has over five years of

experience in data analysis, to participate in the evaluation. After

introducing Z to the system interface and basic operations, we

provided a ocean dataset consisting of 4068 records and 7 attributes

(including dt, AverageTemperature, AverageTemperatureUncertainty,

City, Country, Latitude, Longitude). Z was then tasked with

performing a visualization analysis on this dataset.

At the beginning of the analysis, User Z lacked clear goals but

required high accuracy in the results, which led to continuous

optimization during the process. Upon uploading the data, the

system automatically recognized and presented the dataset, offering

filtering options (Figures 3A, B) that allowed Z to gain an initial

understanding of the data attributes through a summary view. The

system then guided Z from an exploratory, goal-free phase to a

more focused, goal-oriented analysis by suggesting visualization

goals (Figure 3D), producing initial charts that helped Z quickly

grasp data relationships via two-dimensional projections.

During the early exploration phase, Z began to develop a

tentative direction and identified a new analysis goal: exploring

the variations in temperature over time and geographical

distribution, which was not addressed by the existing

recommended charts. The system leveraged a natural language

processing model (LLM) to interpret this requirement, generating

highly relevant line and bar charts.

After establishing a clearer analytical direction, Z became

interested in the temperature uncertainty analysis and engaged

with the system through clicks and natural language (Figure 3E).

The system, in turn, generated appropriate visualizations to cater to
Frontiers in Marine Science 08
Z’s evolving needs. This dynamic adaptability contrasts with

traditional static recommendation systems. Ultimately, Z fine-

tuned the generated charts (Figure 3F) and further optimized

them using natural language commands.

During the analysis, Z recognized the significance of a

previously discarded goal. Using the system’s roll back feature, Z

returned to an earlier state and continued the analysis, avoiding the

need to start over (Figure 3G). This feature, by recording and

replaying earlier exploration steps, allows users to flexibly adjust

their strategies, ensuring that critical analytical insights are

thoroughly explored and utilized.

Z remarked, “The system’s suggested exploration goals were

incredibly helpful when I was short on ideas. As my analysis

direction became clearer, the system-generated charts matched

my needs perfectly, significantly enhancing my efficiency. The

system’s ability to adapt to changing requirements without

manual adjustments is extremely practical.”

Compared to previous visualization systems like ChartSeer, the

framework proposed in this paper is more responsive to evolving

user intentions, offering a broader range of insightful and diverse

marine domain charts. Figure 5 presents a comparison between the

visualizations generated by this system and those from ChartSeer,

demonstrating that our system significantly outperforms in terms of

visualization recommendation based on spatial distance. It

surpasses the limitations of the typical six chart types, covering a

wider data range and providing deeper design insights. In contrast,

ChartSeer (Zhao et al., 2022), which lacks user intent guidance,

produces a limited variety of charts with insufficient design insights,

thereby increasing the risk of errors, such as heavy overlap of chart

elements (Figure 5A) and the generation of meaningless

visualizations (Figure 5B).

In terms of scalability, although the case study employed a dataset

containing 4,068 records and 7 attributes, the system architecture is

designed to accommodate larger and more complex datasets. The

LLM component can efficiently process large-scale data summaries.

Additionally, the GVAE’s dimensionality reduction scales effectively

with increased data dimensions, utilizing efficient clustering and

projection techniques like Multidimensional Scaling (MDS).

However, extremely large datasets may pose challenges, including

increased computational costs and potential delays in real-time

interactions. Future research could explore optimizations such as

distributed computing or precomputed embeddings to further

enhance scalability.

To ensure practical applicability, the system’s user interface

(Figure 3) was designed for optimal usability. Its effectiveness was

informally validated in a case study with expert user Z, who found the

interface intuitive and efficient. Although formal usability testing with a

diverse user base is pending, the system is designed to accommodate

users with varying levels of expertise. For instance, novice users can

rely on LLM-generated exploration goals and visual summaries for

guidance, whereas expert users, such as Z, can utilize advanced features

like natural language refinements and chart editing to achieve precise

analytical outcomes. Future research will involve formal usability

studies to validate and refine the interface for broader user groups.
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6 Evaluation

This paper evaluates a cold-start visualization recommendation

system using two key metrics: availability and diversity of

visualization types. To simulate real-world usage scenarios,

multiple users conducted 20 recommendation tests on both the

ChartSeer system and the system proposed in this study.
6.1 Availability

Availability assesses the proportion of usable visualizations

generated during the recommendation process. For a visualization

to be considered usable, it must be reasonable and meaningful

regarding data attribute selection and display effects. This metric

evaluates the reliability of the system-generated code and its overall

performance. The calculation formula is as shown in Equation 3:

AVA =
E
T
� 100 (3)

where E represents the number of error-free and meaningful

visualizations generated, and T represents the total number of

visualizations generated. The results of 20 experiments are shown

in Table 1 ChartSeer, due to its use of the KNNmethod for filling in

data attributes, is prone to anomalies. In contrast, the system

proposed in this paper utilizes LLM for data attribute completion,

resulting in fewer errors and more meaningful visualizations.
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6.2 Diversity

During the recommendation tests, we counted the total number

of different types of visualizations generated by the two systems to

evaluate the diversity of the recommendations. The results in

Table 1 show that the generation methods using LLM and GVAE

proposed in this paper can produce a wider variety of visualizations,

demonstrating greater diversity in recommendations.

Enhancements in availability and diversity have substantial

real-world implications for user experience. Higher availability

scores reduce the occurrence of erroneous or meaningless

visualizations, thereby minimizing user frustration and enhancing

trust in the system, especially during the critical cold-start phase.

Enhanced diversity ensures a broader range of visualization options,

facilitating comprehensive data exploration and accommodating

diverse analytical needs, particularly for users with undefined

initial goals.
FIGURE 5

A comparison between the previous visualization system and the proposed system, which incorporates user semantics, demonstrates that the latter
addresses several shortcomings of the former. These include (A) significant overlap of chart elements and (B) the generation of
meaningless visualizations.
TABLE 1 Evaluation result.

System Availability Diversity

ChartSeer 23 6

Ours 47 9
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7 Conclusion

This paper introduces a framework for visualization

recommendation and exploration in cold-start scenarios,

integrating LLM with GVAE. This framework is designed to

tackle the challenges of understanding and conveying user intent

during cold-starts. The LLM generates exploration goals and

recommendations, while the GVAE handles dimensionality

reduction to create a two-dimensional interactive interface,

enabling users to analyze data more efficiently. Case studies and

evaluations demonstrate that this approach significantly improves

the accuracy of recommendations and their alignment with user

intent in cold-start situations, while also enhancing the interactivity

and flexibility of data analysis.
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