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Climate change affects the somatic growth of many important fish species

targeted by fisheries worldwide, yet the explicit incorporation of climate-driven

temporal growth variation in assessment remains limited for most fisheries

stocks. In this study, we use Eastern Atlantic skipjack (Katsuwonus pelamis) as a

case study to explore the effects of misspecifying temporal growth variation

driven by sea surface temperature on stock assessments, highlighting the

potential risks associated with neglecting temporal growth variation under

both historical and future climate conditions. Misspecification of temporal

growth variation in stock assessment models is found to introduce bias in the

estimated quantities of interest in informing fisheries management, regardless of

whether the “true” growth varies with time. Our findings indicate that the

estimated quantities of management interest, in particular, the SSB-associated

quantities (e.g., stock depletion) are more sensitive to the inclusion of time-

varying Linf than to time-varying K. We emphasize the importance of

incorporating temporal variation in fish asymptotic length into the stock

assessments of Eastern Atlantic skipjack under the effects of future climate

change. Consequently, integrating environmental data into stock assessment is

necessary for climate-adaptive stock assessment and fisheries management.
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1 Introduction

Fish somatic growth has been widely recognized to be influenced

by climate-induced environmental variations (Thresher et al., 2007;

Rountrey et al., 2014; Wang et al., 2020), particularly water

temperature, which affects developmental biology processes of fish

such as muscle differentiation and organogenesis (Jobling, 2002), as

well as metabolism-regulating mechanisms (Boltaña et al., 2017;

Heather et al., 2018; Gamperl et al., 2020). Meta-analyses have

shown that warming generally negatively affects fish growth at both

global and local scales (Huang et al., 2021). Furthermore, climate-

driven fish growth may have long-lasting impacts on recruitment

success (Jonsson and Jonsson, 2009) and ultimately lead to alternations

in population productivity (Harley et al., 2006; Thorson et al., 2015;

Britten et al., 2017), even in fish species considered less sensitive to

climate change (Rountrey et al., 2014).

In fisheries stock assessments, fish growth is typically modeled as

constant over time, i.e., based on the temporally-stationary hypothesis

(Lee et al., 2018). However, growth can vary both across and within

species over time (see Appendix A of Thorson et al., 2015 for more

details), which highlights the inherent plasticity of fish growth (Brett,

1979; Weatherley, 1990). Climate change and its uncertainties pose

unprecedented challenges to fisheries management, which seeks fishery

sustainability. Neglecting time-varying growth may lead to substantial

biases in assessment results and weaken the effectiveness ofmanagement

grounded in scientific advice (Punt et al., 2013; Merino et al., 2019).

Management quantities are found to be overestimated if fish growth is

misspecified, particularly in the estimates of current biomass relative to

the unfished biomass, leading to an overestimation of stock status

(Stawitz et al., 2019). The estimates of spawning stock biomass in an

integrated assessment model may exhibit significant bias when the

declining trend of growth parameters is not considered (Kuriyama et al.,

2016). Therefore, accurately identifying and quantifying the climate-

driven fish growth in stock assessments is critical for providing the best

available information for fisheries management.

Recognizing the advantages of incorporating time-varying growth

over adhering to the ‘constant growth’ paradigm (Lorenzen, 2016;

Maunder and Watters, 2003), the internal modeling of growth

variability has been more widely accepted in recent stock assessment

platforms. Stock Synthesis (SS3) allows variation in growth over time

by introducing parameter deviations or linking them with

environmental factors (Methot and Wetzel, 2013). Another common

approach is using empirical weight-at-age (EWAA) information to

account for growth variation, as seen in the Woods Hole Assessment

Model (WHAM, Stock and Miller, 2021). WHAM has been extended

to link climate variables to growth (Correa et al., 2023), with process

error variance being estimated by integrating random effects and

maximizing marginal likelihood, in line with the ‘best practices’ for

handling process error (Punt, 2023). Despite these advancements,

incorporating climate-driven temporal growth variation is not

common in most oceanic species stock assessments. For highly

migratory species like tunas, it remains challenging to quantify the

interactions between fish life history processes and environmental

factors over short-term observations and explicitly incorporate these

relationships into stock assessments. Alternative hypotheses of these
Frontiers in Marine Science 02
relationships may be developed through the accumulated observations,

however, most often fail to stand the test of time (Sinclair and

Crawford, 2005). Additionally, such practices have been a

compromise for methodological consistency in scientific evaluation

(Hilborn, 2012).

The tropical Atlantic warming serves as the ‘engine’ of tropical-

wide climate change (Li et al., 2016) and has the potential to propagate

globally. Climate change impacts tropical fisheries not only for local

fishery industries but also extends to the extratropical regions through

the ‘tele-coupling’ effect (Lam et al., 2020). Tropical tunas’ longline

catches decreased in tropical waters and increased in subtropical waters

during 1965-2011, which was attributed to a poleward shift under

climate change rather than a change in fishing strategies (Monllor-

Hurtado et al., 2017; Erauskin-Extramiana et al., 2019). Skipjack

(Katsuwonus pelamis), a tropical tuna species with high landings and

economic values, grows rapidly and is highly responsive to

environmental temperatures. For instance, the otolith daily

increment analysis indicated temperature-induced geographic

differences in Pacific skipjack growth during its early life (Ashida

et al., 2018). Specifically, the mean growth rate until 10 days after

hatching was positively correlated with mean sea surface temperature,

suggesting temperature-related growth variability of juvenile skipjack

in the western and central Pacific Ocean would occur during the larval

stage (Ashida et al., 2018).

Recent Atlantic skipjack stock assessments have adopted time-

invariant life history parameters such as growth in modeling

population dynamics, which may introduce additional uncertainties

in its management. Here, we used Eastern Atlantic skipjack as a case

study to explore the implications of misspecifying temporal variation in

growth parameters K and Linf (Von Bertalanffy, 1938) in stock

assessment through simulation modeling. Sea surface temperature

(SST) was factored into the population dynamics as a proxy for

climate change. Both historical and future climate conditions were

considered to examine the temporal impact of climate-driven water

warming on fish growth and stock assessment. This study intends to

explore three issues: (a) how model performance is affected by

including temporal growth variation in the assessment when the

“true” growth is time-invariant; (b) how model performance is

affected by misspecifying temporal growth variation when the “true”

growth (K or Linf) varies over time; and (c) how model performance is

affected by including only time-varying K or Linf, or considering both as

time-invariant, when the “true” growth (K and Linf) varies over time.

Our goal is to illustrate the consequences of misspecification of growth

parameters on quantities of management interest and highlight the

risks of neglecting temporal growth variation in fisheries stock

assessments under historical and future climate conditions.
2 Materials and methods

2.1 Overview

The Von Bertalanffy growth function (Equation 1) (Von

Bertalanffy, 1938) is the growth model used in the Eastern

Atlantic skipjack stock assessment (ICCAT, 2022). It is written as:
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Lt = Linf (1 − e−K(t−t0)) (1)

where Lt is the length-at-age t, Linf is the asymptotic average

maximum body size, K is the intrinsic growth rate coefficient (year-1),

and t0 is a constant representing the hypothetical age at which the fish

species has zero length.

In this study, a simulation framework was constructed using the

statistical age-structured population model, Stock Synthesis (SS3,

Methot and Wetzel, 2013), which serves as both the operating

model (OM) and the estimation model (EM). The OM was used to

simulate “true” population dynamics and generate data series,

including catch, abundance index and length composition, which

were used as input data for the EM. The simulation framework

consists of the following steps: (a) simulating a 100-year time series

of population dynamics with recruitment process error using the

OM, with fishing periods commencing from year 30; (b) applying

the EM to data series generated from the OM with observation

error; and (c) comparing the estimates of key quantities of

management interest with the “true” values defined by the OM.

Each scenario underwent 200 iterations to ensure the comparability

of results (Johnson et al., 2015). The framework was implemented

using the ‘ss3sim’ R package (Anderson et al., 2014), a widely used

tool in fisheries stock assessment simulation testing.

Given that the “true” growth is unknown, three assumptions are

made in this study: (a) assuming the “true” growth is time-

invariant; (b) assuming the “true” growth rate K is time-varying

while the “true” asymptotic length Linf is time-invariant, and vice

versa, and (c) assuming both the “true” growth rate K and

asymptotic length Linf are time-varying.

To compare and illustrate the potential impact of sea surface

temperature on fish growth across different temporal contexts

under climate change, this study resembled both historical and

future climate conditions. These climate conditions are assumed to

be independent, rather than treating the future as a projection of the

historical one. Additionally, within the future climate condition,

two climate scenarios were considered: the Shared Socioeconomic

Pathway 5-8.5 (SSP5-8.5), which represents a fossil fuel-intensive

scenario, and the Shared Socioeconomic Pathway 1-2.6 (SSP1-2.6),

which represents a sustainable scenario (Riahi et al., 2017;

Meinshausen et al., 2020). This study included a total of 32 model

scenarios by combining three “true” growth assumptions with three

climate conditions (Table 1). Within these scenarios, K0 and Linf0

represent constant growth parameters values; K1 and Linf1

represent growth parameters linked to SST in the historical

climate condition; K2 and Linf2 represent growth parameters

linked to SST in the future climate condition of SSP5-8.5; K3 and

Linf3 represent growth parameters linked to SST in the future

climate condition of SSP1-2.6.
2.2 Simulation framework

2.2.1 OM and EM settings
The operating model used in this study was a single-stock,

combined sex, one-area model with quarterly time steps for Eastern

Atlantic skipjack. Biological and fisheries parameters were
Frontiers in Marine Science 03
configured based on the model settings from the Eastern Atlantic

skipjack stock assessment (ICCAT, 2022). To mimic the actual

fishery conditions, the operating models included ten fisheries fleets

and one survey fleet assumed for harvest. In all operating models,

there was no fishing activity during the first 29 years and acted as a

burn-in period. A fully selected fishing mortality maintained a

constant value of 0.3 to prevent population collapse in subsequent

years (ICCAT, 2022).

Catch data and length composition data were generated in

different start and end years which varied with fleets

(Supplementary Table S1). Sample sizes for length-composition

data were 100 in all years. Surveys were designed to occur annually

starting in year 90, providing an abundance index with an

observation error of 0.12 (ICCAT, 2022).

Fishing selectivity for all fleets was length-based and time-

invariant throughout the fishing periods (Supplementary Table

S2). Linear growth was assumed from birth to age 1, after which

Von Bertalanffy growth was applied, with a maximum age set at age

6. Natural mortality was estimated using Gaertner’s approach

(Gaertner, 2015). Fecundity was modeled as a direct function of

female body weight, and maturity was modeled with a logistic

function. The stock-recruitment relationship followed a Beverton-

Holt function. A minor observation error modeled as the standard

error of the logarithm of the catch was incorporated in the OM with

a default value of 0.005, which was assumed to have a negligible

impact on simulation results. Process errors were introduced into

the OM by incorporating independent, bias-corrected lognormal

deviations to the recruitment.

Estimation models were based on the structure of the operating

models, following the actual stock assessment process by estimating

model parameters and quantities of management interest. Priors for

the input parameters were set to the same values as the priors in the

operating models. Detailed information regarding biological

parameters and how they were estimated in the EM was provided

in Supplementary Table S3.

2.2.2 Link growth to sea surface temperature
Regarding temporal variations in the “true” growth of skipjack

driven by the climate-induced sea surface temperature, we

introduced the relationships between the growth coefficient K and

water temperature (Equation 2), which was outlined by Mallet et al.

(1999). The growth parameter K is modeled using the function of

Rosso et al. (1995).

K(T) = Kopt
(T − Tmin)   (T − Tmax)

(T − Tmin)   (T �Tmax) − (T − Topt)
2 (2)

where T represents water temperature, Tmin and Tmax denote

the minimal and maximal growth temperatures, respectively, and

Kopt represents the optimal growth parameter at the optimal water

temperature, Topt. The shape of this equation is similar to a

parabola, where K is equal to 0 at Tmin and Tmax, peaking at the

optimal values Kopt at Topt, which has biological significance. For

skipjack, the minimal and maximal growth temperatures were

determined as 15 °C and 33 °C, respectively, on the basis of the

findings of Dizon et al. (1977). The optimal water temperature Topt
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1 https://www1.ncdc.noaa.gov/pub/data/cmb/ersst/v5/ascii/ Date of last

access: February 16, 2023.

2 https://www.wdc-climate.de/ui/cmip6?input=CMIP6.ScenarioMIP.

NCAR.CESM2-WACCM.ssp585 https://www.wdc-climate.de/ui/cmip6?

input=CMIP6.ScenarioMIP.NCAR.CESM2-WACCM.ssp126 Date of last

access: May 14, 2024.
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was taken to be 26.2 °C, as reported by Boyce et al. (2008).

Additionally, Kopt was estimated to be 0.569 from the growth-

temperature equation using water temperature data.

In this simulation, time-varying Linf was considered to have a

direct relationship related to the growth parameter K via Pauly’s

growth performance parameter m (Equation 3) (Pauly, 1979). It was

suggested that fish of a given genotype either exhibit a low growth
Frontiers in Marine Science 04
coefficient, K, and a high asymptotic length, Linf, or vice versa, but

the value of m remains constant despite environmental variations

(Pauly, 1991). This corresponds to the widely accepted negative

correlation between these two parameters (Kimura, 2008).

Linf (T) =

ffiffiffiffiffiffiffiffiffiffiffi
10m

K(T)

s
(3)

Environmental-driven growth variation can be incorporated

into stock assessments by modifying the growth function

parameters. In SS3, environmental data can be linked to the

growth parameters in various forms, such as linear, exponential

or logistic (Methot and Wetzel, 2013). Given the assumed

relationship between growth and water temperature, as well as

the input data requirements, we applied the optimal forms, i.e., an

exponential relationship for the temporal variation in both the

growth rate K and the asymptotic length Linf (Equations 3, 4).

Kt = Kbase   e
bK   Et (4)

Linft = Linfbase   e
bLinf   Et (5)

where bK and bLinf are the parameters linking the growth

parameters to the environmental data, Kbase and Linfbase are annual

mean values for the growth rate and asymptotic length calculated

from the relationships between growth and water temperature, and Et
represents the environmental input data. Since the link parameters bK
and bLinf cannot be estimated directly from the SST data, we used a

sea surface temperature index transformed by the Z-score method

(Cheadle et al., 2003) as a proxy for SST. The link parameters bK and
bLinf for the operating models were estimated by the “true” time-

varying growth calculated from the temperature-dependent growth

model (Supplementary Table S4).
2.3 Sea surface temperature data sources

The SST data associated with growth parameters of the

historical climate condition were obtained from the NOAA

Extended Reconstructed Sea Surface Temperature (ERSST V5)

dataset1 (Huang et al., 2017). The yearly SST time series were

generated by calculating the average SST over the Eastern Atlantic

skipjack catch region (latitudes 20°S~40°N and longitudes 35°

W~20°E). For the future climate condition, the SST data were

extracted from the output of the global climate model CESM2

WACCM, developed by the U.S. National Center for Atmospheric

Research (NCAR), under the context of the SSP5-8.5 and the SSP1-

2.62. The yearly SST time series were generated by calculating the
TABLE 1 Growth parameters K and Linf specifications in the OM and EM
for the 32 model scenarios considered in this study.

Scenarios OM EM Notes

S1 K0 and Linf0 K0 and Linf0

If the “true” growth
is time-invariant,
only including time-
varying K in the EM

S2 K0 and Linf0 K1 and Linf0

S3 K0 and Linf0 K2 and Linf0

S4 K0 and Linf0 K3 and Linf0

S5a K0 and Linf0 K0 and Linf0
If the “true” growth
is time-invariant,
only including time-
varying Linf in
the EM

S6 K0 and Linf0 K0 and Linf1

S7 K0 and Linf0 K0 and Linf2

S8 K0 and Linf0 K0 and Linf3

S9 K1 and Linf0 K0 and Linf0

If the “true” growth
(K) varies over time,
including or
neglecting time-
varying K in the EM

S10 K1 and Linf0 K1 and Linf0

S11 K2 and Linf0 K0 and Linf0

S12 K2 and Linf0 K2 and Linf0

S13 K3 and Linf0 K0 and Linf0

S14 K3 and Linf0 K3 and Linf0

S15 K0 and Linf1 K0 and Linf0

If the “true” growth
(Linf) varies over
time, including or
neglecting time-
varying Linf in
the EM

S16 K0 and Linf1 K0 and Linf1

S17 K0 and Linf2 K0 and Linf0

S18 K0 and Linf2 K0 and Linf2

S19 K0 and Linf3 K0 and Linf0

S20 K0 and Linf3 K0 and Linf3

S21 K1 and Linf1 K1 and Linf1

If the “true” growth
(K and Linf) varies
over time, including
time-varying K only
or time-varying Linf
only, or neither is
considered in the EM

S22 K1 and Linf1 K1 and Linf0

S23 K1 and Linf1 K0 and Linf1

S24 K1 and Linf1 K0 and Linf0

S25 K2 and Linf2 K2 and Linf2

S26 K2 and Linf2 K2 and Linf0

S27 K2 and Linf2 K0 and Linf2

S28 K2 and Linf2 K0 and Linf0

S29 K3 and Linf3 K3 and Linf3

S30 K3 and Linf3 K3 and Linf0

S31 K3 and Linf3 K0 and Linf3

S32 K3 and Linf3 K0 and Linf0
aThe growth parameters K and Linf specifications are the same in S1 and S5, different iteration
sets are compared to demonstrate model performances for either K or Linf.
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average monthly SST over the same catch region. The delta change

method (Maraun, 2016) was used to standardize the SST data to

ensure the comparability of SST time series across different climate

conditions. The standardized SST time series for both the historical

and future climate conditions are shown in Figure 1.
2.4 Performance metrics

The model performance across various scenarios was assessed

by comparing the relative differences in the quantities of

management interest between the operating models and the

estimation models. We used relative error (RE) to quantify both

bias and precision (Kindong et al., 2023), median relative error

(MRE) to quantify bias for all time scales, median absolute relative

error (MARE) to quantify precision for all time scales (Dai et al.,

2023). The RE, MRE, and MARE were as estimated thus (Equations

6–8).

RE = (q̂ − q)=q (6)

MRE = median½(q̂ − q)=q� (7)

MARE = median½ (q̂ − q)=q
�� ��� (8)

where q̂ represents the estimated values of quantities of

management interest from the estimation models, q corresponds

to the “true” values derived from the operating models. The values

closer to zero for three performance metrics signify less bias and

more precision in the model estimates. The 50% and 90% quantiles
Frontiers in Marine Science 05
for the relative errors are also calculated. The metric could provide

insights into the bias of the model estimates associated with various

growth parameter assumptions.
3 Results

Most of the iterations successfully converged (Supplementary

Table S5), as indicated by a maximum gradient less than 1×10-4

with no parameters estimated on specified bounds for which a

positive definite Hessian matrix could be estimated. The manual

tuning commonly applied in a stock assessment is impractical in

this simulation study (Monnahan et al., 2016; Stawitz et al., 2019).

Therefore, the failed iterations were discarded and excluded from

the subsequent results.
3.1 Including temporal growth variation in
the assessment when the “true” growth is
time-invariant

When the “true” growth parameters were time-invariant,

including time-varying K in the EM introduced fluctuations in

the relative error of the quantities of management interest,

particularly for the historical climate condition and future climate

condition of SSP 5-8.5 (Figure 2 S1–S4). In the future climate

condition of the SSP1-2.6, the estimated quantities of management

interest resembled the bias pattern observed under S1 (Figure 2 S4).

The estimated stock depletion in the future climate condition of SSP

5-8.5 showed greater bias and imprecision, with a MARE value
FIGURE 1

Standardized SST time series using delta change method. The black dashed line represents the optimal water temperature Topt for skipjack.
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0.063 higher compared to the estimates under S1 (Table 2). The

estimated SSB/SSBMSY in the terminal year showed minimal

discrepancy across these scenarios, with MRE values close to zero.

While the MRE values for the estimated F/FMSY in the terminal year

also remained close to zero, the error distributions were more

dispersed (Figure 3).

When the “true” growth parameters were time-invariant and

only time-varying Linf was included in the EM, the model
Frontiers in Marine Science 06
performance mirrored the bias pattern seen in the K-associated

scenarios above, introducing bias in the quantities of management

interest (Figure 2 S5–S8). This was particularly evident for the

estimated stock depletion in the future climate condition of SSP 5-

8.5, which had a MARE value 0.08 higher compared to the estimates

under S1 (Table 2). For the estimated SSB/SSBMSY and F/FMSY in the

terminal year, S5~S8 showed similar error distributions with MRE

values close to zero (Figure 3).
FIGURE 2

Time trajectories of relative error (RE) for the quantities of management interest (spawning stock biomass SSB, fishing mortality F and recruitment R)
for only including time-varying K in the EM (S1~S4) and only including time-varying Linf in the EM (S5~S8) when “true” growth parameters are time-
invariant. The grey and light blue regions cover 50% and 90% of relative errors, and the solid lines represent the median relative errors (MRE). All
graphical elements (median lines and confidence regions) in the time trajectories plots below are consistently with this description.
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3.2 Misspecification of temporal growth
variation (when the “true” growth (K or Linf)
varies over time)

When the “true” growth parameter K was time-varying,

compared to misspecifying K as time-invariant (i.e. using a
Frontiers in Marine Science 07
constant K), including time-varying K in the EM showed limited

capacity to improve the quantities of management interest across

different climate conditions (Figure 4 S9–S14; Table 2). For the

estimated SSB/SSBMSY in the terminal year, the MRE values were

close to zero in most scenarios, except for S13, where a slight bias

was observed (Figure 5). The results for the estimated F/FMSY in the
TABLE 2 Median absolute relative error (MARE) in quantities of management interest across all scenarios.

Scenarios SSB0 SSBMSY FMSY Stock depletion (SSB/SSB0)

S1 0.151 0.147 0.037 0.098

S2 0.150 0.139 0.047 0.131

S3 0.143 0.141 0.051 0.161

S4 0.145 0.141 0.049 0.111

S5 0.158 0.156 0.039 0.098

S6 0.145 0.152 0.045 0.134

S7 0.166 0.156 0.055 0.178

S8 0.152 0.155 0.057 0.116

S9 0.146 0.142 0.045 0.113

S10 0.138 0.149 0.046 0.125

S11 0.152 0.144 0.057 0.135

S12 0.154 0.161 0.064 0.177

S13 0.168 0.155 0.053 0.087

S14 0.132 0.159 0.052 0.108

S15 0.128 0.136 0.052 0.072

S16 0.141 0.137 0.047 0.121

S17 0.181 0.185 0.081 0.250

S18 0.178 0.162 0.067 0.186

S19 0.161 0.154 0.045 0.087

S20 0.132 0.141 0.050 0.107

S21 0.176 0.178 0.078 0.130

S22 0.169 0.173 0.045 0.114

S23 0.171 0.167 0.051 0.125

S24 0.160 0.162 0.046 0.093

S25 0.195 0.198 0.098 0.163

S26 0.158 0.164 0.090 0.167

S27 0.154 0.160 0.087 0.189

S28 0.148 0.150 0.092 0.164

S29 0.155 0.179 0.055 0.127

S30 0.144 0.162 0.054 0.125

S31 0.145 0.168 0.053 0.115

S32 0.156 0.163 0.048 0.106
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terminal year further highlighted the limited improvement from

including time-varying K, as indicated by the slight bias in S12

compared to the estimates under S11 (Figure 5).

When the “true” growth parameter Linf was time-varying,

model performances varied across different climate conditions. In

S15 and S16, including time-varying Linf in the EM did not improve

the quantities of management interest compared to using a constant

value, with evident bias in the estimations of SSB and F (Figure 4

S15, S16). For the future climate condition of SSP5-8.5,

misspecifying Linf as time-invariant in the EM introduced

significant bias in the quantities of management interest (Figure 4

S17, S18), with the MARE value for estimated stock depletion being

0.064 higher (Table 2). However, for the future climate condition of

SSP1-2.6, including time-varying Linf in the EM resulted in slight

improvements, with the median relative error for SSB and F

estimates close to zero (Figure 2, S19, S20). The estimated SSB/

SSBMSY and F/FMSY in the terminal year exhibited similar bias

patterns to the other quantities of management interest discussed

earlier (Figure 5).
3.3 Misspecification of temporal growth
variation (when the “true” growth (K and
Linf) varies over time)

For the historical climate condition, when the “true” growth

parameters were time-varying, misspecifying the growth

parameters as time-invariant (i.e. including only time-varying K,
Frontiers in Marine Science 08
only time-varying Linf, or using constant K and Linf) in the EM

resulted in similar bias pattern in the estimated SSB and F as those

observed with correctly specified growth parameters (Figure 6 S21–

S24). Among these, the inclusion of only time-varying Linf (S23)

resulted in fewer fluctuations in MRE values for the estimated SSB

and F compared to the other scenarios. A comparison of MARE

values for other quantities of management interest revealed that

including more time-varying growth parameters in the EM brought

more bias and imprecision (Table 2 S21–S24). The estimated SSB/

SSBMSY in the terminal year demonstrated less bias and smaller

error distributions when using constant K and Linf instead of

including both time-varying growth parameters in the EM

(Figure 7). Furthermore, no evident bias was observed across

these scenarios for the estimated F/FMSY in the terminal

year (Figure 7).

For the future climate condition of SSP5-8.5, the model with

correctly specified time-varying growth parameters (S25)

outperformed the other scenarios (S26~S28). Evident

underestimated bias in SSB and overestimated bias in F were

observed when growth parameters were misspecified as time-

invariant in the EM (Figure 6 S25–S28). Among these

misspecified models, including only time-varying Linfperformed

better than including only time-varying K or using constant K

and Linf in the EM, as indicated by fewer fluctuations in MRE values

for the quantities of management interest (Figure 6 S26–S28). The

correctly specified growth parameters in the EM also outperformed

the other scenarios in estimating stock depletion, as evidenced by

MARE values that were 0.001 to 0.026 lower (Table 2). Additionally,
FIGURE 3

Relative errors (RE) for the estimated SSB/SSBMSY (A) and F/FMSY (B) in the terminal year for scenarios S1~S8. The black solid lines in the boxes
represent the median relative errors (MRE), the whiskers of the boxplots extend to the maximum and minimum values within 1.5 × IQR (interquartile
range), with values beyond this range classified as outliers that visualized as black dots. All graphical elements (median lines, whiskers, and outliers) in
the boxplots below are consistently with this description.
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less bias and smaller error distributions were observed in the

estimated SSB/SSBMSY and F/FMSY in the terminal year under S25,

while S28 showed an underestimated bias in SSB/SSBMSY in the

terminal year and an overestimated bias in F/FMSY in the terminal

year (Figure 7).
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For the future climate condition of SSP1-2.6, little discrepancy

was observed in the bias patterns of the estimated SSB and F across

scenarios with correctly specified and misspecified growth

parameters in the EM, with MRE values for these quantities of

management interest remaining close to zero (Figure 6 S29–S32).
FIGURE 4

Time trajectories of relative errors (RE) for the quantities of management interest (SSB, F, and R) when only growth parameter K is time-invariant in
the OM (S9~S14) and when only growth parameter Linf is time-invariant in the OM (S15~S20).
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Compared to S29, estimating fewer link parameters in the EM

(S30~S32) slightly improved the results for the quantities of

management interest (Table 2). For the estimated SSB/SSBMSY

and F/FMSY in the terminal year, the bias pattern in S31 which

included only time-varying Linf was more similar to that of S29

among these scenarios, exhibiting minimal underestimated bias and

smaller error distributions (Figure 7).
4 Discussion

We evaluated model performance for correctly specified and

misspecified temporal growth variation across different climate

conditions. Misspecification of growth parameters in the

estimation models was found to introduce bias in the estimated

quantities of management interest in most cases, regardless of

whether the “true” growth varied with time. Compared to

incorporating time-varying Linf, the inclusion of time-varying K

showed a limited capacity to improve the accuracy and precision of

the estimated quantities of management interest when the “true”

temporal growth variation existed. Our findings indicated that the

estimated quantities of management interest, in particular, the SSB-

associated quantities (e.g., stock depletion) were more sensitive to

the inclusion of time-varying Linf than to time-varying K.

Empirical evidence from experimental studies on the

ontogenetic growth of various fish species suggests that warming

affects the asymptotic length of fish in diverse ways (Barneche et al.,

2019; Huss et al., 2019; Lindmark et al., 2022). These studies

indicate that asymptotic length is more likely to be influenced by

the temperature selecting for different life histories (Lindmark,

2020). For Atlantic skipjack, it has been suggested that individuals

inhabiting waters south of 10°N latitude tend to grow larger than
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those found North of 10°N latitude (Gaertner et al., 2008). The

variation in asymptotic length is recognized to become more

pronounced under extreme environmental changes (Ben-Hasan

et al., 2024). Additionally, key model estimates such as fishing

mortality rate and depletion level have been shown to be highly

sensitive to assumptions about asymptotic length, as demonstrated

in a case study on tropical tuna species (Aires-da-Silva et al., 2015).

The bidirectional misestimation for quantities of management

interest carry distinct consequences for fisheries management.

The underestimated SSB induced by growth misspecification (e.g.,

S26~S28 in this study) could lead to overly conservative harvest

limits, unnecessarily restricting catches and resulting in economic

losses. On the other hand, overestimating SSB could allow for

unsustainable fishing intensity and pose a risk of stock collapse,

as observed in Atlantic bluefin tuna assessments where growth

overestimation concealed the decline of fish stock (Fromentin et al.,

2014). While fishing intensity can generally be controlled by

measures such as catch limits, restrictions on fishing effort, or the

establishment of fishing closures, it is typically more difficult to

directly control the biomass or spawning stock biomass of target

stocks through management measures. Since fishery managers need

to assess whether overfished stocks are recovering through the SSB-

associated quantities, temporal variation in fish asymptotic length

should be considered a priority in stock assessments that

incorporate temporal growth variation.

Disregarding environmental information in the stock

assessment models has led to biased estimations of stock status,

resulting in the inadvertent depletion of fish stocks (Rijnsdorp et al.,

2009). It is essential to proceed with caution, however, when

integrating time-varying growth correlated with environmental

information into stock assessment models. In reality, while

multiple parameters may vary over time, incorporating more
FIGURE 5

Relative errors (RE) for the estimated SSB/SSBMSY (A) and F/FMSY (B) in the terminal year for scenarios S9~S20.
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variables without a clear understanding of how the environment

influences population processes and the relationships between

parameters could increase model complexity and degrade model

performance (e.g., S12 and S16 in this study). The mistaken choices
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of time-varying growth would limit the model’s capacity to mimic

the true variation (Francis, 2016). It is also an infeasible practice to

obtain estimates of time-varying growth parameters if fixing some

other model parameters as misspecified values (Stawitz et al., 2019).
FIGURE 6

Time trajectories of relative errors (RE) for the quantities of management interest (SSB, F, and R) when “true” growth parameters are time-varying for
the historical climate condition (S21~S24), for the future climate condition of SSP5-8.5 (S25~S28) and for the future climate condition of SSP1-
2.6 (S29~S32).
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A desirable approach is to include the models with environmental-

related time-varying parameters in the form of an uncertainty grid,

whose outputs could be an extension of the confidence interval of

estimates of management quantities. In practice, it could provide

fishery managers with additional information about the predictable

consequences (Stawitz et al., 2019). Compared to the redundant

calculations, after all, it is unlikely that any fishery industry

stakeholder would willingly accept outcomes such as decreased

productivity and stock depletion, yet these occurrences may become

more frequent due to inadequate fisheries management based on

inaccurate evaluations amidst accelerating climate change (Brander,

2009; Rijnsdorp et al., 2009). Given these thoughts, it is suggested

that the inclusion of environmental-related temporal growth

variation would be important for the stock assessment of the

potential effects of future climate change.

Given that sea surface temperature is an intuitive indicator of

climate change, in particular the observed accelerated warming of

the Atlantic tropical ocean since 1980 (Muhling et al., 2015; Li et al.,

2016; Cheng et al., 2020), and that this trend is expected to continue

and intensify throughout the 21st century (Arias et al., 2021), this

study adopted the growth parameters linked to sea surface

temperature to characterize temporal growth variation. This

alternative approach was feasible when directional biological data

was unavailable. The environmental index can be better simulated

using an autoregressive model with bias correction, as practiced by

Lee et al. (2018), where parameters estimated from fish skeletal

tissues (e.g., otoliths) more explicitly capture the temporal variation

in growth. Additionally, the assumed “true” growth temporal

variation within the operating models conforms to the general

relationship of growth and environmental influences, which is
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represented by a nearly parabolic shape. However, the growth

parameters in SS3 can only be linked to environmental data in

ways that do not account for the “optimal” environmental factor

values that are specific to fish species (i.e., lacking biological

significance). Therefore, it is suggested to incorporate more

alternative options for environmental linkages in time-varying

parameters, which could enhance the capacity of ss3sim to better

simulate “true” population dynamics.

In this study, we detected the growth variation associated with

the yearly effect of climate-driven water warming on the

environmentally sensitive species skipjack, and it also should be

noted that temporal variation in growth across various cohorts may

not be fully considered. Temporal variation in fish growth might be

attributed to not only climate-induced environmental changes but

also other factors, such as intraspecific or interspecific competition

(Sinclair et al., 2002). Individuals within cohorts of fish may display

diverse growth rates due to conditions in early life stages, genetic

differences and density dependence (Correa et al., 2021). The

impacts of cohort-specific temporal growth variation on the

performances of stock assessment have been verified but received

less attention compared to the year-specific cases. Whitten et al.

(2013) compared a standard stock assessment model with static

growth to the alternative model with cohort-specific variable

growth and found that the alternative model better fitted the data

and provided significant results of female spawning depletion.

While the impacts of cohort-specific temporal growth variation

on the performances of stock assessment may be buffered by short

periods with inconsistent growth rates across cohorts, not as

significant as year-specific cases (Correa et al., 2021), growth

variation may be more pronounced under the higher fishing
FIGURE 7

Relative errors (RE) for the estimated SSB/SSBMSY (A) and F/FMSY (B) in the terminal year for scenarios S21~S32.
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intensity which is attributed to the swifter decrease in the

proportion of fast-growing fish in the cohorts (Francis, 2016).

Therefore, priority should be given to accounting for cohort-

specific temporal growth variation in the stock assessment for

those short-lived fast-growing species with high fishing pressure.

The next step of resolution could involve the comprehensive

inclusion of both external environmental factors and internal

factors driving the temporal growth variation, which would

require further work to prioritize understanding the biological,

ecological and fishery characteristics of fish species.

The International Commission for the Conservation of

Atlantic Tunas (ICCAT), the regional fishery management

organization (RFMO) responsible for the conservation and

management of Atlantic tuna and tuna-like species, has made

efforts to address the potential effects of climate change within its

management framework for these species. ICCAT has explicitly

integrated climate change considerations into management

strategy evaluation (MSE) to develop climate-adaptive

management procedures, which has become more common

practice than traditional assessment-based management for tuna

RFMOs in recent times. For example, operating models are tuned

to encompass climate change scenarios to ensure the robustness of

the management procedures in North Atlantic swordfish MSE

where climate change may have effects on its stock distribution,

reproduction, and growth (ICCAT, 2023). Management

procedures for Atlantic skipjack are being developed as well.

MSE is taken as a potent decision-making tool to allow fishery

managers to better understand the consequences of the ‘unknown-

unknown’ situation (e.g., nature of fish growth variation) in the

context of climate change (Walter et al., 2023). Moreover, the

ICCAT Plan of Action on climate change has been presented to

the ICCAT Commission. Even though more time is required to

assess this Plan given its breadth and implications, ICCAT is ahead

of the curve compared to other RFMOs in this regard (ICCAT,

2023). All these efforts highlight ICCAT’s commitment to the

proactive conservation and management of Atlantic tuna fisheries

in the face of climate change.

Our study provided evidence of the risks associated with not

accounting for temporal growth variation under different climate

conditions. While there remains a tradeoff between methodology

consistency and comprehensiveness in recent fisheries stock

assessments, explicitly incorporating the environmental data into

stock assessment would be a positive step towards implementing

climate-adaptive stock assessment and fisheries management.
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