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The complexity of underwater environments combined with light attenuation

and scattering in water often leads to quality degradation in underwater images,

including color distortion and blurred details. To eliminate obstacles in

underwater imaging, we propose an underwater image enhancement method

based on a cascaded attention network called MSCA-Net. Specifically, this

method designs an attention-guided module that connects channel and pixel

attention in both serial and parallel ways to simultaneously achieve channel

feature refinement and feature representation enhancement. Afterward, we

propose a multi-scale feature integration module to capture information and

details at different scales within the image. Meanwhile, residual connections are

introduced to assist in deep feature learning via acquiring more detailed

information from shallow features. We conducted extensive experiments on

various underwater datasets, and the results demonstrate that our method still

holds an advantage when compared to the latest underwater image

enhancement methods.
KEYWORDS

underwater image enhancement, cascaded attention network, multi-scale feature
integration, computer vision, deep learning
1 Introduction

With the development of ocean exploration missions, remote sensing technology has

been widely applied in underwater scene analysis (Lin et al., 2021; Li et al., 2018), marine

resource exploration (Shen et al., 2021), and marine archaeology (Zhang et al., 2022a).

Unfortunately, due to the wavelength-dependent absorption and scattering of light as it

travels through water, underwater images often suffer from low contrast, blurriness, and

color distortion. Remote sensing-based underwater imaging equipment struggles to capture

clear and accurate underwater images, severely affecting underwater visual tasks. To

address these challenges, many scholars have conducted extensive and in-depth research

on underwater image enhancement technology and have achieved significant results.
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Over the past few decades, deep learning has emerged as a

driving force in the development of artificial intelligence

technologies. Deep learning has seen significant achievements

across various areas of computer vision fields because of its

powerful nonlinear modeling capabilities, such as object

recognition (Zhang et al., 2024a), image fusion (Zhang et al.,

2020) and image restoration (Zhang et al., 2024b). Compared

with traditional physics-based methods, Convolutional Neural

Networks (CNNs) that use deep learning technology have

significantly improved image processing effects and time

performance. Convolutional neural networks can model complex

nonlinear systems end-to-end by learning from extensive paired

data, thereby improving perceived image quality. In underwater

visual tasks, several neural network models have achieved

remarkable success. These models mainly involve generative

adversarial networks, multi-scale dense networks (Liu et al.,

2024a), self-attention networks, and lightweight image

enhancement networks. Among them, the Comparative Learning

Network (CLUIE-Net) (Li et al., 2023b) and the Semantic

Guidance-based Network using Multi-scale Perception (SGUIE-

Net) (Qi et al., 2022) represent the cutting edge methods for

underwater image enhancement. Nonetheless, most existing

methods based on CNN models are designed with a single

attention mechanism (Woo et al., 2018; Fan et al., 2022), paying

little attention to extracting global features at different scales. The

size of the effective receptive field limits their ability to

simultaneously capture global and local features (Liu et al.,

2024b), resulting in deficiencies in hierarchical feature extraction

and fusion in most current methods. Therefore, more and more

image enhancement methods adopt multi-scale feature extraction

branches to capture image details and global information at

different scales, improving the contrast while enhancing image

details, textures, and overall structure. MFMN (Zheng et al.,

2024b) achieves diversified feature extraction using only a small

number of 1×1 and 3×3 convolution combinations, avoiding

complex operations such as large convolution kernels, frequent

skip connections, and channel reordering, significantly reducing the

parameter count and computational complexity. MCRNet (Zhang
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et al., 2024c) effectively integrates spatial global information across

four different scales through convolution operations, enhancing the

network’s information representation ability while avoiding the

prob l em of s imp l e f e a tu r e s t a ck ing . Compared to

the aforementioned methods, this paper uses a larger number of

multi-scale convolutions and adaptive weighted fusion, which not

only extracts multi-level features more comprehensively but also

selectively enhances the representation capability of different scale

features through weight selection, improving the model’s overall

perception and representation performance. Additionally,

considering issues such as uneven lighting distribution and

imbalanced color information in underwater images, we propose

a Dual-Path Attention Enhancement Module (DAEM), which

cascades Channel Attention (CA) and Pixel Attention (PA) in

both serial and parallel ways, alternating the transfer of deep

semantic information and shallow feature information, thereby

better eliminating color distortion and low illumination problems

in underwater images. Moreover, we adopt residual connections in

the dense convolution module used for image denoising to extract

representative noise information at both local and global scales,

introducing residual connections to pass the original noise

information to subsequent layers, thus improving the network’s

denoising performance (Figure 1).

We emphasize the contributions of our work as follows:
• We propose a dual-path attention enhancement module,

which gradually strengthens feature selectivity at different

spatial frequencies through a serial structure while focusing

on channel-spatial domain features via a parallel structure.

This module enables adaptive weighting and regulation of

multi-dimensional information, effectively enhancing

multi-scale feature representation capabilities.

• We present a dense convolutional denoising module, which

captures the noise information in the original image

through a deep convolutional network and performs a

difference operation between the original and noisy

images to achieve denoising. Meanwhile, we optimize the

residual connections to avoid the gradient propagation
FIGURE 1

Comparison of sample enhancement results with the raw images, including blue-green cast images, yellow cast images, and hazy images.
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Fron
problem. This module effectively separates the noise in

the image.

• We propose a novel hybrid loss function, which consists of

Laplacian loss to enhance image edge details, perceptual

reconstruction loss to capture higher-level semantic

information, and SSIM loss to strengthen image structure

and texture. This hybrid loss function optimizes image

details more effectively, resulting in clearer and more

natural enhanced images.
2 Related works

Presently, more and more researchers are conducting studies on

underwater image enhancement. These works can be generally

categorized into traditional methods and deep learning-based

methods. This section lists diverse methods based on different

principles and provides a brief overview.
2.1 Traditional methods

Generally, model-based methods as a common category of

traditional underwater image enhancement methods, typically use

physical models to reverse or mitigate the distortion caused by the

underwater environment. In contrast, non-model-basedmethods which

are also part of traditional methods, rely on heuristic techniques and

focus on improving the visual quality of images through algorithms.

2.1.1 Model-based methods
Estimate transmission parameters through the underwater image

formation model and reverse the process to recover clear images. These

methods can construct models to simulate the image generation

process in underwater environments and reverse distorted images

into clear ones, primarily applied in scenarios that require accurate

recovery of the physical properties and structures of the images. Hou

et al. (Hou et al., 2024) proposed a Laplacian variational model that

achieved significant results in image dehazing. Peng et al. (Peng and

Cosman, 2017) focused on underwater image restoration and

enhancement by estimating scene depth through analysis of image

sharpness and light absorption. Liang et al. (Liang et al., 2022) proposed

a method for estimating backscatter light using hierarchical search

technology, integrated with the dark channel prior, to efficiently achieve

underwater image dehazing. However, traditional physics-based

underwater image enhancement methods exhibit poor robustness

due to their dependence on precise imaging models and additional

prior information. As a result, the outcomes are not always satisfactory,

posing significant challenges for enhancement.

2.1.2 Non-Model-based methods
Generally focus on enhancing images by adjusting pixel

intensity levels, making them more suitable for scenarios that
tiers in Marine Science 03
require quick improvement of image visual quality. Some

researchers employed histogram adjustment to enhance

underwater images by stretching pixel intensities (Li et al., 2016),

though they often perform poorly in correcting color bias. Drawing

on the principles of minimum color loss and maximum attenuation

map-guided fusion, Zhang et al. (Zhang et al., 2022b) applied

distinct correction strategies to color channels based on their

varying levels of attenuation. By also adjusting the contrast in

local regions, they effectively improved the color accuracy of the

corrected distorted images. Zhuang et al. (Zhuang and Ding, 2020)

proposed an edge-preserving Retinex filtering algorithm that

incorporates guided enhancement and combines light correction

with guided image filtering to improve contrast and sharpness in

underwater images. In recent past, Zhou et al. (Zhou et al., 2022)

categorized color biasbased on the average intensity values of color

channels, and simultaneously enhanced key image information

using optical attenuation characteristics and multi-scene, block-

based histogram stretching methods while calculating color

information loss. Bi et al. (Bi et al., 2024) effectively enhanced the

details of multi-degraded underwater images by applying a

dehazing method based on multi-exposure image fusion,

following color compensation and white balance for color

correction. Overall, despite effectively enhancing images from the

perspective of human perception, these algorithms do not

completely resolve the complex distortions present in

underwater images.
2.2 Deep learning-based methods

With the rapid advancements in deep learning technologies and

their widespread application across various computer vision tasks,

an increasing number of scholars are applying them to image

processing in underwater environments due to their superior

performance. Deep learning-based methods can generally be

divided into data-driven methods, contrastive learning methods,

and attention mechanism-based methods.

2.2.1 Data-driven methods
Utilize the powerful computational capabilities of models by

training on large volumes of high-quality data. Through multi-layer

nonlinear transformations, these models can automatically extract

useful features to accomplish complex tasks, maintaining high

versatility in underwater environments with diverse scenarios and

varying image quality. Li et al. (Li et al., 2020a) designed a

lightweight network model (UWCNN) for underwater scene

enhancement, synthesizing ten underwater image datasets based

on different water types, achieving satisfactory results in underwater

video and image enhancement tasks. Wang et al. (Wang et al., 2024)

combined CNN with transformers to extract depth information

from images, and this method demonstrated excellent performance

removing underwater target edge artifacts. Li et al. (Li et al., 2020b)

combined a total of 950 images with various degradation to create a

realistic underwater dataset, including 890 images paired with
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reference images, and proposed the (WaterNet) enhancement

network, delivering visually pleasing results. Guan et al. (Guan

et al., 2024) proposed an underwater image enhancement method

called DiffWater, based on a conditional denoising diffusion

probabilistic model (DDPM) trained on a large number of

underwater images. By employing a color compensation method

tailored to different water conditions and lighting scenarios, it

achieves high-quality enhancement of degraded underwater

images. However, data-driven methods rely heavily on large

datasets to learn the mapping relationships in the image feature

space, which can easily overlook the diverse feature distributions in

different domains.

2.2.2 Contrastive learning methods
Neural networks in distinguishing and classifying data by

enabling input samples to learn similarity with positive samples

while differentiating from negative samples, making them suitable

for scenarios where underwater image data is scarce or difficult to

obtain labeled data. Li et al. (Li et al., 2023b) introduced a

comparative learning framework that learns from multiple

enhanced reference candidates by designing a regional quality

advantage discrim to generate paired data and then trained the

UGAN network with it. Fabbri et al. (Fabbri et al., 2018) proposed

using CycleGAN to generate transformation pairs between source

and target images, thereby enriching the paired data used to train the

UGAN network, and continuously optimizing the model through

adversarial training between real and generated samples. Liang et al.

(Liang et al., 2024) developed an image quality enhancement model

using unsupervised learning, andeffectivelyaddressedimage

distortionissuesthroughadataaugmentationmethod utilizing non-

real-world transformations. Recently, Yu et al. (Yu et al., 2024)

proposing a semantic-aware contrastive module based on

disentangled representations that mitigates the impact of critical

information loss required for machine vision tasks through

contrastive learning strategies. Jia et al. (Jia et al., 2024) designed an

unsupervised generative adversarial network based on multi-scale

feature extraction, effectively enhancing the details and color

information of underwater images by incorporating perceptual loss

and edge detection modules. However, in the field of underwater

image enhancement, challenges such as difficult positive-negative

sample selection, lack of high-quality annotated data, and complex

feature distributions severely limit the effectiveness of contrastive

learning applications.

2.2.3 Attention mechanism-based methods
Dynamically allocate the model’s focus on input data to

promote information interaction and handle complex sequential

data more effectively, primarily applied in the fine-grained

processing of underwater image features and key information

extraction. Hu et al. (Hu et al., 2018) started by capturing

channel feature information and extensively modeled the
Frontiers in Marine Science 04
interdependencies between channels. During training they

dynamically adjusted the output of each channel, which

substantially enhanced the model’s ability to represent features.

Qi et al. (Qi et al., 2022) introduced semantic information as shared

guidance among different images within semantic regions, utilizing

an attention-aware enhancement module to maximally preserve

spatial details in images. Misra et al. (Misra et al., 2021) employed a

triple-branch structure to compute attention weights and capture

cross-dimensional interactions, ensuring efficient computation

while capturing cross-dimensional features in tensors. To address

scale degradation and non-uniform color bias in underwater

images, Tolie et al. (Tolie et al., 2024) proposed a lightweight

network based on multi-scale channel attention, which enhances

color richness and refines color distributions satisfactorily. In the

past few years, self-attention mechanisms have excelled in capturing

global dependencies and flexibly adjusting attention weights,

particularly effective in handling long-distance dependencies and

multi-task learning. Liu et al. (Liu et al., 2022) highlighted

important image features by leveraging parallel attention modules

and adaptive learning modules, thereby enhancing the network’s

feature representation capabilities. In summary, attention-based

methods significantly improve enhancement effects but often

require higher computational resources and memory. To

overcome these challenges, we propose an innovative attention

module for enhancing underwater image quality, termed the

Dual-Path Attention Enhancement Module (DAEM). Compared

to previous methods, DAEM reduces computational complexity

while effectively capturing high-priority local features in images.
3 Methodology

In this section, we introduce the proposed MSCA-Net in detail.

We will first give an overview of the MSCA-Net model framework

and then describe each component of the network architecture in

detail. Finally, we will elaborate on the three loss functions used

during the training phase.
3.1 Network architecture

We fully leverage the advantages of multi-scale feature

extraction and cascaded attention mechanisms in the design of

MSCA-Net. By introducing a multi-branch architecture, we enable

parallel processing of features at different scales, improving the

model’s ability to capture both local details and global semantic

information, thus enhancing its robustness in complex underwater

scenarios. The cascaded attention mechanism further optimizes

feature selection and aggregation by dynamically adjusting the

network’s focus across multiple levels, effectively increasing the

efficiency and accuracy of key feature extraction and improving the
frontiersin.org
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model’s performance in handling complex image enhancement

tasks. The general process of MSCA-Net is summarized in

Figure 2. The network structure primarily utilizes three modules:

(1) the Multi-Scale Feature Integration Module (MFIM), (2) the

Dense Convolutional Denoising Module (DCDM), and (3) the

Dual-PathAttention Enhancement Module (DAEM). Firstly, the

Multi-Scale Feature Integration Module captures multi-level

features from the raw input image. It then generates weights and

performs weighted fusion on the captured feature information to

enable the neural network to comprehensively consider local

features together with global features when capturing an image.

Next, we employ dense connections and introduce an attention

mechanism in the dense convolutional layers to achieve image
Frontiers in Marine Science 05
denoising. Finally, the dual-path attention enhancement module

efficiently aggregates attention sample information, helping the

neural network focus on key features from different dimensions.
3.2 Multi-scale feature integration module

The input parameters of the convolutional layers vary, resulting

in different feature extraction capabilities. If features are extracted

using only a single-scale convolutional layer, key information may

be missed, leading to reduced model robustness and accuracy.

Therefore, we construct feature extraction branches of different

sizes to capture features at various scales and levels of abstraction, as
FIGURE 2

Flowchart of MSCA-Net. First, three different convolution kernels are used to perform multi-scale feature extraction on the given original underwater
image. Subsequently, the three feature maps are fused and weighted with the original image to obtain a fused image. Next, the fused image is
processed through a dense denoising module to remove noise, with residual connections introduced to preserve texture details within the image.
Finally, the image is passed through a dual-path attention enhancement module to highlight important details, resulting in the final enhanced image.
FIGURE 3

The structure of some modules in MSCA-Net. (a) The Multi-Scale Feature Integration Module takes multi-scale features extracted by different
convolution kernels as input, which are then concatenated, fused, and weighted before output. (b) The Dense Convolution Block, where the Dense
Convolution Denoising Module is composed of six cascaded Dense Convolution Blocks. (c) The structure of the Channel Attention Module. (d) The
structure of the Pixel Attention Module. (e) The Dual-Path Attention Enhancement Module composed of a series and a parallel form, with multiple
Dual-Path Attention Enhancement Modules cascaded to form the Dual-Path Attention Enhancement Group.
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shown in Figure 3a. Since using a single receptive field alone is not

effective or comprehensive enough for extracting feature

information from underwater images, we employ 3 × 3, 5 × 5,

and 7 × 7 convolutional kernels to capture local detail features and

global semantic features respectively inspired by (Liu et al., 2022).

Subsequently, we concatenate the features from different branches

into a single feature map. Following dimensionality reduction and

weight calculation, we multiply the feature map of each branch by

its corresponding weight and then sum the weighted feature maps

to obtain the final fused feature map Xm, as illustrated below

Xm = x1d1(x) + x2d2(x) + x3d3(x), (1)

where x1, x2, x3 respectively represent the results of feature

extraction branches using 3 × 3, 5 × 5, and 7 × 7 convolutional

kernel sizes applied to the input features. di(x),  i ∈ (1,2,3)

represents the weight calculation for each scale feature. In the

end, the input features are selectively weighted according to these

different weights to generate a new feature representation.
3.3 Dense convolutional denoising module

Typically, the process of image denoising can be decomposed into

extracting the unrecovered noise map and eliminating erroneous

high-frequency information. Therefore, we propose a dense

convolutional module with residual connections for image

denoising after multi-level feature fusion. In this module, we

designed two different noise elimination layers (multi-convolutional

layers and dense attention layers) and introduced dense residual

connections. By increasing the number of convolutional layers and

deepening the network structure, the module significantly enhances

the network’s information capture capability.

The specific implementation is shown in Figure 3b. The input

image of the densely connected attention module is represented as

Xin. The intermediate feature map Xmid is obtained through the first

two convolutional layers of the dense connection attention block,

and the process is

Xmid = Conv1,2(Xin), (2)

where Conv1,2(·) represents the first two convolutional layers.

Subsequently, by passing through the last two convolutional layers

and applying the sigmoid activation function to weight the results

and sum them up, we obtain an output feature map Xout. The

calculation formula is represented as:

Xout = Conv3,4(C(Xin,Xmid)) · Xin, (3)

where Conv3,4(·) represents the final two convolutional layers,

and C (·) represents the feature map concatenation operation. We

incorporated residual connections to ensure that the training of the

neural network is not affected by gradient vanishing or gradient

exploding issues. Through the dense attention residual block, we

can extract erroneous high-frequency information from the Xin.

Finally, by subtracting the erroneous high-frequency information

from the unrecovered noise image, we obtain the denoised image.
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3.4 Dual-path attention
enhancement module

Although existing feature refinement methods based on channel

and spatial attention modules are widely used to address issues such

as resolution reduction and detail loss caused by hierarchical down

sampling, it remains challenging for the feature maps generated by

each module to coordinate effectively. Integrating information from

different spatial regions often results in overlaps or conflicts. As a

result, relying solely on serial or parallel generation modules may

limit the model’s performance in capturing complex scenes. To fully

leverage the advantages of various attention mechanisms, we

designed a Dual-Path Attention Group (DAG) as the foundational

structure of the attention module. The DAG consists of ten cascaded

Dual-Path Attention Enhancement Modules (DAEMs), with each

DAEM’s structure illustrated in Figure 3e. First, we connect the

channel attention and pixel attention modules serially, allowing the

feature map to be adjusted based on the output of the previous step,

thereby flexibly controlling the feature extraction and weighting

process. Afterward, we cascade the channel attention and pixel

attention modules in parallel to enhance the model’s computational

efficiency. To prevent feature blurring and information loss due to

excessive network depth, we incorporate skip connections. The

logical process constructed by the dual-cascaded multi-attention

mechanism can be represented as:

Fmid = Fin + Ap(Ac(Conv2(Fin + Conv1(Fin)))), (4)

Fout = Fmid + Conv4(Ac(Conv3(Fmid)) + Ap(Conv3(Fmid))), (5)

where Fin represents input features, Fmid represents the input

features processed through the serially cascaded multi-attention

mechanism, and Fmid represents the output features Fout obtained

after further processing by the parallel cascaded multi-attention

mechanism. Ap( · ) denotes the pixel attention module, Ac( · )

denotes the channel attention module, and Convi,  i ∈ (1,2,3,4)

represents the four convolutional layers in the module from front

to back.

The channel attention and pixel attention mechanisms used in

the DAEM are shown in Figures 3c, d. Channel attention can

balance the color features of the image and improve detail and

texture information. The process is illustrated in Figure 3c. First, a

global average pooling layer is applied to obtain the global feature

information of each channel. Then, two convolutional layers and a

sigmoid activation function are used to obtain the attention weights

for each channel. Finally, the weights multiply the input features. In

addition, we use pixel attention to focus on each pixel’s brightness

details or color components. Two convolutional layers reduce the

feature map to a single channel. This allows us to calculate the

weight for each pixel in the feature map, highlighting important

pixels while suppressing unimportant ones, and then return the

weighted feature map as the output.

Inspired by (Woo et al., 2018), the serial part of the Dual-Path

Attention Enhancement Module places a Channel Attention
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module (CA) and a Pixel Attention module (PA) sequentially.

Ablation experiments demonstrate that embedding PA and CA

sequentially within the serial-parallel framework outperforms using

both serial and parallel modes simultaneously.
3.5 Loss function

3.5.1 Laplace loss
To help the model better capture details and textures in the

image, thereby achieving more refined image enhancement, we

introduced the Laplace loss function. Assuming the generated

image is Î and the ground truth image is I, the Laplace function

value LLaplace can be expressed as:

LLaplace =
1
No

N

i=1
jj Li(Î ) − Li(I)jj1, (6)

where N represents the total pixel count of the input image, Li
(Î ) represents the ith pixel of the generated image, Li(I) represents

the Li(I) pixel of the reference images, and ·k k1 denotes the Li norm
of between the two images.
3.5.2 Perceptual reconstruction loss
To maintain consistency between pixels, we use the L1 loss as

the content loss and the L1 loss to measure the difference between

the generated and the ground truth images. The formula can be

expressed as:

L1 =
1
No

N

i=1
I − Î
�
�

�
� : (7)

The perceptual reconstruction of underwater images is achieved

using the VGG network (Simonyan and Zisserman, 2014). Its

expression is defined as:

LVGG =
1

C �W � Ho
C

c=1
o
W

w=1
o
H

h=1

(VGG(I) − VGG(Î ))2, (8)

where C,W, and H represent the channels, width, and height of

the image, VGG(I) and VGG(Î ) represent the nonlinear

transformations of the generated and ground truth images

performed by the VGG network, respectively. We linearly

combine the L1 loss with the weighted perceptual loss function to

balance the retention of low-level details and the optimization of

high-level features, enhancing both the reconstruction accuracy and

perceptual quality of the image. The perceptual reconstruction loss

L can be expressed as:

L = L1 + lLVGG, (9)

where l is the adjustment weight. An excessively large l would

neglect detail accuracy, leading to the loss of edge and texture

information, while an excessively small l would cause color

distortion and low contrast. To achieve a balance between detail

preservation and high-level feature optimization, l was set to 0.5

after multiple experimental adjustments.
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3.5.3 Hybrid loss
To minimize the loss of detailed textures in the raw image

during the enhancement process, we utilized the Structural

Similarity Index Measure loss LSSIM. The calculation formula is

LSSIM = 1 −
1
No

N

i=1
 SSIM(I, Î ) : (10)

Finally, we combine the SSIM loss with the L1 loss. The final hybrid

loss used during the training phase is expressed as (Equations 1-11):

LMix = a · LSSIM(I, Î ) + (1 − a) · L1(I, Î ), (11)

among them, an excessively large weight a improves SSIM but

significantly decreases PSNR and MSE. After multiple experimental

adjustments, we determined the optimal weight value to be 0.86.
4 Experiments

In this portion of the text, we first introduce the experimental

settings and the details of the implementation. Then, we compare

MSCA-Net with eleven methods on the same datasets. These

methods include CLUIE- Net (Li et al., 2023b), WaterNet (Li

et al., 2020b), SGUIE-Net (Qi et al., 2022), DC-Net (Zheng et al.,

2024b), FUnIE-GAN (Islam et al., 2020b), HFM (An and Xu, 2024),

OGO-ULAP (Li et al., 2023a), TEBCF (Yuan et al., 2021), ICSP

(Hou et al., 2023), WWPE (Zhang et al., 2023b) and PCDE (Zhang

et al., 2023a). Finally, we have carefully analyzed the modules in our

neural network by designing extensive ablation experiments.
4.1 Implementation details

For a fair comparison of all methods, we used two publicly

available underwater image datasets, UIEB (Li et al., 2020b) and

EUVP (Islam et al., 2020a), and maintained uniform experimental

conditions throughout. The UIEB (Li et al., 2020b) dataset includes

890 underwater images with various types of distortions, while the

EUVP (Islam et al., 2020a) dataset includes over 6000 underwater

images from various categories such as ImageNet and Scenes. We

selected 800 images from the UIEB (Li et al., 2020b) dataset for

training and an additional 90 images for testing. From the EUVP

(Islam et al., 2020a) dataset, we selected 1600 images from the

ImageNet and Scenes categories for training and 400 images for

testing. We made the input image size 256 × 256 and performed the

training tasks using the PyTorch framework on an Intel(R) I5-

12600KF CPU with 32 GB RAM and a NVIDIA RTX 3090 GPU.

For the training of the MSCA-Net, the learning rate was set to 1 ×

10−3, we set the batch size to 2 and trained for 40 epochs.
4.2 Qualitative analysis

To validate the effectiveness of our experiment in complicated

underwater environments, we selected various degraded
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underwater images from the UIEB (Li et al., 2020b) and EUVP

(Islam et al., 2020a) datasets for comparison, as shown in

Figures 4–8.

The WaterNet (Li et al., 2020b) and DC-Net (Zheng et al.,

2024b) methods can significantly reduce color cast in underwater

images, but they leave a layer of shadow on the image surface. This
Frontiers in Marine Science 08
makes them ineffective in improving low-light conditions and

failing to meet human subjective visual needs. Due to the varying

light conditions and water properties, collected underwater images

often have severe color distortions that HFM (An and Xu, 2024)

and SGUIE-Net (Qi et al., 2022) methods cannot fully eliminate.

HFM (An and Xu, 2024) method uses a white balance correction
FIGURE 4

(a-n) Comparison of underwater image experiments on the UIEB (Li et al., 2020b) dataset. From left to right: CLUIE-Net (Li et al., 2023b), WaterNet
(Li et al., 2020b), SGUIE-Net (Qi et al., 2022), DC-Net (Zheng et al., 2024b), FUnIE-GAN (Islam et al., 2020b), HFM (An and Xu, 2024), OGO-ULAP (Li
et al., 2023a), TEBCF (Yuan et al., 2021), ICSP (Hou et al., 2023), WWPE (Zhang et al., 2023b) and PCDE (Zhang et al., 2023a).
FIGURE 5

(a-n) Comparison of underwater image experiments on the UIEB (Li et al., 2020b) dataset. From left to right: CLUIE-Net (Li et al., 2023b), WaterNet
(Li et al., 2020b), SGUIE-Net (Qi et al., 2022), DC-Net (Zheng et al., 2024b), FUnIE-GAN (Islam et al., 2020b), HFM (An and Xu, 2024), OGO-ULAP (Li
et al., 2023a), TEBCF (Yuan et al., 2021), ICSP (Hou et al., 2023), WWPE (Zhang et al., 2023b) and PCDE (Zhang et al., 2023a).
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module to fix color bias in underwater images, but it results in an

overall yellowish tone in the processed images. Meanwhile, the

quality of the results is affected because the CLUIE-Net (Li et al.,

2023b) method introduces a slight color cast in local areas while

enhancing the images. The FUnIE-GAN (Islam et al., 2020b)
Frontiers in Marine Science 09
method can effectively remove blue and green distortions, but the

image quality, particularly in contrast, brightness, and texture

detail, remains unsatisfactory. The TEBCF (Yuan et al., 2021)

method sharpens images, greatly enhancing contrast and

effectively improving low-light conditions. However, excessive
FIGURE 6

(a-n) Comparison of underwater image experiments on the EUVP (Islam et al., 2020a) dataset. From left to right: CLUIE-Net (Li et al., 2023b),
WaterNet (Li et al., 2020b), SGUIE-Net (Qi et al., 2022), DC-Net (Zheng et al., 2024b), FUnIE-GAN (Islam et al., 2020b), HFM (An and Xu, 2024),
OGO-ULAP (Li et al., 2023a), TEBCF (Yuan et al., 2021), ICSP (Hou et al., 2023), WWPE (Zhang et al., 2023b) and PCDE (Zhang et al., 2023a).
FIGURE 7

(a-n) Comparison of underwater image experiments on the EUVP (Islam et al., 2020a) dataset. From left to right: CLUIE-Net (Li et al., 2023b),
WaterNet (Li et al., 2020b), SGUIE-Net (Qi et al., 2022), DC-Net (Zheng et al., 2024b), FUnIE-GAN (Islam et al., 2020b), HFM (An and Xu, 2024),
OGO-ULAP (Li et al., 2023a), TEBCF (Yuan et al., 2021), ICSP (Hou et al., 2023), WWPE (Zhang et al., 2023b) and PCDE (Zhang et al., 2023a).
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edge sharpening makes the images appear unnatural and leads to

noticeable trailing shadows around the edges of objects. The OGO-

ULAP (Li et al., 2023a) method employs a novel image gradient

hypothesis, but images processed with OGO-ULAP (Li et al., 2023a)

exhibit a significant red color cast and do not handle bluish-green

biased images well. The WWPE (Zhang et al., 2023b) method uses

weighted wavelet visual perception fusion technology, significantly

improving image contrast and clarity, but still retains a slight

bluish-green bias. The ICSP (Hou et al., 2023) method aims to

address underwater non-uniform lighting using a variational

framework, greatly enhancing image quality in terms of lighting

improvement and detail preservation, but the overall color of the

images is unnatural, and some areas still suffer from severe

overexposure. Our proposed neural network effectively eliminates

color casts and the effects of low-light environments, enhancing

underwater image brightness and saturation.
4.3 Quantitative evaluation

To objectively evaluate degraded image restoration

effectiveness, we further validate the effectiveness of our method

by providing various evaluation metrics on samples from the UIEB

(Li et al., 2020b) and EUVP (Islam et al., 2020a) datasets. In terms of

full-reference metrics, we use the Structural Similarity Index

Measure (SSIM), to measure the level of structural information

loss during the enhancement process, the Peak Signal-to-Noise

Ratio (PSNR) to assess the noise level in the image, and the Mean

Squared Error (MSE) to reflect image distortion at the pixel level.

Additionally, we introduce the Learned Perceptual Image Patch

Similarity (LPIPS) and Fréchet Inception Distance (FID) to evaluate
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the perceptual quality of the image and the distribution difference

between generated images and real images. Furthermore, to

evaluate image quality from an overall visual perception

perspective, we used the no-reference image quality assessment

metric Underwater Image Quality Measure [UIQM (Panetta et al.,

2015)] to quantitatively evaluate the result images in terms of color,

edges and other aspects. Through a comprehensive comparison of

all metrics, our method is observed to generally deliver superior

performance. Table 1 presents the PSNR, MSE, SSIM, and UIQM

(Panetta et al., 2015) metrics for different methods. The results show

that our method outperforms the others on most metrics. The

results show that our method outperforms all other compared

methods on most metrics. Specifically, although the performance

on the LPIPS and FID metrics is mediocre, compared to the second-

best performing method, our network achieves percentage gains of

0.35 in PSNR on the UIEB (Li et al., 2020b) dataset. Additionally,

our method obtains the lowest MSE score of 377, further

demonstrating its superiority in preserving image detail and texture.

To further illustrate the our method’s generalization ability, the

ImageNet and scenes portions of the EUVP (Islam et al., 2020a)

dataset are applied for testing. Tables 2, 3 presents the average

scores of all metrics for the proposed MSCA-Net and ten UIE

methods across two datasets. The data show that our method

achieves the highest PSNR and SSIM on the Image dataset and

the highest SSIM score on the Scenes dataset, with the PSNR score

being only slightly lower than that of FUnIE-GAN (Islam et al.,

2020b). Accordingly, our method demonstrates superior

generalization ability compared to others. For the EUVP dataset,

although the PSNR score of the FUnIE-GAN (Islam et al., 2020b)

method is slightly higher than our method, visual inspection

indicates that the images output by the FUnIE-GAN (Islam et al.,
FIGURE 8

(a-n) Comparison of underwater image experiments on the EUVP (Islam et al., 2020a) dataset. From left to right: CLUIE-Net (Li et al., 2023b),
WaterNet (Li et al., 2020b), SGUIE-Net (Qi et al., 2022), DC-Net (Zheng et al., 2024b), FUnIE-GAN (Islam et al., 2020b), HFM (An and Xu, 2024),
OGO-ULAP (Li et al., 2023a), TEBCF (Yuan et al., 2021), ICSP (Hou et al., 2023), WWPE (Zhang et al., 2023b) and PCDE (Zhang et al., 2023a).
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2020b) method still exhibit background color bias, and the images

generated by DC-Net (Zheng et al., 2024a) appear dark and contain

some noise, as shown in Figure 8. Moreover, in terms of LPIPS and

FID metrics, although our method did not achieve the best results

on the UIEB dataset, only FUnIE-GAN can compare with our

method on the EUVP dataset. However, FUnIE-GAN does not

perform well on the UIEB dataset, which fully demonstrates the

strong generalization ability of our method. Overall, our method

not only improves color bias but also demonstrates superior

performance with regard to brightness and clarity. Meanwhile,
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compared to all the methods, our method delivers the highest

objective scores on most evaluation metrics.

We resize the test images to 256 × 256 and compare the

runtimes of all methods on the UIEB dataset. The average

runtime of each method is shown in Table 4, and our method

achieves the second-best result, indicating that our method has an

advantage in terms of runtime, but there is still room for

improvement. In future work, we will investigate optimization

strategies to cut computational complexity, including simplifying

the model by reducing convolutional layers. Our aim is to decrease
TABLE 1 PSNR, SSIM, MSE, LPIPS, FID and UIQM (Panetta et al., 2015) are used for image quality assessment on the UIEB (Li et al., 2020b) dataset.

Method PSNR↑ SSIM↑ MSE↓ UIQM↑ LPIPS↓ FID↓

HFM (An and Xu, 2024) 18.966 0.870 1104.454 4.790 0.216 66.021

OGO-ULAP (Li et al., 2023a) 16.681 0.810 1783.974 3.376 0.260 70.548

TCBEF (Yuan et al., 2021) 19.350 0.769 854.116 4.272 0.251 79.639

ICSP (Hou et al., 2023) 13.006 0.639 4426.687 2.166 0.502 106.377

WWPE (Zhang et al., 2023b) 19.445 0.775 897.869 4.002 0.227 57.250

PCDE (Zhang et al., 2023a) 16.829 0.660 1805.942 4.242 0.337 96.675

CLUIE-Net (Li et al., 2023b) 20.848 0.878 657.191 3.866 0.160 59.801

FUnIE-GAN (Islam et al., 2020b) 19.538 0.871 972.875 3.999 0.217 67.108

WaterNet (Li et al., 2020b) 16.333 0.818 1955.765 4.457 0.152 63.951

SGUIE-Net (Qi et al., 2022) 22.156 0.880 467.683 4.015 0.162 55.875

DC-Net (Zheng et al., 2024b) 15.983 0.659 1945.656 4.341 0.347 143.038

Ours 22.500 0.872 377.056 4.513 0.187 68.377
Deep learning-based methods and traditional methods are separated by a line, with deep learning methods listed in the upper half and traditional methods in the lower half. The top-performing
method in each metric is highlighted in red, while the second-best is highlighted in blue.
TABLE 2 PSNR, SSIM, MSE and UIQM (Panetta et al., 2015) are used for image quality assessment on the on EUVP (Islam et al., 2020a) dataset.

Method
ImageNet Scenes

PSNR↑ SSIM↑ MSE↓ UIQM↑ PSNR↑ SSIM↑ MSE↓ UIQM↑

HFM 18.978 0.795 1131.783 5.030 18.327 0.768 925.045 5.032

OGO-ULAP 16.190 0.684 1804.985 4.857 16.247 0.706 1829.933 7.290

TEBCF 17.335 0.682 1319.893 4.613 17.784 0.731 1289.933 4.789

ICSP 11.175 0.549 5327.004 2.852 11.405 0.599 5219.309 3.623

WWPE 16.328 0.651 1676.526 4.699 24.407 0.728 1543.944 4.898

PCDE 15.120 0.606 2154.250 5.852 15.814 0.658 1797.523 5.301

CLUIE-Net 19.193 0.827 925.297 4.567 18.814 0.782 825.461 4.680

FUnIE-GAN 23.840 0.813 300.239 5.100 26.568 0.872 160.810 5.288

WaterNet 16.060 0.529 1899.209 2.134 14.869 0.658 3590.675 2.345

SGUIE-Net 18.063 0.823 1148.591 3.762 18.532 0.846 1005.458 3.588

DC-Net 11.106 0.334 5437.929 5.337 11.357 0.411 5781.909 4.412

Ours 25.624 0.868 218.870 5.151 25.449 0.882 182.442 5.357
The top method in each metric is marked in red, and the second in blue.
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complexity while maintaining accuracy, thus improving the

practicality of our method.
4.4 Ablation study

To evaluate the effectiveness of the main modules in the

network, we conducted extensive ablation experiments to analyze

our method. We set up four groups of control experiments with the

following specific details: (a) the original underwater image, (b) the

network without the dense attention denoising module, (c) the

network without residual connections in the dense convolution

module, (d) The network with separate use of channel attention and

pixel attention in the dual-path attention enhancement module, (e)

the network with the dual-path attention enhancement module

connected in parallel, (f) the network without the SSIM loss

function, (g) the complete MSCA-Net, and (h) the reference image.

We compared all the ablation experiments, as shown in Figure 9.

Visually, our complete model demonstrates the best overall

enhancement effect in both objective metrics and visual quality.

From Figure 9, it is evident that (b) and (c) exhibit low clarity,

blurred details, and textures, with significant noise around the edges

of objects, indicating that the dense attention denoising module did
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not achieve the desired effect. Comparing (f) and (g) reveals that the

SSIM loss effectively eliminates the ghosting around the edges of

objects in underwater images and improves image details. To evaluate

the impact of using pixel attention and channel attention separately,

we compared the two attention modules by placing them in different

branches. As shown in (d), embedding PA and CA simultaneously

within the serial-parallel framework results in severe green color bias

throughout the image, and the excessive network depth significantly

increases training time. The severe green color bias and low

illumination hinder capturing image details, deviating from normal

human perception. Moreover, when we stack the Dual-Path

Attention Enhancement Module using parallel connections, the

experimental results (e) show that the enhanced images contain

slight artifacts, and most evaluation metrics significantly decline.

The results indicate a cascaded connection outperforms a parallel one

for attention modules, and a well-structured module arrangement

yields better underwater images.

The metrics for each control group in the ablation experiments

are presented in Table 5. We observe that excluding the dense

attention denoising module and omitting the residual connections

in the dense convolution module both result in a significant drop in

the PSNR metric, highlighting the crucial effectiveness of the dense

attention denoising module structure we employed. Additionally,

due to the absence of the SSIM loss function for adjustment during

training, Group (e) shows a significant decrease in the SSIM metric.

Therefore, the results of the ablation experiments confirm that each

module in MSCA-Net and loss function are essential for

optimal performance.
4.5 Underwater vision applications

To further demonstrate the our method’s effectiveness in

underwater object detection, we tested the original and enhanced

underwater images using the well-known YOLOv5 (Lei et al., 2022)

and YOLOv7 (Liu et al., 2023) detection networks, as well as

saliency detection techniques. By applying our proposed neural

network model, all original underwater images in the dataset were

enhanced to obtain their enhanced versions. The object detection

results using YOLOv5 (Lei et al., 2022) and YOLOv7 (Liu et al.,

2023) on original and enhanced underwater images are shown in

Figures 10, 11, respectively. Figure 10 shows that noise and color

bias in underwater images cause YOLOv5 (Lei et al., 2022) to

produce errors and low confidence levels in object detection. There

are even instances where the detector misidentifies objects, such as

detecting a surfboard instead of a diver or failing to detect a diver
TABLE 3 LPIPS and FID are used for image quality assessment on the
EUVP (Islam et al., 2020a) dataset.

Method
ImageNet Scenes

LPIPS↓ FID↓ LPIPS↓ FID↓

HFM 0.265 44.616 0.289 55.247

OGO-ULAP 0.313 48.826 0.351 64.204

TEBCF 0.293 48.957 0.315 62.468

ICSP 0.485 107.173 0.425 85.344

WWPE 0.296 43.271 0.302 53.674

PCDE 0.332 60.597 0.342 72.244

CLUIE-Net 0.248 39.103 0.267 44.032

FUnIE-GAN 0.173 27.245 0.131 29.302

WaterNet 0.264 90.151 0.291 93.682

SGUIE-Net 0.301 39.483 0.331 47.802

DC-Net 0.493 163.923 0.614 237.696

Ours 0.136 19.562 0.201 38.334
The top method in each metric is marked in red, and the second in blue.
TABLE 4 Average runtime of different comparison methods.

Method HFM OGO-ULAP TEBCF ICSP WWPE PCDE

Time/s 0.463 0.080 1.017 0.148 0.342 0.219

Method CLUlE-Net FUnIE-GAN WaterNet SGUlE-Net DC-Net Ours

Time/s 0.231 0.002 0.324 0.247 0.077 0.075
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while detecting a backpack. The detection accuracy and confidence

are significantly improved after enhancement with MSCA-Net.

The detection results using YOLOv7 (Liu et al., 2023) in

Figure 11 are similar to those in Figure 10, where it is difficult to

accurately detect fish and other aquatic organisms in the original
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underwater images. The edge details in the images are more

prominent before and after enhancement, which significantly

improves detection accuracy. This result confirms the practical

value of our method in meeting the application needs for both

human and machine-oriented tasks.
FIGURE 9

(a-h) The results of the ablation experiment.
TABLE 5 Quantitative results of ablation study on challenging images from the UIEB dataset.

Group PSNR↑ SSIM↑ MSE↓ UIQM↑

b 17.225 0.780 453.560 4.138

c 17.499 0.785 567.878 4.204

d 19.493 0.881 493.637 4.373

e 15.662 0.839 1335.558 2.650

f 16.298 0.757 1983.130 4.556

g 20.116 0.872 377.056 4.513
The highest score is highlighted in red.
FIGURE 10

Underwater object detection using the YOLOv5 (Lei et al., 2022) model. Detection results for the raw images and enhanced images are respectively
shown at the top and bottom.
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5 Conclusion

To more effectively fuse high-level semantic information and

low-level detail information in underwater images for image

enhancement, we propose an noval method based on a dual-path

attention network. Our proposed method maximizes the seamless

integration and effective fusion of both pixel-level information and

detailed high-level features by employing dual-path connections

between the channel attention mechanisms and pixel attention

mechanisms, with the aim of minimizing computational

complexity while maintaining high processing efficiency.

Additionally, we utilize dense attention convolutional blocks to

effectively extract and filter noise-related information from images,

and we recommend the use of residual connections in the stacked

network structure to achieve more robust and accurate image

denoising. Experimental results clearly demonstrate that our

method is highly capable of handling various complex image

processing tasks, including significantly reducing unwanted color

bias and substantially improving the overall image clarity and

quality. Furthermore, extensive and detailed application studies

confirm that our method achieves highly promising and

competitive results in the fields of underwater target detection

and recognition.

Although our method performs well in most underwater

scenes, there are still some limitations. The deep convolutional

layers in the dense convolutional denoising module have led to a

significant increase in the model’s training time. Therefore, in

future work, we plan to reduce the model’s training time by

adopting deep convolutional networks to replace numerous

convolutional layers, while also decreasing the number of

stacked dense convolutional layers.
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FIGURE 11

Underwater object detection using the YOLOv7 (Liu et al., 2023) model. Detection results for the raw images and enhanced images are respectively
shown at the top and bottom.
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