
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Agnieszka Lazarowska,
Gdynia Maritime University, Poland

REVIEWED BY

Zhiping Xu,
Jimei University, China
Botao Zhang,
Hangzhou Dianzi University, China
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Compared to structured ocean environments, unstructured ocean environments

are inherently more complex. In such unstructured environments, the presence

of narrow waterways poses unique navigational hurdles for autonomous surface

vehicles (ASVs) due to their restricted connectivity. Current path planning

algorithms designed for unstructured environments, particularly those

characterized by narrow spaces, often face difficulties in efficiently exploring

the target area while producing high-quality paths. In this study, we tackle the

aforementioned complexities by incorporating progressive sampling and point

cloud clustering, which jointly expedite the detection of constrained waterways

in unstructured marine environments. More specifically, we generate multiple

random trees from these sampling points, thereby bolstering both navigational

accuracy and overall computational efficiency. Building upon these core

techniques, we introduce a novel extension of the traditional rapidly-exploring

random trees (RRT) connect algorithm—referred to as multiple RRT-connect

(multi-RRT-connect)—aimed at swiftly determining a viable path between

prescribed start and goal coordinates. As the number of samples expands, the

random trees gradually enlarge and interlink, mirroring the functionality of classic

RRT-connect and ultimately forming a continuous corridor. Subsequently, the

derived path undergoes iterative refinement and optimization, culminating in a

significantly reduced trajectory length.We subjected the proposed algorithm to

rigorous testing through comprehensive simulations alongside meticulous

comparisons with established state-of-the-art solutions. The results highlight

the algorithm’s distinct advantages across multiple dimensions such as path

construction success, computational efficiency, and trajectory refinement

quality, thereby underscoring its potential to advance autonomous navigation

in challenging maritime settings.
KEYWORDS
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1 Introduction

1.1 Background

Autonomous surface Vehicles (ASVs) have emerged as

indispensable tools across a spectrum of disciplines owing to their

unparalleled capacity to navigate autonomously in complex

terrains. These platforms assume pivotal roles in marine

transportation (Wibowo and Deng, 2012; Xiao et al., 2024),

oceanographic research (Yoo and Kwon, 2012; Sloyan et al.,

2019), environmental surveillance (Szpak and Tapamo, 2011;

Peters, 2017), and maritime archaeological endeavours

(McCarthy, 2006; Fraga et al., 2015). In facilitating human

engagement with the oceanic realm, ASVs frequently necessitate

bespoke navigation strategies to navigate environmental activities in

oceanic settings adeptly. Hence, there is a growing interest in

enhancing ASV navigation systems to minimize human errors

and support intelligent navigation. Central to this pursuit is the

development of autonomous collision avoidance and efficient path

planning solutions.

ASV path planning involves strategically generating optimal or

nearly optimal routes that avoid collisions. This process accounts

for multiple factors, including obstacles, vehicle dynamics, and

specified performance metrics (Subramani et al., 2017; Singh

et al., 2018). In transport and rescue missions within the ocean

environments, as shown in Figure 1.
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ASVs often encounter unstructured settings characterized by

narrow waterways. Such conditions lead to poor connectivity in free

space, greatly heightening the difficulty of creating continuous paths

that avoid obstacles. Sampling-based planners, like the probabilistic

roadmap (PRM) (Kavraki and Latombe, 1994; Hsu et al., 2003) and

rapidly-exploring random trees (RRT) (Jang and Joo-sung, 2022;

LaValle, 1998), have shown impressive effectiveness in solving

complex ASV path planning challenges. These frameworks

generate random state samples and perform explicit collision

detection to assess sample feasibility. However, planners using a

random sampling approach may become exceedingly time-

intensive when attempting to connect two nodes located in

separate components linked by a narrow passage. When

contrasted with the entirety of the configuration space, the

volume occupied by narrow passages is notably limited.

Consequently, the probability of sampling positions within these

specific regions on the map is diminished, resulting in the subpar

performance of planners in these areas. This significantly affects

convergence speed and can substantially hinder the overall

effectiveness of the planners.

In this paper, we focus on generating connected obstacle-

avoidance paths in ocean environments with narrow waterways.

To address this challenge, we introduce an enhanced version of the

rapidly exploring random tree (RRT), termed multiple RRT-

connect (multi-RRT-connect). This method incorporates

progressive sampling and point cloud clustering strategies to

manage path planning within narrow regions effectively. In detail,

the process is structured into two distinct phases: pre-processing

and search. In the pre-processing phase, a significant challenge

arises when attempting to attain an adequate number of sampling

points within narrow passages. To overcome this limitation, we

propose a novel sampling strategy, termed progressive sampling,

which seamlessly integrates random and local circular sampling

techniques. By employing this innovative approach, we aim to

expedite the process of accurately locating narrow passages. This

proposed approach not only overcomes the challenges associated

with traditional random sampling techniques but also advances

path planning algorithms by enhancing their efficiency in

navigating complex environments. Following the pre-processing

phase, we proceed to cluster these sampling points and establish

multiple local trees based on this clustered data. In the search phase,

leveraging the established foundations, we present a

groundbreaking variation of RRT-connect. This innovative

approach enables the swift identification of a viable path linking

the start and goal points. Notably, as the sample size increases, the

random trees systematically expand and interconnect, mirroring

the behaviour of the traditional RRTconnect algorithm, ultimately

resulting in the construction of a complete path. Our algorithm

guarantees an accelerated convergence rate and significantly

enhances memory utilization compared to the traditional

sampling-based methods. Furthermore, the resulting path

undergoes rigorous refinement and optimization procedures,

ultimately leading to the attainment of a substantially shorter

trajectory. Figure 2 illustrates the simulation result, providing an

illustrative example of our method’s performance. The outcomes
FIGURE 1

tASVs navigate the strait, where the narrow waterways present
heightened challenges for continuous, obstacle-avoidance
navigation (Altan and Otay, 2017).
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unequivocally highlight the exceptional capabilities of

our algorithm.
1.2 Literature review

The realm of path planning algorithms (Wang et al., 2020;

Zhang et al., 2024) for ASVs has been extensively explored in

numerous scholarly publications, underscoring the field’s

significance. This section embarks on an in-depth investigation of

path planning, focusing specifically on the intricate challenge of

navigating narrow passages. In scenarios where narrow passages

exist within the configuration space C, obtaining sufficient

information for path planning methods (Ruan et al., 2022; Guo

et al., 2023; Tu et al., 2024) becomes challenging. These narrow

passages provide limited information, representing only a small

portion of the total free space. As a result, algorithms experience

slower convergence rates and, in certain instances, may struggle to

converge entirely. Traditional methods (Yu et al., 2017; Li and Yang,

2020; Yu et al., 2024) struggle to adequately model the configuration

space Cand establish a comprehensive map that connects these

narrow passages. As a result, generating a seamless obstacle

avoidance path through these constrained areas becomes

impracticable. In response to these challenges, researchers have

undertaken numerous endeavours aimed at enhancing the capacity

of path planning algorithms to navigate narrow passages.

An established strategy is to analyze the topology of

configuration spaces to directly derive connectivity paths within

narrow passages. For instance, Lien et al. (Lien et al., 2003)

introduced a path planning method relying on random sampling

along intermediate axes. This approach greatly improves the

likelihood of detecting road markers in narrow passageways.

Similarly, Bhattacharya et al. (Bhattacharya and Gavrilova, 2008)
Frontiers in Marine Science 03
introduced a method based on Voronoi diagrams to facilitate the

generation of interconnected pathways within restricted passages.

This method subsequently integrates these pathways with the RRT-

connect algorithm to formulate trajectories conducive to obstacle

avoidance. Additionally, Rodriguez et al. (Rodriguez et al., 2006)

capitalized on the topological attributes of obstacles to enhance the

efficacy of narrow passage exploration. Moreover, Liu et al.

(Miyombo et al., 2022) employed corrosion thinning techniques

in image processing to pinpoint the spatial distribution of confined

passages. Nonetheless, these methods typically exhibit applicability

primarily within low-dimensional environments for addressing the

trajectory planning challenge in narrow passages. This limitation

arises due to the requisite analysis of configuration space topology

and the concomitant computational intensity.

Diverging from the approach of scrutinizing the topology of

configuration space, an alternative strategy involves the design of

varied sampling methods to enhance the likelihood of sampling

pertinent waypoints within narrow passages. Boor et al. (Boor et al.,

1999) employed a Gaussian sampling technique to effectively

sample the perimeter of obstacles, thereby augmenting the

probability of sampling road markings within these constrained

pathways. Nevertheless, the Gaussian sampling method tends to

produce numerous redundant sampling points concentrated along

the boundary of obstacles rather than within the narrow passages

themselves. To refine sampling precision within narrow passages,

Hsu (Hsu et al., 2003) introduced the randomized bridge builder

(RBB) technique for acquiring path points. Subsequently, Sun et al.

(Sun et al., 2005) integrated the RBB method with uniform random

sampling to systematically sample free space, thereby constructing a

comprehensive path map delineating the entirety of the

unobstructed area. While the RBB method notably enhances the

precision of narrow passage determinations, it is worth noting that

not all road marking points generated by the RBB method are
FIGURE 2

The path planning procedures within confined spaces leverage the RRT-connect method proposed by Kuffner and LaValle (Kuffner and M LaValle,
2000) in subfigure (a) and a novel approach presented by this study in subfigure (b). Our method achieves a significant path length of 1298,
completing the task in just 0.09 seconds. In stark contrast, the RRT-connect method necessitates 0.31 seconds and yields a considerably longer
path length of 1448.
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situated within narrow passages. Guo et al. (Guo et al., 2023)

presents the grid bridge method for narrow passage detection,

wherein each grid point’s status within a narrow passage is

sequentially determined by utilizing a stationary orthogonal

bridge with a fixed direction over the grid map. Additionally,

several alternative methods exist for addressing path planning

within narrow corridors. For instance, the hybrid planner (Lien,

2008) integrates a random sampling approach with Minkowski sum

computations, thereby enhancing the likelihood of detecting narrow

regions. Dalibard et al. (Dalibard and Laumond, 2009) proposed the

principle component analysis (PCA) technique to discern the

preferred direction within narrow passages, leveraging collision-

free samples obtained during the process.

Diverging from the prior research cited above, this paper

introduces a novel sampling technique, called progressive

sampling, designed to efficiently identify narrow regions and

precisely distribute points within them. Subsequently, we employ

a novel variation of the RRT-connect algorithm, known as multiple

RRT-connect, to progressively expand and interconnect random

trees, facilitating the swift determination of a feasible path from the

starting point to the destination. For a comprehensive

understanding of these methods, please refer to Section 3.
1.3 Motivation and contribution

This paper presents a cutting-edge path planning framework

specifically developed for ASVs operating in unstructured maritime

environments dominated by narrow channels. The primary

contributions of this research can be summarized as follows:
Fron
1. In the preliminary stage, we introduce a novel progressive

sampling scheme that dexterously merges random

sampling with local circular sampling to ensure an

adequately dense set of points in constrained corridors.

This innovative approach accelerates the detection of

narrow passageways and surpasses the limitations of

traditional uniform random sampling by focusing

attention on regions with heightened navigational

difficulty. Consequently, it stands as a significant

enhancement for path planning algori thms in

complex settings.

2. In the subsequent search phase, we adopt a modified RRT-

connect method, which expeditiously establishes a feasible

path between the start and goal positions. As the sample

size increases, the random trees grow and mutually

intersect in a structured manner, ultimately converging

on a continuous route. This improvement not only

facilitates efficient pursuit of feasible solutions but also

broadens the algorithm’s applicability to diverse

practical scenarios.

3. We provide a rigorous theoretical assessment of the multi-

RRT-connect approach proposed herein. The algorithm

showcases a time complexity of O(n log n) and a space

complexity of O(n) in effectively computing a collision-free
tiers in Marine Science 04
path. Here, n signifies the total number of samples.

Mathematical scrutiny of the proposal reveals that its

time complexity aligns with that of the original RRT-

connect. However, it notably reduces the number of n to

achieve a similar level of optimality.
Our work is outlined in detail below: Section 2 provides

comprehensive background information on sampling strategies

for narrow regions, as well as the rapidly-exploring random tree

(RRT) and its variant. In Section 3, we elucidate the path planning

framework for navigating narrow waterways, encompassing

progressive sampling, point clustering, and multiple RRT-connect

to identify feasible paths. Finally, Section 4 showcases the

simulation outcomes and their analysis.
2 Preliminaries

Strategies for sampling the configuration space C, especially in

narrow areas, as well as the application of the RRT algorithm and its

variations, are crucial components in path planning for ASVs

navigating complex marine environments. We present a

comprehensive explorat ion of these methods in the

following sections.
2.1 Sampling strategies for narrow regions

In order to obtain the connectivity of the environment map,

researchers often discretize the environment by sampling points. A

well-designed sampling method can yield a greater amount of

connectivity information within the environment map using a

reduced number of points, thus expediting path searches and

enabling the acquisition of higher-quality routes. Conversely,

poor sampling outcomes may indirectly result in longer and more

circuitous paths, ultimately leading to wasted time in the overall

ASV navigation process. In order to address the “narrow passage”

challenge, a multitude of sampling strategies have been thoroughly

examined over the years, with a specific focus on capturing local

features around obstacles. The representative strategies encompass

Gaussian sampling, randomized bridge builder (RBB) and

randomized star builder (RSB).

Gaussian sampling (Boor et al., 1999; Lin, 2006) entails

gathering landmark points in the vicinity of obstacle edges, as

depicted in Figure 3a. For a random point within the obstacle, a

collected point at a distance of s in a random direction is obtained.

When a point is located within the clear space, it is labeled as a

landmark. By carefully selecting the step size s, a greater number of

landmarks can be sampled around obstacles, facilitating rapid

obstacle identification. Gaussian sampling in narrow passages can

yield a significant number of landmark points, thereby significantly

improving the sampling efficiency for such confined spaces.

Nonetheless, this method also produces a significant number of

unnecessary sampling points scattered along the obstacle’s edge

instead of within the narrow passage itself, resulting in decreased
frontiersin.org
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sampling precision for the passage. Randomized bridge builder

(RBB) (Hsu et al., 2003; Sun et al., 2005) is shown in Figure 3C. In

an n-dimensional space, a narrow passage implies that there is at

least one direction v where the robot’s mobility is severely limited.

Even slight movements along this direction are highly likely to

result in collision with obstacles. To avoid collisions, the robot can

only move in directions that are orthogonal to the constrained

pathway. From this viewpoint, the RBB concept stipulates that

when two landmark points lie within an obstacle yet their midpoint

resides in free space, those midpoints are deemed landmark points

within the narrow passage, as illustrated in Figure 3b. Generating a

free-space road marking point using the RBB method involves three

collision detections, compared to just one in the conventional

uniform random sampling method. As a result, the RBB method

substantially increases the duration of collision detection.

Randomized star builder (RSB) (Zhong and Su, 2011; Li et al.,

2012). The essence of RSB lies in integrating orthogonal bridges

alongside the singular bridge detection of RBB (with the quantity of

orthogonal bridges dependent on the dimensionality of the free

space). By additionally scrutinizing whether the terminals of these

supplementary orthogonal bridges reside within obstacles, various

regions like narrow passages, depressions, and corners can be more

accurately delineated. Although the RSB method offers improved

accuracy in identifying narrow passages, the greater number of

bridges it employs means it demands more time for collision

detection compared to the RBB method. Furthermore, similar to

the RBB approach, the RSB method still grapples with the issue of

inefficient sampling.
Frontiers in Marine Science 05
The objective of sampling is to gather extensive connectivity

information within free space to facilitate the identification of

optimal paths. However, prevalent sampling methods frequently

encounter challenges, including excessive sampling in narrow

spaces and ineffective sampling results. In response, the paper

proposes hybrid sampling strategies, incorporating both random

and local circular sampling methods, which seamlessly integrate

obstacle information within the environment. This innovative

approach targets efficient sampling in narrow spaces, effectively

tackling the aforementioned challenges. Further elaboration on

these strategies can be found in Section 3.1.
2.2 Rapidly-exploring random tree and its
variant

The rapidly-exploring random tree (RRT) algorithm (LaValle,

1998; Noreen et al., 2016; Meng et al., 2023) is a path planning

algorithm commonly used in autonomous systems. The method

operates by incrementally constructing a tree T, rooted at the start

position ps, through random sampling of points in the space, with

the objective of efficiently exploring extensive regions of the

configuration space C. Each new sampled point is linked to the

closest node within the tree, thereby expanding it towards

uncharted regions. This process continues until the tree reaches

the goal position pgor a predefined stopping condition is met as

shown in Figure 4a. However, RRT has some limitations,

particularly in narrow spaces. In such environments, the
FIGURE 3

We acquire 20 points employing representative sampling methods. sq signifies the valid sampling point. (a) Gaussian sampling (left column);
(b) Randomized bridge builder (middle column); and (c) Randomized star builder (right column).
frontiersin.org

https://doi.org/10.3389/fmars.2025.1555262
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Meng et al. 10.3389/fmars.2025.1555262
algorithm can struggle to find a path because the random sampling

often results in points that fall outside the narrow passage, making it

difficult to grow the tree effectively in the constrained area. This

inefficiency leads to slower convergence and may require a large

number of samples to successfully navigate through tight spaces,

resulting in increased computation time and decreased overall

performance. In these scenarios, more specialized algorithms

tailored for constrained spaces or alternative techniques such as

RRT-connect may be more effective for successful planning.

The RRT-connect algorithm, a variation of the rapidly-

exploring random tree method proposed by Kuffner and LaValle

(Kuffner and M LaValle, 2000), excels in efficiently identifying paths

between a starting configuration psand a goal configuration pgwithin

narrow spaces. The algorithm initializes two trees, Tsrooted at psand

Tgrooted at pg. The trees grow iteratively by randomly selecting

points in the configuration space Cand extending towards them, as

illustrated in Figure 4b. In order to link the trees, it searches for

obstacle-free trajectories among their nodes, slowly connecting the

initial and final configurations. The standard RRT algorithm

emphasizes navigating from the beginning to the endpoint,

whereas RRT-connect simultaneously searches for a path from

both the start and finish points towards the center. This strategy

markedly amplifies path search efficiency while diminishing the

requisite number of samples. Particularly in constrained

environments with narrow passages, the conventional RRT

method may incur substantial time costs when traversing such

areas via random sampling. In contrast, RRT-connect showcases

superior efficacy in promptly and effectively navigating through

narrow passages by leveraging dual-sided exploration towards the

central region, outperforming the traditional RRT approach.

In this paper, we present an adaptation of the RRT-connect

algorithm called multiple RRT-connect. Drawing inspiration from
Frontiers in Marine Science 06
the conventional RRT-connect framework, multi-RRT-connect is

designed to rapidly identify a viable path in intricate environments

characterized by narrow passages. Notably, depending on the

complexity of the environment map, multiple random trees are

generated. As the sampling count rises, these trees grow and link up

with each other. This characteristic distinguishes multi-RRT-

connect from the traditional RRT-connect method and

contributes to its superior convergence rate in establishing a

comprehensive path between the initial and destination

configurations. For further information, kindly consult Section 3.
3 Path planning framework featuring
narrow passages

This paper presents an innovative path planning method

designed specifically for ASVs operating within unstructured

marine environments, particularly those characterized by narrow

waterways. The environmental space is discretized into a grid,

which is then mapped onto continuous space to facilitate

navigation. The algorithm is based on the following assumptions:

(1) Obstacles and ASVs are assumed to operate on the same

horizontal plane. (2) ASVs are equipped with a sonar system,

enabling them to acquire environmental information, including

the positions of obstacles. This paper employs the Micron DST, a

compact digital imaging sonar model developed by Tritech, to

construct environmental maps and detect relevant information

(Cao et al., 2018).

Let C⊆Rddenote the configuration space, and Cobs ⊂ C
represent the region occupied by obstacles. The set Cfree : = C ∖ Cobs
is referred to as the obstacle-free space. A path in Cis described by a

continuous function s :½0, 1� → C. This path s is deemed collision-
FIGURE 4

The RRT and RRT-connect algorithms exhibit distinctive traits in their planning tree structures. (a) RRT algorithm initiates a single tree and
incrementally expands by randomly selecting points within the configuration space C. (b) RRT-connect algorithm commences with the initialization
of two trees, denoted as Tsand Tg, which then converge towards each other.
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free if s(t) ∈ Cfreefor all t ∈ ½0, 1�. The path planning problem (

Cfree, Cinit , Cgoal)involves minimizing the search for feasible

trajectories P*given a cost function V, as follows:

            Minimize    V(Pi)

             s :  t :    s (0) = Cinit ,  s (1) = Cgoal ,

                       i = 1, 2,…, kf g :

(1)

In this paper, constrained by Equation 1, we aim to efficiently

find a feasible path in unstructured marine environments

characterized by narrow passages.

In detail, the multi-RRT-connect algorithm is designed to

expedite convergence by simultaneously developing numerous

random trees across space. Improving the convergence speed of

multi-RRT-connect requires the implementation of effective

sampling and growth strategies. The strategic placement of

sampling nodes at crucial locations, including narrow passage

entrances and exits, has the potential to expedite tree growth
Frontiers in Marine Science 07
within confined spaces, ultimately facilitating swift algorithmic

convergence. In contrast to the straightforward single-tree growth

associated with RRT-based techniques, the growth process inherent

in multi-RRT-connect is significantly more complex, requiring

careful deliberation of growth sequence, connectivity among trees,

and termination criteria. In summary, the method delineated in this

study comprises four primary components: progressive sampling,

points clustering, multi-RRT-connect growth, and path

optimization, as described in Figure 5.
3.1 Progressive sampling

The purpose of sampling is to gather connectivity information

within confined regions to address the sluggish convergence issue

encountered by conventional methods. The optimal distribution of

sampling points entails a sparse dispersion in open regions and a

dense clustering in narrow spaces. This paper integrates a
FIGURE 5

Flowchart illustrates the path planning process for ASV in uncharted marine environments with narrow passages.
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progressive sampling technique frequently employed in terrain

sampling within the realm of geographic information systems.

The progressive sampling strategy is grounded in obstacle

information to promptly discern and delineate narrow spaces.

The sampling procedure can be divided into two stages,

comprising random sampling in the configuration space Cand
local circular sampling based on obstacles.

3.1.1 Random sampling
This step is aimed at obtaining approximate spatial

information. To guarantee that sampling points are evenly

distributed across the configuration space Cwhile maintaining a

degree of randomness, we employ the Hammersley pseudo-random

sampling strategy (Kalagnanam and Diwekar, 1997). This approach

enables us to effectively capture the overall distribution of obstacles

using a limited number of points. Specifically, given the sample size

N, the sampling point (xi, yi)is determined by Equation 2:

            (xi, yi) =
H*i
N ,W*F2(i)

� �
: (2)

The Van der Corput sequence F2(i) =
a0
2 + a1

22 +… + ar
2r+1 , where

a0, a1,…, arrepresent the individual digits of iwhen expressed in

binary form. Hand Ware constants representing the size of the

target map.
3.1.2 Local circular sampling
After the initial sampling, a set of sample points (p1, p2, p3…, pn)

is generated within the configuration space. C., alongside a

corresponding set of sample point states. (O(p1),O(p2),…,O(pn))

. Here,. O(p) = 1. denotes that the sample point resides within an

obstacle, while O(p) = 0signifies its location in free space. Cfree. As
regions with significant connectivity information are typically near

obstacles, and all sample points with O(p) = 1are confined within
Frontiers in Marine Science 08
obstacles, strategically sampling around these points satisfying O(

p) = 1via sample point testing can augment the sample count within

narrow regions. This sampling strategy substantially reduces testing

time compared to indiscriminate sampling across the entire space.

In detail, for all points where O(p) = 1, randomly sample within a

circle centered at point p, one by one. To determine the sampling

circle adaptively, the radius r is established by measuring the

distance from the sampled point p to the closest obstacle point on

the map. Please refer to Algorithm 1 for the detailed procedure of

the local circular sampling.

Figure 6 illustrates the progressive sampling process, which

encompasses random sampling and local circular sampling

techniques. By leveraging this novel sampling strategy, it

facilitates the rapid identification and delineation of confined

areas, mitigating the challenges associated with conventional

sampling approaches . Moreover , this method fosters

advancements in the subsequent path planning algorithm

proposed in this paper, augmenting its efficacy in navigating

intricate and narrow environments.
Input: 1.configuration space C;
2.point set within obstacles Pobs;

3.sampling number n of each pi where pi ∈ Pobs.

Output: target point set Ptaround obstacles.

1: for each pi ∈ Pobsdo

2: while k = 1 to n do

3: /* ri is the shortest distance from pi to obstacles.

O = O1,O2,…,Ov.

.*/

4: ri = GetRadiusOfSamplingCircle (pi,O);

/* Oi:= (pi,ri) is current sampling circle */

6: prand = CircleSampling(Oi);

7: if OutsideObstalces(prand) then
FIGURE 6

The progressive sampling process. (a) Random sampling with 120 points; (b) Local circular sampling with 25 points (highlighted in yellow) in the
narrow passage.
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Fron
8:Pt.AddSamplingPoint(prand);

9: k++;

10: else

11: Goto Step2;

12: end if

13: end while

14: end for
Algorithm 1. Local circular sampling.
3.2 Points clustering

The sampling point set Ptoften concentrates within specific

narrow areas in the spatial domain C, thereby reflecting the spatial

distribution of these confined regions. In order to identify these

narrow regions, the point set necessitates partitioning into distinct

parts through a clustering process. As depicted in Figure 7a, the

distance between separate clusters is notably larger than the

distance between points belonging to the same cluster. We

employ the Manhattan clustering method as described by Tu

et al. (Tu et al., 2024) to implement the aforementioned process.

The core idea behind this clustering algorithm lies in categorizing

two points as belonging to the same group, provided that their

Manhattan metric is below a predefined threshold. To improve the

clustering algorithm’s efficiency, we employ the kd-tree method,

which accelerates the clustering procedure and reduces the

computational burden. The kd-tree is constructed according to

the data attributes, thereby establishing closer connections between

data objects with high similarity and facilitating a faster searching

process. For structured point sets, the Manhattan clustering

approach is both effective and convenient. By navigating through

the branches of the kd-tree, the clustering procedure can be
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efficiently carried out. The outcomes of the clustering are

represented as C = (c1,c2,…,cm).

Based on the clustering results, we identify sampling points and

establish multiple local trees. T = (T1,T2,…,Tm)., as depicted in

Figure 7b. These local trees are purposefully placed in proximity to

narrow passageways, mirroring their spatial arrangement for

improved efficiency in path planning. Further elaboration on the

utilization of local trees T is provided in the subsequent section.
3.3 Multiple RRT-connect to find feasible
path

By executing sampling and clustering operations, we obtain a

set of local trees denoted as T = (T1,T2,…,Tm). We incorporate

the two trees Tsand Tgsourced from the start point and goal point,

resulting in a total of (n + 2) trees. Building upon the well-

established foundations, we introduce a pioneering variation of

RRT-connect called multiple RRT-connect (multi-RRT-connect).

This innovative approach enables the rapid identification of a

feasible path that links both the starting point and the

destination. Remarkably, as the sample size increases, the random

trees systematically expand and interconnect, leading to the

eventual construction of a comprehensive path. The multi-RRT-

connect algorithm is implemented as depicted in Algorithm 2.

In detail, we randomly sample a point prandin the configuration

space Cand determine the tree Ts(Tg) denoted as Tparentthat has the

minimum Euclidean distance to prand(Line 3-9). After inserting the

point pnew, steered by prand, into the selected tree Tparent(Line 10-11),

a local RRT-connect operation between Tparentand the near tree

Tnearin tree set T will be triggered. The near tree Tnear ∈ T is

selected according to the distance-triggering criterion (Line 13).

The criterion for triggering must not exceed the predefined length

Ltri, constrained by Equation 3,
FIGURE 7

Point clustering and the generation of the local tree set T . (a) Utilizing the Manhattan clustering method, five clusters C = (c1,c2,c3,c4,c5) are
generated; (b) The local tree set T = (T1,T2,T3, T4, T5)is derived from clustering the points in (a).
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 jjpTnear
− pnewjj ≤ Ltri (3)

If more than one tree. T ∈ T . is triggered simultaneously, the

algorithm selects the nearest tree Tnear. Subsequently, it locates node

pnfrom tree Tnear, which is nearest to pnew. Following this step, the

LocalConnect procedure endeavors to establish a connection with

pnewand pnon Tnearin order to update its current best solution (line

16). The LocalConnect procedure is similar to RRT-connect

(Kuffner and M LaValle, 2000). It involves iteratively growing the

current two trees Tparentand Tneartowards each other by randomly

sampling nodes, extending the trees towards these nodes, and

checking for a connection between the trees. Once the

LocalConnect process is completed, the local tree Tnearwill

undergo a merging process with tree Tparentand consequently be

eliminated from the tree set T . Through iterative execution of the

above steps, the tree set T undergoes a progressive merging process

as the number of sampling instances grows. Upon the convergence

of tree Tsat the endpoint with tree Tgat the starting point, a viable

trajectory is determined, thereby concluding the growth process.

The pipeline of the multi-RRT-connect algorithm is visualized

in Figure 8.
Fron
Input: 1.Configuration space C, start configuration ps

and goal configuration pg;

2.Local random tree set T = (T1,T2,…,Tm), Ts and Tg rooted

at ps and pg. Output: A collision-free path P from ps

to pg.

1: Ts.init(), Tg.init();

2: while NoConnect(Ts,Tg) && T ≠ ∅do

3: prand = Sample(C);
4: if prand is valid then

5: Goto step 9;

6: else

7: Goto step 3;

8: end if

9: Tparent = FindParentTree(prand,Ts,Tg);

10: pnew = Steer(prand);

11: Tparent.AddNode(pnew);

12: /* Finding the near tree Tnear to pnew in T . */;
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13: Tnear = NearTree(T , pnew);

14: /* Trigger local RRT connect. */

Tparent.*/

15:/*LocalConnect process make Tparent and Tnear

merged and generate new Tparent.*/

16: Tparent = LocalConnect(Tparent, Tnear, pnew);

17:/*Delete tree Tnear from the tree set T .*/

18: DeleteLocalTree(Tnear, T );

19: end while

20: if!NoConnect(Ts,Tg) then

21: return path P from ps to pg;

22: else if T = ∅ then

23: LocalConnect(Ts,Tg);

24: return path P from ps to pg;

25: end if
Algorithm 2. Multi-RRT-connec.
3.4 Path optimization

The findings from the experimentation disclose that the

trajectory produced by Algorithm 2 demonstrates inferior quality,

characterized by numerous unnecessary detours. To address this

issue, we employ the redundant node elimination method to

enhance trajectory precision. This straightforward approach

requires only a minimal number of collision detections to filter

redundant nodes from the path, achieving a more concise and direct

trajectory. Consider the path denoted by P:= (p1,p2,…,pn) as the

initial trajectory. The refined algorithm systematically navigates

through all path nodes from the initial point to the destination.

Nodes are classified as redundant if they can be linked in a collision-

free trajectory. Conversely, in the event of a detected collision, the

validity of the parent node is affirmed, and it is subsequently

retained within the optimized trajectory. Figure 8e visually depicts

the process, showcasing the refined trajectory as a red line. Through

meticulous algorithmic adjustments, redundant nodes are

substantially eliminated, resulting in a path with minimized

unnecessary detours and enhanced overall quality. Notably, the
FIGURE 8

Illustration of multi-RRT-connect algorithm. (a) Integration of the trees Tsand Tgwith the local tree set T , resulting in a total of n + 2 trees; (b) In the
LocalConnect process, we merge Tswith Tifrom T and generate updated Ts; (c) Through iterative execution of LocalConnect, the tree set T
undergoes a progressive merging process until only trees Tsand Tgremain; (d) Upon the convergence of tree Tswith tree Ts, a feasible path of length
256 is identified. (e) The refined path result in a shorter length of 194.
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optimized trajectory predominantly comprises straight sections,

punctuated by only a few strategic turning points, thereby

optimizing its suitability for ASV navigation.

We conducted a rigorous evaluation of our algorithm’s

performance through comprehensive simulations and

comparative analyses against established elegant methods. The

superiority of the algorithm in multiple aspects is unambiguously

shown by the experimental results, encompassing the success rate of

path construction, computational efficiency, and path optimization.

For a comprehensive comparative analysis of our algorithm against

elegant related methods, please refer to Section 4.
3.5 Theoretical analysis

In this part, our goal is to assess the theoretical viability and

effect iveness of mult i -RRT-connect by conduct ing a

thorough analysis.

DEFINITION 1. (Probabilistic completeness.) Provided with the

start point ps and a collection of target points Pg, The path planning

problem (ps, Cfree   Pg)is deemed feasible if it meets the subsequent

condition, determined by Equation 4,

lim
n→∞

P( VRRT
n ∩Pg ≠ ∅

� �
) = 1: (4)

where VRRT
n denotes the nodes at planning iteration n. The

algorithm is considered to be probability complete.

LaValle et al. (LaValle, 1998) demonstrated that RRT

guarantees probabilistic completeness. Subsequently, the

probabilistic completeness of RRT-connect (Kuffner and M

LaValle, 2000) was inferred. Property 3.1 establishes the

probabilistic completeness of the proposed algorithm, multi-

RRT-connect.

PROPERTY 3.1. For a given triplet representing a feasible path

planning problem (ps, Cfree, Pg), the probability of discovering a viable
solution is delineated as Equation 5.

lim
n→∞

P( ∃ pg ∈ Vmulti−RRT−connect
n ∩ Pg ,  ps is connected to

n

pg ∈ Pgg) = 1:

(5)

As the iteration count n approaches infinity, the probability of

discovering a feasible solution, provided it exists, converges to one.

PROOF. To establish the above theorem, we present the

following three arguments: (1) The tree generated randomly

through multi-RRT-connect must contain psamong its nodes.

Furthermore, The goal node pgneeds to be contained within the

specified set of target goal nodes Pg. This condition can be expressed

as s(0)multi−RRT−connect = ps and s(1)multi−RRT−connect = pg ∈ Pg, which

aligns with the criteria of RRT-connect; (2) The random trees

generated by the multi-RRT-connect algorithm, similar to those

in RRT-connect, are connected. Specifically, whenever a node is

randomly sampled, it becomes connected to its nearest neighbour
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node within the particular tree selected for growth by the multi-

RRT-connect method; (3) The multi-RRT-connect algorithm

specifies the goal node from the set of desired goals Pg.

Consequently, with infinite random sampling, the probability that

the multi-RRT-connect algorithm generates a random tree reaching

the target region approaches one.

Multi-RRT-connect internally employs distinct space-filling

trees, each of which fulfills the properties of a classic RRT tree.

The algorithm alternates and independently expands each tree,

ensuring that both trees satisfy criterion 5. Given the preceding

reasoning, we can demonstrate that multi-RRT-connect is capable

of discovering a viable path for the specified path planning problem

and converging to a probability of 1 as the sample size grows

indefinitely. Therefore, multi-RRT-connect guarantees

probabilistic completeness.

PROPERTY 3.2. When it comes to planning a path for an ASV

travelling from a given start point ps to a specified goal point pg, the

multi-RRT-connect algorithm has shown a time complexity of O

(nlogn) and a space complexity of O(n), enabling the swift

determination of a collision-free route between the origin and the

intended destination.

PROOF. The multi-RRT-connect method is based on the RRT-

connect algorithm. The key elements of the algorithm comprise

sampling and searching for the nearest tree (Tparentand Tnear),

establishing local connections between Tparentand Tnear , and

updating the set of local trees T . Let ndenote the overall iteration

counts, and let trepresent the size of T . In every iteration of the

algorithm, the sampling operation is simple and can be completed

in time O( nt ). The search for Tparentand Tnearrequires a time cost of

O(log  nt )and O(tlog  nt ), respectively. Additionally, the local

connection process between Tparentand Tnearexhibits a time

complexity of O( nt log 
n
t ), mirroring that of the classic RRT-

connect approach. The computational complexity of the path-

planning process with multi-RRT-connect is characterized by O(t(

O( nt ) + O(log  nt ) + O(tlog  nt ) + O( nt log 
n
t ))), w h i c h c a n b e

approximated as O(nlog n). Therefore, the time complexity of the

multi-RRT-connect algorithm is generally limited by O(nlog n).

Given a fixed total number of sampling nodes, denoted as n, the

analysis of space complexity for the multi-RRT-connect algorithm

entails summing up the memory needs of every node and edge. This

computational process results in Vj j + Ej j = n + (n − 1) = 2n − 1.

As a result, the space complexity of the multi-RRT-connect

algorithm is concisely expressed as O(n).

Kuffner et al. (Kuffner and M LaValle, 2000) state that the time

complexity of RRT-connect is O(n log n). The mathematical analysis

we conducted onmulti-RRT-connect reveals that its time complexity is

still comparable to the original RRT-connect. The proposed method

excels in quickly identifying narrow passages, thereby significantly

reducing the value of n required to achieve similar optimality levels

compared to RRT-connect. This capability improves the convergence

speed of path-planning algorithms, particularly in environments with

confined regions. Comprehensive experimental results supporting

these findings are illustrated in Section 4.
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4 Simulation and analysis

This section presents the experimental findings, which

demonstrate the viability and energy efficiency of our planning

method in various scenarios. The simulations were all carried out

using Microsoft Visual C++ 2022, without relying on external

numerical libraries. To ensure consistency and reproducibility in

the study, all tests were executed on a system furnished with a 2.50

GHz AMD Ryzen 9 CPU and accompanied by 16 GB of RAM.
4.1 Simulation settings

In this section, we begin by introducing a rigorous criterion for

defining the narrow regions. For a given region R, if the proportion

of free space to obstacle space falls below a specified threshold ∈,

denoted as Equation 6, then the region is considered a narrow

region.

 
R∩Cfreej j
R∩Cobsj j < ∈ (6)

Quantitatively speaking, supposing the presence of a hyper-

spherical region SR(pc,r) centered at node pccontaining n nodes,

denoted by P = {p1,p2,…,pn}. A pair (ACi,SCi) is employed to denote

the extension status of node pi, where ACiand SCirespectively

represent the attempted extension count and successful extension

counts. The blocking rate BRi (Zhou et al., 2023), as defined in

Equation 7, represents the degree of obstruction experienced by a

node pi. A lower value of BRiindicates a more difficult extension for

node pi, suggesting a more intricate narrow environment.

 BRi =
SCi
ACi

(7)

Furthermore, we can define a metric, regional complexity

(REC), as depicted in Equation 8. This metric quantifies the

average level of node extension obstruction within the vicinity of

pc. A lower REC value signifies a greater prevalence of obstacles,

suggesting an increased likelihood of the region being classified as

narrow.

 REC = (o
n

i=1
BRi)=n (8)

In order to showcase the effectiveness of our suggested

approach, we applied it to four benchmark scenarios, which are

outlined in detail in Figure 9. These scenarios exhibit differing levels

of region complexity (REC), where some present more significant

challenges compared to others. For each benchmark, we conducted

comparative analyses against the most pertinent existing methods

listed below.
Fron
1. PRM + Gaussian sampling (Ref (Boor et al., 1999).), which

incorporates the collection of landmark points located near

the edges of obstacles. By meticulously selecting the step

size s, it becomes possible to sample a larger number of

landmarks around obstacles, thereby facilitating expedited

narrow passage identification.
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2. PRM + RBB sampling (Ref (Sun et al., 2005).) creates a road

marking point in free space that depends on three collision

detections for precise localization of narrow areas.

3. RRT-connect (Ref (Kuffner and M LaValle, 2000).), which

is a variation of the rapidly-exploring random tree (RRT)

approach, shows effectiveness in maneuvering through

tight spaces. This is achieved through dual-sided

exploration towards the central region, surpassing the

performance of the traditional RRT approach.

4. LGM-BRRT* (Ref (Shu et al., 2019).) which integrates an

enhanced bridge-test technique with a locally guided novel

search strategy to tackle path planning challenges in

clustered environments featuring narrow passages.
To address the inherent unpredictability of sampling-based

methods, we performed 50 trials for each benchmark. For each

trial, we recorded the average computation time, path length, and

success rate in navigating narrow environments.
4.2 Performance

Table 1 presents a comprehensive performance comparison of

five path planning methods across diverse map benchmarks with

varying regional complexity (REC). The metrics evaluated include

average time (in seconds), average path length, and success rate (%).

Our proposed method demonstrates superior performance across

all benchmarks. It consistently achieves a 100% success rate,

indicating its robustness in navigating complex environments.

Notably, our method exhibits the lowest average execution time,

ranging from 0.091 to 0.118 seconds, highlighting its efficiency.

While the average path length varies across maps, it remains

competitive with other methods. In contrast, PRM + Gaussian

(Boor et al., 1999) and PRM + RBB (Sun et al., 2005) exhibit

significantly higher execution times, often exceeding several

seconds. Although PRM + Gaussian maintains a high success

rate, PRM + RBB demonstrates lower success rates in certain

benchmarks. Both methods also yield longer path lengths

compared to our approach. RRT-connect (Kuffner and M

LaValle, 2000) achieves a 100% success rate and relatively low

execution times, comparable to our method. However, it produces

significantly longer path lengths, indicating a potential trade-off

between speed and optimality. LGM-BRRT* (Shu et al., 2019) also

maintains a 100% success rate and generates competitive path

lengths. However, its execution times are considerably higher

than our proposed method, suggesting a higher computational

cost. Overall, our method offers a favorable balance between

efficiency, path optimality, and robustness.

Its low execution times and high success rates make it a

promising candidate for real-time applications in complex and

dynamic environments.
4.2.1 Sampling evaluation
In the pre-processing stage of the method, we implement a

progressive sampling strategy to swiftly identify narrow regions that
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critically affect the subsequent path planning process, utilizing the

multi-RRTconnect algorithm. In this section, we compare

representative sampling strategies, including simple random

sampling, Gaussian sampling, and RBB sampling, as depicted in

Figure 10 and summarized in Table 2.

Based on the findings shown in Table 2, it is evident that to

achieve roughly 90 points in narrow areas, we need to generate a

total of 200 sampled points using our method. Moreover, the

average sampling time per point within these narrow regions is

remarkably low, at only 0.005ms. In contrast, Gaussian sampling

yields 74 points in the same narrow regions but requires an average

sampling time of 0.007ms. While it is worth noting that all points

obtained using RBB sampling are within the confined regions, the
Frontiers in Marine Science 13
average sampling time per point in this case is significantly higher,

at 0.352ms. This value is approximately 70 times greater than the

average sampling time achieved by our method. Gaussian sampling

and RBB sampling necessitate two and three collision tests per

sample in narrow passages, respectively, making these methods

particularly time-consuming. This high computational demand

indirectly contributes to the low convergence of path planning

methods based on these sampling strategies.

4.2.2 Evaluation of different narrow levels
We evaluate the scenarios characterized by differing degrees of

regional complexity (REC), ranging from 0.006 to 0.23. A lower REC

value indicates a higher probability of the region being classified as
FIGURE 9

Four maps depicting varying degrees of regional complexity (REC) are displayed to demonstrate the efficacy of the suggested approach in
constricted areas. Yellow and red spheres denote the starting and destination points, respectively, whereas the blue areas signify the existence of
tight corridors, as determined by Equation 7. (a, b) represent the single-channel scenarios, while (c, d) correspond to the multichannel scenarios.
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narrow, whereas a higher REC value suggests the region is more likely

to be classified as wide. We performed a comparison of the

aforementioned elegant methods in the same scenario but with

varying degrees of narrowness, as illustrated in Figure 11. Based on

our results, the time performance advantage becomes increasingly

pronounced as the metric REC decreases. For example, when REC =

0.23, our method requires only 0.12 seconds to generate a path with a

length of 2138, whereas the RRT-connect algorithm needs 0.34

seconds to generate a path of length 2469. When the scenario is set

with an extremely narrow metric where REC is 0.006, the RRT-

connect method takes 3.72 seconds to generate paths of length 2516.

Our method only takes 0.39 seconds, approximately one-tenth of the

time required by RRT-connect, to generate a short path of length
FIGURE 10

Visualization of Sampling Results. Here, N narrowrepresents the number of sampling points within narrow regions, and Tavgdenotes the average
sampling time per point within these regions. (a) Random sampling: N narrow = 4, Tavg= 0.001ms; (b) Gaussian sampling: N narrow = 74, Tavg= 0.007;(c)
RBB sampling: N narrow = 200, Tavg= 0.352ms and (d) Prograssive sampling (Ours): N narrow = 92, Tavg= 0.005ms.
TABLE 1 A comparative evaluation of four related methods applied to diverse maps with different levels of regional complexity (REC).

Map Method Assessment Figure 9a Figure 9b Figure 9c Figure 9d

Ours

Average Time (s) 0.118 0.103 0.116 0.091

Average Length 1820 1578 1954 1591

success rate 100% 100% 100% 100%

PRM+Gaussian(Ref (Boor et al., 1999).)

Average Time (s) 4.781 3.265 4.004 4.256

Average Length 1832 1602 1996 1638

success rate 94% 96% 100% 98%

PRM+PBB(Ref (Sun et al., 2005).)

Average Time (s) 5.404 5.016 5.024 6.315

Average Length 1854 1610 2013 1600

success rate 86% 96% 98% 96%

RRT-connect(Ref (Kuffner and M LaValle, 2000).)

Average Time (s) 0.138 0.103 0.122 0.132

Average Length 2150 1864 2432 2049

success rate 100% 100% 100% 100%

LGM-BRRT*(Ref (Shu et al., 2019).)

Average Time (s) 3.451 4.036 4.789 5.053

Average Length 1731 1503 1883 1545

success rate 100% 100% 100% 100%
Bold font indicates that the method achieves the best performance on the corresponding metric among all methods.
TABLE 2 Sampling performance statistics.

Assessment
Method N total N narrow Tavg

Ours 200 92 0.005ms

Simple random sampling 200 4 0.001ms

Gaussian sampling 200 74 0.007ms

RBB sampling 200 200 0.352ms
We compare three elegant sampling methods using three detailed criteria.N totalrepresents the
total number of sampling points, while N narrowdenotes the number of sampling points
specifically within narrow regions. Additionally, Tavgis defined as the average sampling time
per point within these narrow regions.
Bold font indicates that the method achieves the best performance on the corresponding
metric among all methods.
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2316. Clearly, our method exhibits a significant advantage in narrow

spaces, especially under extremely narrow conditions.

Furthermore, in our study involving 50 trials on the map with an

exceptionally narrow level REC = 0.006, as illustrated in Figure 11, both
Frontiers in Marine Science 15
the PRM method utilizing Gaussian sampling and RBB sampling

demonstrated an approximate 80% failure rate in identifying a feasible

path between specified start and goal points. In contrast, our method

consistently found paths successfully in all 50 trials. This characteristic
FIGURE 11

We evaluated the same scenario characterized by varying degrees of narrowness, quantified by REC values of 0.23, 0.16, 0.09, and 0.006,
conducting 50 trials for each case. The comparison methods included PRM with Gaussian sampling (b1∼b4), PRM with RBB sampling (c1∼c4), RRT-
connect (d1∼d4), and our proposed method (a1∼a4). In this context, S represents the success rate, L denotes the average path length, and T
indicates the average time cost.
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enhances the popularity of the proposed algorithm in the path-planning

process within marine environments that contain narrow passages.
4.3 Quantitative comparison

In this part, we carry out a comparison between our method and

four other elegant methods in the field that resemble ours,

highlighting the distinct advantages of our approach.

4.3.1 Comparison to Boor et al.’s work
They (Boor et al.,1999) introduced a path planning algorithm

that builds a graph by randomly sampling points in the configuration

space C, assessing their feasibility, and linking them to create a

roadmap of feasible paths. Gaussian sampling enhances this process

by generating sample pairs from Gaussian distributions, thereby

increasing the probability of placing nodes in crucial areas such as

narrow passages. Nevertheless, Gaussian sampling often generates

numerous redundant sampling points concentrated near the

boundary of obstacles rather than within the narrow passages

themselves. Additionally, each sampling requires two collision tests,

which reduces overall sampling efficiency. In contrast to Gaussian

sampling, our progressive sampling fully utilizes obstacle information

and requires only one collision test to determine each sampling point.

As shown in Figure 12, it takes 4.0 seconds to generate a path with

sampling 48 points in the narrow regions using 0.16 seconds. In

contrast, our proposed method achieves a shorter feasible path in

only 0.12 seconds by sampling 121 points in the narrow regions using

0.003 seconds.
4.3.2 Comparison to Sun et al.’s work
This paper (Sun et al., 2005) introduces the PRM method with

the RBB (Randomized Bridge Builder) sampling strategy to enhance
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the path-planning process by prioritizing sample generation in

narrow passages. The RBB strategy operates by establishing

“bridges” between random points: initially, two random points are

sampled, and if both fall within obstacles, a midpoint is computed.

This midpoint is then validated for free space and incorporated into

the roadmap. By augmenting sample density in crucial regions, RBB

sampling significantly enhances the success rate of PRM. However,

this method may face challenges in effectively navigating narrow

passages or areas with high obstacle density due to its dependence on

random sampling. The randomized Bridge Builder sampling strategy

can be computationally expensive and inefficient in environments

with narrow passages, as it may necessitate a large number of samples

to discover valid paths. For further details, kindly consult Table 1.
4.3.3 Comparison to Kuffner et al.’s work
Kuffner and colleagues (Kuffner and M LaValle, 2000) have

introduced the RRT-connect algorithm, an enhanced variant of the

rapidlyexploring random tree approach, which is particularly adept

at finding pathways between an initial point psand a target point

pgin constrained environments. The algorithm initializes two trees,

Tsrooted at psand Tgrooted at pg, and iteratively expands these trees

by randomly selecting points in the configuration space Cand
extending towards them. Notably, RRT-connect demonstrates

efficacy in promptly navigating through narrow passages by

leveraging dual-sided exploration towards the central region, thus

outperforming the traditional RRT approach. Despite its

advantages, the RRT-connect algorithm exhibits inefficiency in

detecting confined regions when compared to our proposed

method. As illustrated in Figure 2, our method requires only

0.091 seconds, including 0.007 seconds for identifying narrow

regions, to generate a path of 1298 length. In contrast, the RRT-

connect algorithm lacks a specialized mechanism for locating

narrow regions, resulting in increased time expenditure for
FIGURE 12

We evaluated the performance of our proposed method shown in subfigure (b) against PRM method utilizing Gaussian sampling shown in subfigure
(a). Our approach has a superior ability to detect points in narrow regions more efficiently, significantly accelerating algorithm convergence.
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detection and path search, which takes 0.314 seconds time and

produces a path of 1448 length.

4.3.4 Comparison to Shu et al.’s work
They (Shu et al., 2019) presented the LGM-BRRT* approach, a

locally guided multiple bi-RRT* method that refines solutions via an

enhanced bridge-test and a search strategy grounded in local guidance.

This method accelerates success rates and optimizes memory usage

compared to bidirectional RRT* (Ge et al., 2021) while maintaining

ease of implementation. Extensive evaluations across various scenarios

have verified its success rates. Results indicate that LGM-BRRT* is

particularly advantageous for path planning in environments

characterized by clustered regions and narrow passages. In contrast

to our proposed method, LGM-RRT* exhibits challenges in efficiently

locating an initial solution within a clustered environment featuring

narrow passages. Furthermore, the reliance on bridge-test to identify

narrow regions can impede algorithmic convergence. For

comprehensive details, please refer to Table 1.
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4.4 Simulation experiments on the ROS
platform

The limitations in equipment availability hindered our ability to

apply the algorithm in marine environments characterized by narrow

regions. Nonetheless, we validated the algorithm’s performance within

a simulated narrow-region environment. This study carried out

simulation experiments utilizing the Rviz visualization tool within

the robot operating system (ROS). The initial step involved setting

up a robot simulation environment in Gazebo, where the turtlebot

model equipped with a 360-degree scanning sonar system was selected

as the simulated robot. Notably, the robot’s motion was constrained by

specific limits on its linear and angular velocities, defined as v∈ (0,5 m/

s] and w ∈ (−0.15,0.15 rad/s], respectively.

In the Rviz visualization tool as shown in Figure 13a, the

Gmapping algorithm was employed to construct the environment

map. The starting point was set at coordinates (258, 42, 0), and the

target point was defined at (256, 60, 0). The paths planned by the
FIGURE 13

The path planning procedures for navigating narrow passages were evaluated within the robot operating system (ROS) framework shown in subfigure
(a). Operating under constraints on the robot’s linear and angular velocities, the proposed method demonstrated superior performance shown in
subfigure (c), achieving a significantly shorter path length of 612 and completing the task in just 84.81 seconds. In comparison, the classic RRT-Connect
algorithm required 118.46 seconds to complete the same task and produced a notably longer path with a length of 706 shown in subfigure (b).
frontiersin.org

https://doi.org/10.3389/fmars.2025.1555262
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Meng et al. 10.3389/fmars.2025.1555262
classic RRT-connect algorithm were displayed in black, and those

generated by the proposed algorithm were shown in red. Figure 13b

presents the path created using the classic RRT-connect algorithm

as the planner, whereas Figure 13c illustrates the path produced by

the proposed algorithm. The simulation results demonstrate that

the proposed algorithm is notably more efficient in path planning,

particularly in navigating narrow passages, producing shorter paths

that allow the robot to reach its destination more quickly. These

findings substantiate the proposed method’s potential for efficient

application in real-world scenarios.
5 Conclusion

This paper tackles the issue of ASV path planning in

unstructured ocean settings, with a particular emphasis on

navigating through narrow waterways. To tackle these

complexities, we introduced an innovative approach that

combines progressive sampling and point cloud clustering to

efficiently identify narrow passages within the configuration space

C. Our proposed method, called multiple RRT-connect, builds upon

the traditional RRT-connect by growing multiple random trees

based on the identified sampling points. This strategy enhances

navigational precision and efficiency, allowing for the rapid

identification of feasible paths between start and goal points. As

the sample count increases, these random trees expand and

interconnect to form a complete path, which is subsequently

refined and optimized to produce significantly shorter trajectories.

By conducting thorough simulations and comparing our approach

to cutting-edge methods, we’ve showcased the outstanding

performance of our algorithm. The results underscore its benefits

in path construction success, computational speed, and

overall optimization.

Future work. In our forthcoming research, we intend to

comprehensively incorporate ASV kinematic constraints to

improve both path feasibility and energy efficiency. Specifically,

we plan to design an advanced controller capable of simulating the

path-tracking process of real-world ASVs, thereby integrating

motion planning with precise control in our next phase. In

addition, we aim to embed dynamic ASV models to construct a

more realistic framework that accurately reflects physical and

kinematic limitations. Furthermore, the algorithm’s practicality

will be enhanced by incorporating the inherent physical and

hydrodynamic characteristics of ASVs into simulation studies,

alongside refining path optimization to adhere to stringent

maritime safety standards. We will also address the challenges

posed by multi-target missions, dynamic obstacle management,

and harsh oceanic conditions to thoroughly evaluate adaptability

and robustness. Collision risks will be quantitatively assessed and

balanced with efficiency objectives, while rigorous validation of

prototypes in near-real or actual sea environments will underpin

reliability and drive continual improvements in autonomous

maritime applications.
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