AUTHOR=Meng Wenlong , Ku Rongdian , Pu Yanbo , Shi Xiaoxiao , Gong Ya TITLE=Efficient collision-avoidance navigation strategy for autonomous surface vehicles in unstructured and constricted marine environments JOURNAL=Frontiers in Marine Science VOLUME=Volume 12 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2025.1555262 DOI=10.3389/fmars.2025.1555262 ISSN=2296-7745 ABSTRACT=Compared to structured ocean environments, unstructured ocean environments are inherently more complex. In such unstructured environments, the presence of narrow waterways poses unique navigational hurdles for autonomous surface vehicles (ASVs) due to their restricted connectivity. Current path planning algorithms designed for unstructured environments, particularly those characterized by narrow spaces, often face difficulties in efficiently exploring the target area while producing high-quality paths. In this study, we tackle the aforementioned complexities by incorporating progressive sampling and point cloud clustering, which jointly expedite the detection of constrained waterways in unstructured marine environments. More specifically, we generate multiple random trees from these sampling points, thereby bolstering both navigational accuracy and overall computational efficiency. Building upon these core techniques, we introduce a novel extension of the traditional rapidly-exploring random trees (RRT) connect algorithm—referred to as multiple RRT-connect (multi-RRT-connect)—aimed at swiftly determining a viable path between prescribed start and goal coordinates. As the number of samples expands, the random trees gradually enlarge and interlink, mirroring the functionality of classic RRT-connect and ultimately forming a continuous corridor. Subsequently, the derived path undergoes iterative refinement and optimization, culminating in a significantly reduced trajectory length.We subjected the proposed algorithm to rigorous testing through comprehensive simulations alongside meticulous comparisons with established state-of-the-art solutions. The results highlight the algorithm’s distinct advantages across multiple dimensions such as path construction success, computational efficiency, and trajectory refinement quality, thereby underscoring its potential to advance autonomous navigation in challenging maritime settings.