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Underwater images captured by Remotely Operated Vehicles are critical for

marine research, ocean engineering, and national defense, but challenges such

as blurriness and color distortion necessitate advanced enhancement

techniques. To address these issues, this paper presents the CUG-UIEF

algorithm, an underwater image enhancement framework leveraging edge

feature attention fusion. The method comprises three modules: 1) an

Attention-Guided Edge Feature Fusion Module that extracts edge information

via edge operators and enhances object detail through multi-scale feature

integration with channel-cross attention to resolve edge blurring; 2) a Spatial

Information Enhancement Module that employs spatial-cross attention to

capture spatial interrelationships and improve semantic representation,

mitigating low signal-to-noise ratio; and 3) Multi-Dimensional Perception

Optimization integrating perceptual, structural, and anomaly optimizations to

address detail blurring and low contrast. Experimental results demonstrate that

CUG-UIEF achieves an average peak signal-to-noise ratio of 24.49 dB, an 8.41%

improvement over six mainstream algorithms, and a structural similarity index of

0.92, a 1.09% increase. These findings highlight the model’s effectiveness in

balancing edge preservation, spatial semantics, and perceptual quality, offering

promising applications in marine science and related fields.
KEYWORDS

underwater image enhancement, edge feature attention fusion, spatial crossattention,
multidimensional perception optimization, attention-guided edge feature fusion
1 Introduction

Underwater images, captured in aquatic environments using remotely operated

vehicles (ROVs), are crucial for marine exploration, underwater archaeology, and fishery

monitoring, providing visual representations of underwater scenes and objects. However,

underwater imaging environments are complex. The images obtained by ROVs are limited
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by aggravated color distortion, objects with the same color in the

background, and difficulty in edge distinction.

Underwater image enhancement (UIE) improves the quality of

underwater images by mitigating their characteristic degradation

features and bringing images closer to their true color and clarity, as

observed in normal lighting environments. This enables more

effective extraction and utilization of valuable features (Alsakar

et al., 2024). High-quality underwater image data help reveal

unknown marine life and geological features in the deep sea and

provide critical information for biodiversity protection (Nazir and

Kaleem, 2021), marine environmental monitoring (Wang et al.,

2007), and resource sample collection (Mazzeo et al., 2022).

UIE techniques can be divided into two categories: traditional

and deep learning-based methods. Traditional UIE techniques

include color correction and image restoration methods. Color

correction methods such as color balancing can improve color

distortion but cannot address blurring and detail loss. Image

restoration methods that incorporate physical models, such as

light transmission or dehazing models, improve image clarity and

optical effects more effectively (Hu et al., 2022). Common color

correction methods often perform pixel-level restoration of image

colors. For instance, Banik et al. (2018) used gamma correction in

the value channel of the hue, saturation, value space to enhance low-

light image contrast but introduced problems such as over-

enhancement and halos. Garg et al. (2018) applied CLAHE and

percentile methods to enhance underwater images and obtained

good results in specific scenes but limited improvement in certain

water environments. Image-restoration methods typically integrate

physical models. Zhu (2023) proposed an enhancement algorithm

based on graph theory that improves contrast and color using

CIELab and red, green, blue (RGB) spaces combined with CLAHE.

However, owing to the independent operations in each color space,

the method lacks robustness in complex scenes. Drews et al. (2016)

enhanced blue-green channels using a light propagation model but

introduced red color distortion. Xiong et al. (2020) applied a linear

model and nonlinear adaptive weighting strategy based on the

Beer–Lambert law (Swinehart, 1962) to adjust underwater image

colors. Recent studies have developed enhanced methods based on

conventional algorithmic frameworks to address imaging

degradation in specific scenarios. Zhang et al. (2025) proposes a

cascaded restoration algorithm grounded in quadtree search-guided

background region classification and cross-domain synergy, which

integrates dynamic channel discrepancy compensation, S-curve-

optimized homomorphic filtering, and chromatic space fusion,

thereby significantly improving underwater image fidelity and

object recognition robustness. Li et al. (2025) proposes a cascaded

restoration algorithm integrating quadtree search-guided

background region classification and a cross-domain

collaboration mechanism, which effectively addresses color

distortion and detail blurring in underwater optical imaging

through dynamic channel discrepancy compensation and S-curve-

optimized homomorphic filtering, thereby significantly enhancing

object detection robustness and visual task performance. However,

the methods do not perform well with foggy and low-light

underwater images. In general, traditional methods based on fixed
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underwater priors perform well in specific scenes but are limited by

the unpredictability of underwater environments and thus lack

general applicability.

Deep learning-based UIE methods use large datasets to train

models that adaptively handle various problems, such as color

distortion, blurring, and low contrast. These methods can restore

image details more accurately and adapt to diverse underwater

scenarios. Among the deep learning methods, generative adversarial

networks (GANs) have gained prominence in the early stages of

UIE for their ability to address limited data availability (Goodfellow

et al., 2014). Li et al. (2017) proposed WaterGAN, which corrects

underwater image colors by training on both aerial and underwater

real images. However, the aerial image model introduces unrealistic

background colors. Fabbri et al. (2018) proposed UGAN, which

uses CycleGAN generated paired datasets and a Pix2Pix-like

structure for UIE. However, CycleGAN generates artifacts under

certain scenarios. Despite the requirement of high-quality training

data, their proposed method struggles with low-quality underwater

images. These methods effectively restore color but often face

challenges such as over-enhanced contrast, information loss,

instability, and convergence difficulties.

Convolutional neural network (CNN)-based methods (Wang

et al., 2021; Lyu et al., 2022; Yang et al., 2023) are particularly

effective for UIE tasks owing to their strong feature extraction

capabilities and nonlinear feature mapping, which enable them to

adapt to various underwater scenes. Wang et al. (2017) designed an

end-to-end CNN-based network for color correction and

deblurring by employing a pixel disturbance strategy to improve

model convergence speed and accuracy. However, their method

overfocuses on local features while neglecting the overall semantic

information, global color, and light–shadow relationships in the

image. Li et al. (2019) developed a paired underwater image

enhancement benchmark (UIEB) dataset and proposed Water-

Net, a CNN-based model that serves as a benchmark for CNN

applications in UIE. Li et al. (2020) trained their proposed UWCNN

on synthetic underwater images of various scenes, which resulted in

different model parameters. However, owing to the singularity of

the training data scenes, the model is overly sensitive to subtle

changes in underwater environments and thus, performs poorly.

Islam et al. (2020) proposed the UFO-120 dataset and a residual

nested CNN called Deep SESR, which has a multimodal objective

function for both enhancement and super-resolution of images.

However, the shared feature space in this model can cause

significant features from the super-resolution task to interfere

with the color performance of image enhancement. The

aforementioned CNN-based models have powerful feature-

learning capabilities and can adapt to complex underwater

environments; however, CNNs primarily extract features through

local receptive fields, which renders fully capturing global

information challenging. Consequently, enhanced images often

show a marked locality with coordination problems among

objects in complex underwater environments.

To address this limitation, several studies have used Swin

Transformers (Liu et al., 2021) for UIE. Sun et al. (2022)

enhanced the underwater image contrast by inputting images into
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a Swin Transformer following gamma and white balance

corrections. However, white balance and gamma correction

cannot fully resolve the complex problems of underwater images,

particularly in foggy and blurry scenes. Peng et al. (2023)

constructed a large-scale underwater image dataset and proposed

a channel multi-scale fusion transformer and spatial global feature

transformer to enhance severely attenuated color channels and

spatial regions. However, the sensitivity of different color spaces

to various colors varies, which degrades model stability in scenarios

with strong color contrast. Transformer architecture, with its

unique mechanisms and processing methods, has tremendous

potential and value as a primary framework for UIE. Zhu et al.

(2024) proposed an adaptive multi-scale image fusion cascaded

neural network that integrates polarization-based multi-

dimensional features to improve image enhancement quality

under low-quality imaging conditions. Concurrently, the team

establishing a standardized evaluation framework for

polarization-aware visual restoration algorithms. Zhu et al. (2025)

proposed a Fourier-guided dual-channel diffusion network,

enhances underwater images via phase-based edge refinement and

amplitude mapping, coupled with a lightweight transformer

denoiser, outperforming leading methods in generalization and

visual quality on real underwater datasets. Wang et al. (2025)

proposed a SAM-powered framework for underwater image

enhancement, integrating precise foreground-background

segmentation, region-specific color correction, adaptive contrast

enhancement, and high-frequency detail reconstruction to mitigate

crosstalk and blurring, thereby significantly improving restoration

fidelity and visual quality. Considering that underwater images

exhibit inconsistent attenuation characteristics across different

color channels and spatial regions and that the object edges in

these images degrade, the proposed network focuses on these

characteristics to restore underwater image information and

achieve high-quality underwater image data.

The main contributions of this paper are as follows:
Fron
1. We propose a network model, CUG-UIEF, based on U-Net

and a multi-feature cross-fusion module, which greatly

improves the quality of underwater images.

2. We introduce a multi-feature cross-fusion module that

enhances the feature representation of images at different

scales, thereby improving the overall quality and accuracy

of the final output.

3. We evaluate the proposed CUG-UIEF model on the UIEB,

low-light and super-resolution underwater image (LSUI), and

U45 datasets and compared its performance with that of six

other mainstream models. The experimental results show that

CUG-UIEF achieves substantial improvements in the peak

signal-to-noise ratio (PSNR) and structural similarity index

(SSIM). The results also demonstrated excellent performance

in both underwater image quality metrics and underwater

color image quality assessments, indicating that the CUG-

UIEF effectively overcomes underwater environmental

interference and can be applied in related fields.
tiers in Marine Science 03
2 Proposed method

2.1 Network structure

The overall structure of the CUG-UIEF is shown in Figure 1; it

can be divided into three parts: an encoder, a multi-feature cross-

fusion module (DDEM), and decoder. The encoder converts the

input image into a deep feature representation. The decoder

gradually fuses the features and performs upsampling to

reconstruct an underwater image. In this study, the multi-scale

features extracted by the encoder were input into the DDEM, and its

output was fused with the upsampling results at each stage of the

decoder. An enhanced underwater image was obtained after the

final upsampling step.

Encoder stage: This module extracts multi-scale features

through the Swin Transformer layer and performs downsampling

to capture the details and global information in the image. The deep

feature representation provides rich semantic information for the

subsequent DDEM module and decoder, which facilitates the final

image reconstruction and enhancement.

DDEM module: Uses the Sobel operator to extract edge

information from the multi-scale features extracted in the four

stages of the encoder and inputs the edge and multi-scale features

together into the channel cross-attention (CCA) module to fuse the

feature information across channels. Subsequently, the output of the

CCA is passed to the spatial cross-attention module to capture the

long-distance dependencies among the multi-scale features.

Following layer normalization and GeLU activation, the final

features are sent to the decoder to gradually restore the spatial

resolution and reconstruct the enhanced image.

Decoder stage: The decoder first upsamples the output of the

final stage of the encoder and inputs it into the Swin Transformer

block. Subsequently, the output of the DDEM is fused with the

upsampled results of each decoder stage. The decoder restores the

spatial resolution through gradual upsampling to reconstruct an

enhanced image. The parameters of the Swin Transformer layer are

adjusted at this stage to maintain the integrity of the features,

whereas the upsampling layer is used to restore the size of the

feature maps. The final upsampling restores the features to the

resolution of the original input and projects them onto the RGB

channels through the convolutional layer to generate an enhanced

underwater image.
2.2 Multi-feature cross-fusion module
(DDEM)

The proposed multi-feature cross-fusion module fuses the

features extracted from the four multi-scale encoder stages

(Figure 2). It generates enhanced feature representations and

connects these enhanced features to the corresponding decoder

stages. The module can be further divided into attention-guided

edge fusion and spatial information enhancement modules.
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The specific operations performed by the module are as follows:

The edge features are extracted from the multi-scale features output

by the encoder and then input layer by layer together with the

multi-scale features into the edge fusion and spatial information

enhancement modules. Attention maps are constructed by fusing

the features of the multi-scale encoder, enabling them to capture

long-distance dependencies across different stages to achieve more

accurate and comprehensive modeling of complex scenes and

dynamic changes.

Through this series of operations, the output results are processed

by layer normalization and subjected to nonlinear mapping via the

GeLU activation function to establish dynamic correlations between

the feature maps at different levels and edge feature maps.
Frontiers in Marine Science 04
2.2.1 Attention-guided edge fusion module
This module promotes information interactions between features

at different levels in the channel dimension. In this study, the edge

features are gradually fused in multiple stages. The weights of the

weighted edge features are adjusted using CCA to ensure that detailed

information, such as colors and textures, can be accurately transmitted.

Upon being output to the decoder stage, as the decoding process

proceeds, the weighting coefficients are dynamically adjusted based on

the local information of the image; thus, the edge features are enhanced

in detailed areas while minimizing interference in the background or

smooth regions. In this manner, the edge information is strengthened

in key areas (such as object boundaries and detailed parts), while the

global consistency and natural appearance of the image are preserved.
FIGURE 2

Proposed multi-feature cross-fusion module. (A) Attention-guided edge fusion module; (B) Spatial information enhancement module.
FIGURE 1

Architecture of the proposed network, featuring an encoder–decoder structure enhanced with the addition of a multi-feature cross-fusion module.
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The Sobel operator is applied for edge feature extraction. It

identifies edge information by calculating the gray gradient of the

area around each pixel in the image. The core of this algorithm lies

in its elaborately designed convolution kernels, which perform

convolution operations on the horizontal and vertical features of

the image, thereby effectively capturing the edge changes in the

image in different directions.

The change in the x-axis direction in the Sobel operator is

Gx =
−1   0 þ 1
− 2   0 þ 2
− 1   0 þ 1

 !

The change in the y-axis direction is

Gy =
−1 − 2 − 1
0   0   0

þ 1 þ 2 þ 1

 !

Approximate gradient values of the image in the horizontal and

vertical directions can be obtained by performing convolution

operations on the image using these two sets of convolution

kernels. The gradient magnitude of each pixel point can then be

obtained by calculating the square root of the sum of the squares of

these two gradient values (or the sum of their absolute values) to

determine the intensity of the edge.

G =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2
x + G2

y

q
The Sobel operator extracts edge information across different

scales, performs layer normalization along the channel dimension,

and conducts weighted fusion with the multi-scale feature output

from the encoder stage.

fusedfeature = a · edgefeature + (1 − a) · encoderfeature

Subsequently, the fused features automatically adjust the

attention distribution by calculating the similarity between

channels to strengthen key features in the image. At this stage,

layer normalization is first performed on each token to stabilize the

training process. Subsequently, all tokens are concatenated along

the channel dimension to create unified keys and values while

retaining each token as an independent query. The linear projection

in the self-attention mechanism is replaced with a 1 × 1 depthwise

convolutional projection. This enables cross-channel information

integration and interaction and enhances its nonlinear

characteristics. The process formula is as follows:

K,V = conv1D concat(T1,T2 … Ti)ð Þ

Qi = conv1D(T1,T2 … Ti)

CCA(Qi,K,V) = Softmax(QT
i KS)V

T

Qi,K , and V are matrices that represent the queries, keys,

and values, respectively, which are obtained by concatenating

the tokens along the channel dimension. S is the scaling factor.

Once the output of the CCA is connected to the original tokens,

the enhanced features are input into the spatial information

enhancement module.
Frontiers in Marine Science 05
2.2.2 Spatial Information Enhancement Module
This module dynamically adjusts the feature weights of different

regions of the image by calculating the correlations among different

spatial positions, thereby enhancing the key features in the image.

Edge features provide essential structural cues for the image,

enabling the model to focus more on the detailed areas of the

image while reducing attention allocation to smooth areas, thus

avoiding excessive enhancement. Combined with enhanced multi-

scale features, the module can capture the details of the image at

different levels, effectively restoring the detail loss in underwater

images caused by light attenuation and blurring. At this stage, all the

tokens are first subjected to layer normalization along the channel

dimensions and then concatenated. In contrast to the edge-fusion

module, this module uses concatenated tokens as queries and keys;

each token is used as a value. Moreover, 1 × 1 depthwise

convolutions are also used for projection onto the queries, keys,

and values. This design enables the spatial information

enhancement module to focus on information integration in the

spatial dimension, thereby complementing the edge fusion module

to collaboratively establish a comprehensive and enhanced feature

representation. The process is defined by the following formulas:

K,Q = conv1D concat(T1,T2 … Ti)ð Þ

Vi = conv1D(T1,T2 … Ti)

SCA(Qi,K,V) = Softmax(QTKS)VT
i

Q,K , and Vi are matrices that represent queries, keys, and

values, respectively. S is the scaling factor.

To ensure that the generated enhanced features can effectively

serve the decoder, the following processing steps are adopted. First,

layer normalization and the GeLU activation function are applied to

the output to stabilize the features and introduce nonlinear

transformations. Subsequently, through a combined sequence of

an upsampling layer, a 1 × 1 convolution, batch normalization, and

GeLU activation function, necessary size adjustments and

enhancements are made to the features, which are fused with the

features in the decoder stage. The upsampling layer is used to

restore the spatial resolution of the feature maps, ensuring that the

details of the image can be better reconstructed in the decoding

stage. The 1 × 1 convolution is used for channel compression and

feature fusion, enhancing the expressive ability of the model, while

batch normalization ensures the consistency of features among

different layers. The GeLU activation function introduces

nonlinear transformations that aid in handling complex feature

relationships. This method ensures the continuity and consistency

of information and greatly improves the decoding efficiency and

performance of the entire network.
2.3 Loss function

We propose a multi-dimensional perceptual loss function for

training the CUG-UIEF to align the enhanced images with human

visual perception and improve detail reconstruction.
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1) Perceptual Loss.

Deep features capture high-level semantic information from

images. By comparing the feature maps of the two images in a

pretrained network, their perceptual similarity can be evaluated.

lper = x − yj j,
x represents the predicted image, and y represents the

real image.

2) Multi-scale Structural Similarity Loss.

Multi-Scale Structural Similarity (MSSSIM) is an image quality

assessment metric that evaluates brightness, contrast, and structural

features across multiple scales, providing a measure more aligned

with human visual perception.

lms−ssim = 1 −
YM
m=1

2upug + c1
u2g + u2p + c1

 !bm 2spg + c2
s2
p + s2

g + c2

 !gm

Here, M represents different scales.   ug and up represent the

means of the predicted image and ground truth, respectively. sp and

sg represent the standard deviations between the predicted and real

images. spg represents the covariance between the predicted and

real images. bm and gm represent the relative importance constants

between the two items.   c1 and c2 are constants.

3) Charbonnier Loss.

The Charbonnier loss function is a variant of the L1 loss

function. It prevents the denominator from reducing to zero by

introducing a small positive number e and ensures smoother

changes when the gradient is large. It maintains the sharpness of

an image while reducing noise.

lcharbonnier =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 +∈2

p

X represents the difference between the predicted image and

ground truth. e is a small posit ive number used for

numerical stability.

Finally, the loss function is expressed as

l = l1lper + l2lms−ssim + l3lcharbonnier :

Hyperparameters l1,   l2, and l3 determine the balance

between the overall performance and the local texture details.

Following experimental analysis the parameters were set to 1, 2,

and 1, respectively.
3 Experiments and analyses

3.1 Experimental environment and
parameter settings

The proposed model was implemented using PyTorch 2.4.0. It

was trained on an NVIDIA RTX 2080Ti GPU without a pretrained

network. During the training process, the Adam optimizer was

adopted, and the initial learning rate was set to 0.0005, with the b
parameter pair being (0.9, 0.999). Training was performed for 700

epochs, and the number of samples in each batch was four.
Frontiers in Marine Science 06
3.2 Datasets

This study uses three datasets.
1. UIEB Dataset (Li et al., 2019): This dataset included 950

real underwater images. Among them, 890 images had

corresponding reference images, and another 60

underwater images without reference images were used as

the challenging data. In this study, 90 pairs of challenging

images in multiple scenes with corresponding reference

images from the UIEB were selected as the test set Test-

U90, and 60 images without reference images were used as

the test set Test-C60. The remaining images were divided

into training and validation sets at a 8:2 ratio. The training

data were enhanced using random cropping, size

adjustment, and random rotation.

2. LSUI Dataset (Peng et al., 2023): This is a large-scale

underwater image dataset that contains 5,004 underwater

images with reference images. It contains richer underwater

scenes. Forty-five images were selected from this dataset as

the test set, Test-L45. The remaining images were divided

into training and validation sets at a 8:2 ratio. The training

data were enhanced through random cropping, size

adjustment, and random rotation.

3. U45 Dataset: The U45 dataset is a publicly available

underwater image test dataset that contains 45 underwater

images in different scenes and involves underwater

degradation phenomena, such as color shift, low contrast,

and fogginess. Forty-five images were used as the test set,

Test-U45.
3.3 Evaluation metrics and comparative
algorithms

Reference Evaluation Metrics: To quantify the performance of

each model on the dataset with reference images, this study adopted

two measurement standards: PSNR and SSIM. These two indicators

help measure the similarity between the restored and reference

images. PSNR is an objective quality metric calculated based on the

mean squared error between the original image and the enhanced

image, with the unit of decibel (dB). In UIE, a higher PSNR value

indicates that the enhanced image has a smaller error than the

original image and, thus, better quality. SSIM is an index used to

measure the similarity between two images. It considers luminance,

contrast, and structural information, and its value ranges from –1 to

1. In UIE, the closer the SSIM value is to one, the more similar the

enhanced image to the original image in terms of structure,

luminance, and contrast, suggesting a higher image quality.

No-reference Evaluation Metrics: For the test sets of images

without reference images, we adopted three evaluation methods:

underwater color image quality evaluation (UCIQE), underwater

image quality measure (UIQM) and Underwater Ranker(URanker)
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(Guo et al., 2023). UCIQE focuses on the color density, saturation,

and contrast of images and uses a linear combination of these three

aspects as the quantitative form of color cast, blurring, and low

contrast. UIQM includes color (UICM), sharpness (UISM), and

contrast measurements (UIConM). As the scores of these methods

increase, the image processing results become more aligned with the

visual perception preferences of human beings.

Comparative Algorithms: The comparative algorithms adopted

in this experiment are representative algorithms among traditional

UIE methods and deep-learning-based UIE methods, which can

verify the effectiveness and advancement of the proposed method,

including the UIE algorithm based on color correction: Fusion

(Ancuti et al., 2012); UIE algorithms based on image restoration:

IBLA (Wang et al., 2013); HL (Berman et al., 2021); WWPF (Zhang

et al., 2023); CBLA (Jha and Bhandari, 2024); UIE algorithms based

on deep learning: UWCNN (Li et al., 2020), Shallow-UWnet (Naik

et al., 2021), USUIR (Fu et al., 2022), URSCT (Ren et al., 2022),

DiffWater (Guan et al., 2023).
3.4 Experimental results

All experimental results are presented with the best outcomes

bolded and the second-best outcomes highlighted in blue font. This

section first presents the test results of the model based on the UIEB

training set on the Test-U90 dataset. As indicated in Table 1, CUG-

UIEF outperformed the other algorithms in terms of the PSNR and

SSIM. Moreover, compared to the second-best performance, CUG-

UIEF achieved percentage gains of 8.41% and 0.1% in PSNR and

SSIM, respectively. This study also conducted a no-reference

evaluation comparison of Test-C60 and Test-U45. Table 2

presents all the statistical results. Both UIQM and UCIQE have

specific feature biases and are relatively sensitive to the contrast of

images. Therefore, results based on visual priors and physical

models can yield higher scores. Our experimental results align

with this conclusion. And the proposed method achieves the best

performance on the URanker evaluation metric, with an average

improvement of 12.21% over the second-best model. Therefore, the

results cannot indicate whether the processed images are the best in

all aspects. However, by combining the results of the two

parameters, the images performed well in terms of contrast and

color. CUG-UIEF obtained the second-best result among the

models that were used in the experiment, only lower than that of

the fusion method. Combined with the previous results, this shows

that the generalization ability and actual performance of the CUG-

UIEF are the best.
3.5 Comparative mechanism analysis of
algorithms

The fusion algorithm addresses underwater color cast and low-

contrast degradation through adaptive weight mapping, yet exhibits

critical limitations when confronting specific technical challenges. Its
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edge restoration capability deteriorates in low signal-to-noise ratio

(SNR) regions, producing blurred textures and artificial transitions

around fine structural details, while contrast optimization remains

suboptimal under non-uniform illumination caused by suspended

particulates. Furthermore, the water-quality-dependent input

generation mechanism demonstrates unstable color correction

performance across chromatic water types, particularly failing to

compensate for wavelength-specific absorption in turbid greenish

waters where waterborne noise amplifies color inconsistency along

depth gradients. These limitations stem from the algorithm’s inherent

constraints in decoupling overlapping degradation patterns and

adapting to spatially variant underwater optical conditions.

The IBLA algorithm decomposes images via luminance-

ordering error metrics and bright-pass filtering to separately

regulate reflectance and illumination, dynamically adjusting their

weights through dual-logarithmic transformations. While effective

for uniform scenes, the framework suffers from edge-texture

mismatches in areas with overlapping illumination-reflectance

gradients, where low-SNR conditions exacerbate erroneous

boundary segmentation and nonlinear illumination transitions

degrade fine details. The logarithmic weight adaptation further

struggles to resolve high dynamic range conflicts, causing halo

artifacts near specular highlights and contextual inconsistency in

shadowed low-contrast regions. These limitations arise from

inadequate noise-robust disentanglement of radiometrically

coupled components under complex degradation patterns.

The HL algorithm frames color restoration as a single-image

dehazing task by estimating attenuation ratios for the blue-red and

blue-green color channels, with a color distribution screening

mechanism to identify optimal parameter combinations. However,

this approach faces three critical limitations in addressing

underwater-specific degradation: Its unified attenuation coefficient

oversimplifies spectral interactions, failing to resolve edge blurriness
TABLE 1 PSNR and SSIM scores of different methods on the test set
Test-U90.

Method
TEST-U90

PSNR SSIM

Traditional Method

HL 14.8429 0.6497

IBLA 14.9395 0.6742

Fusion 21.1843 0.8639

CBLA 15.2359 0.6614

WWPF 18.5371 0.7062

Deep-Learning
Method

Sha-UWnet 17.4575 0.7174

UWCNN 15.4532 0.7560

USUIR 20.5514 0.8544

URSCT 22.5976 0.9171

Diff-Water 20.1567 0.8391

Ours 24.4952 0.9262
In the results, boldface indicates the best data and blue denotes the suboptimal data.
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caused by wavelength-dependent scattering anisotropy. The channel-

agnostic model amplifies noise in low-SNR scenarios, particularly in

red-dominated deep-water regions where backscatter varies

disproportionately. Linear color compensation ignores depth-

related contrast attenuation gradients, leading to inaccurate

recovery in shaded seabed areas with nonlinear illumination decay.

These simplifications fundamentally disregard the photometric

complexity of real underwater environments, where multi-band

light refraction and particulate scattering create spatially varying

attenuation patterns.

The color-balanced locally adjustable (CBLA) algorithm targets

underwater color distortion and contrast degradation through dual-

space hierarchical enhancement, yet reveals critical vulnerabilities

when addressing complex photometric interactions. Its RGB-space

color restoration mechanism struggles to decouple chromatic

shifts from suspended particulate backscattering in high-turbidity

environments, occasionally overcompensating blue-green dominance

while neglecting wavelength-specific absorption residuals. The

CIELAB-space contrast optimization demonstrates limited

adaptivity to illumination gradients across depth-varying scenes,

where aggressive luminosity adjustments in localized regions may

amplify noise patterns and induce halo artifacts near high-frequency

textures. Furthermore, the separate processing pipelines for color

correction and contrast enhancement fail to maintain spectral

consistency in transitional zones between adjusted and unprocessed

areas, particularly under abrupt optical density changes caused by

marine snow or biological layers. These deficiencies originate from

the method’s sequential processing framework that insufficiently

models the nonlinear coupling between wavelength attenuation and

turbidity-induced light diffusion.

The weighted wavelet visual perception fusion (WWPF)

method tackles underwater color distortion and contrast

degradation through multi-strategy hierarchical optimization, yet

reveals critical constraints when handling complex photonic
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interactions. Its attenuation-map-guided color correction exhibits

incomplete spectral separation in high-turbidity greenish waters,

where particulate backscattering interferes with wavelength-specific

absorption estimation, occasionally preserving residual cyan

dominance while overcompensating red-channel artifacts. The

maximum entropy optimized global contrast enhancement

demonstrates limited dynamic range adaptation across depth-

varying illumination fields, where uniform intensity stretching

may amplify noise in low-transmission regions while compressing

texture details in high-clarity zones. Furthermore, the wavelet-based

multi-scale fusion mechanism shows inadequate edge preservation

at high-frequency subbands when processing particulate-laden

scenes, as directional filter banks struggle to differentiate between

authentic structural contours and suspended particle clusters,

resulting in oversmoothed textures near marine snow interfaces.

These limitations stem from the method’s implicit assumption of

linear degradations and insufficient modeling of nonlinear light-

particle-camera interactions in turbid aquatic environments.

The UWCNN algorithm constructs a synthetic degradation

dataset using spectral-attenuation priors to train a lightweight

CNN for direct underwater image restoration, thereby reducing

error propagation. While effective for general color cast correction,

its wavelength-agnostic framework introduces spectral bias by

oversimplifying depth-dependent chromatic shifts and angular

illumination variations inherent in real underwater environments.

Specifically, the model fails to address nonlinear wavelength

absorption caused by suspended particulates and depth-varying

water types, leading to color channel imbalance in scenes with

multi-spectral artificial lighting or bioluminescent interference.

Furthermore, its static prior integration neglects photometric

divergence between shallow and deep-water zones, resulting in

inconsistent color constancy when reconstructing red-depleted

regions or high-turbidity sediments. These limitations stem from

inadequate modeling of spectrally asymmetric degradation and
TABLE 2 UIQM and UCIQE scores of different methods on test sets C60 and U45.

Method
Test-C60 Test-U45

UCIQE UIQM URanker UCIQE UIQM URanker

Traditional
Method

HL 0.5311 2.8774 0.094 0.5126 1.9423 0.751

IBLA 0.5642 3.3236 0.815 0.4612 1.2768 0.945

Fusion 0.5848 2.8092 0.745 0.6473 1.6984 0.726

CBLA 0.4781 2.4273 1.285 0.5139 1.7141 1.392

WWPF 0.5135 2.4861 1.348 0.5641 1.7311` 1.351

Deep-Learning
Method

Sha-UWnet 0.4198 2.2751 0.921 0.4595 1.6893 1.257

UWCNN 0.4894 2.4523 1.687 0.4524 1.4338 1.582

USUIR 0.5673 2.3234 1.618 0.5131 1.8952 1.685

URSCT 0.5529 2.7453 1.713 0.5729 2.1861 1.724

Diff-Water 0.5372 2.5894 1.632 0.5338 2.0142 1.583

Ours 0.5737 2.8168 1.982 0.5937 2.3247 1.859
In the results, boldface indicates the best data and blue denotes the suboptimal data.
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cross-domain generalization across heterogeneous underwater

optical conditions.

The Sha-UWnet employs a parameter-efficient architecture to

optimize underwater image enhancement, leveraging prioritized

feature extraction to balance computational cost and restoration

quality. While its streamlined design effectively addresses global

color shifts, the constrained network depth impedes hierarchical

abstraction of multi-scale edge contexts, resulting in blurred

boundary delineation and textural discontinuities in low-contrast

turbid waters. Specifically, the shallow structure fails to resolve

edge-texture conflicts caused by suspended particle scattering, often

miscalculating gradient magnitudes in regions with overlapping

foreground-background chromaticity. Furthermore, its limited

receptive field struggles to suppress waterborne noise while

preserving high-frequency details, leading to artificial sharpening

artifacts near bioluminescent features or sediment-rich zones. These

limitations highlight the inherent trade-off between model efficiency

and multi-scale degradation disentanglement in underwater

optical environments.

The USUIR algorithm reformulates unsupervised restoration

through homology-driven cycle consistency between original and

synthetically re-degraded images, theoretically circumventing the

need for paired training data. While effective for global error

minimization, the framework exhibits edge gradient confusion in

low signal-to-noise ratio regions, failing to resolve sub-pixel

boundary discontinuities caused by suspended particle scattering

or nonlinear light attenuation. This manifests as blurred bio-

structural contours and textural oversmoothing in turbid waters

where foreground-background chromatic similarity exacerbates

edge ambiguity. Furthermore, its spectrally insensitive homology

constraints inadequately model wavelength-dependent absorption,

inducing color channel crosstalk that amplifies greenish hue bias in

deep pelagic zones and artificial saturation spikes under multi-

spectral artificial lighting. These limitations stem from insufficient

physical priors to disentangle spatially coupled degradation patterns

across heterogeneous underwater optical domains.

The URSCT algorithm integrates Swin Transformer into a U-

Net framework to enhance global context modeling for structural

and chromatic restoration, while its RSCTB module employs

convolutional layers to refine local features. Although this hybrid

design improves cross-scale feature aggregation in uniform

underwater scenes, the global attention mechanism in Swin

Transformer induces boundary erosion when processing low-

contrast edges or suspended particle-induced textures, where

multi-scale edge ambiguity arises from nonlinear light scattering.

Concurrently, the convolutional RSCTB module exhibits limited

texture-edge decoupling capacity, failing to recover high-frequency

boundary cues lost during transformer-based global smoothing,

particularly in high-turbidity regions with overlapping bio-optical

signals. This synergistic deficiency manifests as gradient reversal

artifacts along complex seabed contours and chromatic offsets in

shadowed areas, highlighting the algorithm’s inadequate fusion of

spectral-spatial priors to address depth-variant degradation

patterns in dynamic underwater environments.
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The DiffWater method addresses underwater color distortion

and quality degradation through conditional diffusion modeling,

yet demonstrates critical vulnerabilities when confronting

nonlinear photometric interactions in complex aquatic

scenarios. Its channelwise color compensation mechanism in

RGB space shows incomplete chromatic separation in turbid

greenish waters, where wavelength-dependent scattering

interferes with particulate density estimation, occasionally

preserving blue-green dominance while introducing artificial

magenta casts in shadow regions. The conditional DDPM

framework exhibits unstable noise prediction capabilities under

dynamic illumination fields, where conditional guidance from

color-compensated inputs may misdirect the denoising

trajectory, generating texture-inconsistent hallucinated details

near high-particle-concentration zones. Furthermore, the

sequential integration of color correction and diffusion processes

demonstrates spectral incoherence in transitional depth layers,

particularly failing to preserve wavelength attenuation gradients

when processing scenes with abrupt optical density changes

caused by algal blooms or sediment plumes. These limitations

stem from the method’s simplified assumption of additive

degradation patterns and insufficient physical modeling of the

nonlinear correlation between waterborne light scattering and

depth-dependent chromatic absorption.

The proposed UIE algorithm in this study employs edge feature

attention fusion to address critical problems, such as edge

blurriness, low SNR, and low contrast in underwater images. It

integrates three innovative modules: (1) Edge operators extract edge

information through gradient-sensitive feature learning, while CCA

fuses multi-scale features using cross-channel coherence analysis,

restoring object edge details by jointly optimizing high-frequency

components and improving visual performance.(2) A spatial cross-

attention mechanism strengthens spatial structure information via

edge-guided attention propagation, preserving details under low

signal-to-noise ratio conditions through noise-adaptive feature

reinforcement.(3) A multi-dimensional perception optimization

method enhances semantic understanding, structural integrity,

and local contrast using frequency-aware adversarial learning,

while mitigating the effects of outliers through multi-scale

degradation disentanglement. Collectively, these modules establish

hierarchical edge-texture synchronization, where edge restoration

and feature fusion are systematically coordinated to resolve cross-

scale degradation conflicts in turbid underwater environments.
3.6 Component ablation and fusion
validation

The excellent performance of the CUG-UIEF proposed in this

study for UIE mainly benefits from the multi-feature cross-fusion

module and the redesigned loss function. To verify the effectiveness of

the modules proposed in this study, we conducted ablation studies

using the UIEB dataset as the training set on Test-U90 and by

selecting 45 challenging images from the LSUI dataset as Test-L45.
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The original model selected in this study has been described in the

literature (Ren et al., 2022). The specific experimental settings were

consistent with those used in a previous experiment. Table 3 presents

the results of this index. DDEM-1 represents CUG-UIEF with the

edge fusion module removed, and DDEM-2 represents CUG-UIEF

with the spatial information enhancement module removed.

As indicated in Table 3, the proposed model achieved the best

quantitative performance on the two test datasets, reflecting the

effectiveness of the combination of multi-feature cross-fusion and

multidimensional perceptual loss function modules.

As shown in Figure 3, compared with the original model, the

added multi-feature cross-fusion module better address the problem of

cyan-green color casts. When processing images, the cross-attention

mechanism can adaptively focus on the interactions between cyan-

green channels and other channels, avoiding excessive or insufficient

utilization of cyan-green channel information. It emphasizes local

details than on the convolution in the original model. The color

distribution in real scenes was better matched adjusting the weights

and contributions of the cyan-green channels in the image to a more

reasonable level, thus effectively correcting the cyan-green color cast

and improving the accuracy and naturalness of the image colors.

Moreover, after adding edge features, the attention mechanism can

focus on the structural information in the image and avoid wasting

resources in unimportant areas. Following the addition of edge

features, the details of the stones and creatures in the two

comparison images became clearer. As we can observe in Figure 4,

owing to the multidimensional perceptual loss function, the obtained

images exhibit enhanced details, improved color restoration, vivid

object edges, high contrast, and clear boundaries.

3.7 Qualitative comparison through
visualization

First, the image comparison results of the UIEB dataset are

presented. A comprehensive training was conducted using the

UIEB dataset. The test data selected for this study were sampled

according to six scenes with distinct characteristics: shadow,

texture, blur, blue, yellow, and green. The images that best
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represented each type of scene and were to some extent

challenging were chosen. Figure 5 presents the enhancement

results of the different methods.

In the green scene, color casts occurred in the results of HL,

Sha-UWnet, and UWCNN. Only Fusion, USUIR, URSCT, and

CUG-UIEF showed color restoration similar to that of the real

image. However, CUG-UIEF achieved the closest color restoration

effect to the real image, and the details in the shadowed parts were

the clearest and most distinguishable. In the blue scene, except for

USUIR, URSCT, and CUG-UIEF, none of the methods restored the

real illumination effect, and only CUG-UIEF truly restored the color

texture of the fish in the upper left corner. In foggy and textured

scenes, only the proposed URSCT and CUG-UIEF achieved good

effects in defogging and enhancing textures and object edges.

However, compared to real situations, both methods had some

deficiencies. In the final yellow scene, only CUG-UIEF retained

delicate edge information during defogging. Overall, CUG-UIEF

was visually superior to the other methods.

This section also presents the image results of CUG-UIEF on

no-reference datasets. The tests were performed on two test sets,

Test-C60 and Test-U45.

Test-C60 includes five underwater environments—red, yellow,

green, blue, and foggy scenes—all of which were affected by high

backscattering and color deviation. The most representative images of

each type were selected for visual comparison. As shown in Figure 6,

HL, CBLA, WWPF, Sha-UWnet, UWCNN, and URSCT exhibited

obvious color deviations in some cases. In the yellow scene, HL, IBLA,

and USUIR restored the paddle blade to purple, whereas UWCNN

and CUG-UIEF restored it to yellow, which is closer to the normal

visual perception of humans. Moreover, CUG-UIEF can better

restore blurred details in the original image. In the green and blue

scenes, only URSCT and CUG-UIEF achieved good restoration of the

background and surfaces of the creatures. In the foggy scene, URSCT

had a significant defogging effect but overly enhanced the red color in

the original image. CUG-UIEF attempted to retain the information of

the original image while defogging, and the color restoration at the

bottom background was more in line with normal perception. In the

shadow and texture scenes, all the methods except USUIR, URSCT,

and CUG-UIEF, exhibited color restoration deviations. These three

methods could restore the details in the shaded parts while retaining

the natural illumination, but only CUG-UIEF could retain sufficient

light–dark contrast and object details while providing improved color

for the seawater background.

TEST-U45 contains multiple scenes, such as color deviation and

foggy scenes. Multiple scenes were selected for the experiments, and

representative scenes were selected for display. As is shown

Figure 7, except for HL, UWCNN, CBLA, WWPF and Sha-

UWnet, the methods exhibited a lower degree of color deviation.

In the shadow and texture scenes, Fusion, USUIR, URSCT, and

CUG-UIEF performed well in color restoration and texture

information preservation. However, in the blue scene, only the

URSCT and CUG-UIEF restored colors that were more in line with

normal visual perception and preserved the texture information of

the objects well. In the green scene, only CUG-UIEF could better

reflect the natural illumination environment and delicate details.
TABLE 3 Statistical results of the ablation study on the modules and
loss functions.

Module

Test-U90 Test-L45

PSNR SSIM PSNR SSIM

Origin 23.2074 0.9178 21.9878 0.9164

DDEM-1 23.4076 0.9183 22.3455 0.9142

DDEM-2 25.5647 0.9195 23.2346 0.9234

CUG-UIEF 26.4693 0.9286 24.5212 0.9276

Loss PSNR SSIM PSNR SSIM

lp 24.3572 0.9142 22.0478 0.9123

lp,lm 25.7823 0.9212 23.5689 0.9201

lp,lm,lc 26.4693 0.9286 24.5212 0.9276
In the results, boldface indicates the best data.
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In summary, HL, UWCNN, WWPF and Sha-UWnet were

prone to color-cast phenomena. The IBLA improved the quality

of underwater images using local adaptive methods but performed

poorly in yellow, foggy, and some blue scenes. Fusion greatly

increased artificial colors to enhance contrast but could not adapt
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well to the changes caused by foggy scenes. USUIR performed well

in most scenes but often exhibited a red-shift phenomenon in blue

scenes. URSCT had good robustness and strong defogging ability;

however, when restoring objects in foggy scenes, it was prone to

red-shift phenomena. CUG-UIEF had good robustness and
FIGURE 4

Multi-dimensional ablation study. Each panel includes the original image (RAW) and the results of the original method. The results of using only Lp,
the results of using both Lp and Lm, and the results of using Lp, Lm, and Lc simultaneously. (A) Test-U90, (B) Test-L45.
FIGURE 3

Ablation study on the contribution of cross-fusion. Each panel includes the original image (RAW), the results of the original method, the results of
DDEM-1, the results of DDEM-2, and the results of CUG-UIEF. (A) Test-U90, (B) Test-L45.
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FIGURE 5

Comparison of the underwater images sampled from the Test-U90 dataset. (A) RAW (B) HL (C) IBLA (D) Fusion (E) CBLA (F) WWPE (G) Sha-UWnet
(H) UWCNN (I) USUIR (J) URSCT (K) Diff-Water (L) Ours (M) Ground truth.
FIGURE 6

Visual comparison of the underwater images sampled from the Test-C60 dataset. (A) RAW (B) HL (C) IBLA (D) Fusion (E) CBLA (F) WWPE (G) Sha-
UWnet (H) UWCNN (I) USUIR (J) URSCT (K) Diff-Water (L) Ours.
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performed well in yellow, blue, green, foggy, shadowed, and

textured scenes.
3.8 Application and inference efficiency

As feature extraction-matching and edge detection constitute

core technical pillars in underwater image analysis, this study

systematically validated the necessity of the proposed method as a

preprocessing module for feature matching and edge detection. In

feature matching tasks, the SIFT algorithm was utilized to extract

feature points, complemented by the RANSAC algorithm for false

match elimination. Feature matching was performed on

preprocessed 256×256 pixels underwater stereo image pairs from

the SQUID dataset. Figure 8 revealed that the proposed approach

significantly optimized matching performance while concurrently

improving visual quality. Table 4 demonstrates that compared to

baseline methods, our scheme ranked second in both initial and

valid matches, yet achieved the highest matching precision.

Integrative qualitative-quantitative analyses corroborated the

critical utility of this method for underwater feature matching tasks.

Regarding edge detection tasks, all images in the Test-C60 and

Test-U45 datasets underwent enhancement prior to edge extraction

and evaluation via the Canny operator. Detection performance was

quantified using three metrics: Precision, F1 (harmonic mean of

precision and recall), and Edge Pixel Ratio (EPR). Table 5 indicated

that our method ranked first in accuracy and second in EPR relative

to state-of-the-art approaches. Figure 9 demonstrates the
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experimental findings: In Test-U45 fish samples, the enhanced

edge detection preserves intact morphological contours while

precisely discriminating target-background depth disparities,

revealing underwater spatial hierarchy. In Test-C60 columnar

targets, the algorithm achieves complete extraction of artificial

structures' geometric edges with enhanced low-light gradient

responses, where continuous seagrass blade edges further validate

optical attenuation compensation. Convergent qualitative and

quantitative evidence validated the significant contribution of this

method to underwater edge detection tasks.

To evaluate the practical applicability of underwater image

enhancement algorithms, we conducted a systematic comparison

of inference efficiency among competing methods. The experiments

were performed using the UIEB dataset as the benchmark, with

average inference times calculated across all test samples.

Traditional algorithms were executed in batch processing mode,

while deep learning approaches employed pre-trained models on

the UIEB training set for inference. Owing to significant

architectural variations among deep learning algorithms,

substantial discrepancies in inference times were observed across

different models. As demonstrated in Table 6, conventional

algorithms maintain absolute superiority in computational speed,

whereas the proposed framework achieves the second-highest

efficiency among deep learning methods while demonstrating a

competitive advantage over structurally complex traditional

approaches. These findings validate the proposed method’s

significant advantages in balancing computational complexity

with practical deployment feasibility.
FIGURE 7

Visual comparison of the underwater images sampled from the Test-U45 dataset. (A) RAW (B) HL (C) IBLA (D) Fusion (E) CBLA (F) WWPE (G) Sha-
UWnet (H) UWCNN (I) USUIR (J) URSCT (K) Diff-Water (L) Ours.
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TABLE 4 Mean evaluation results of underwater feature matching on the SQUID dataset.

Method Initial matches Valid matches Precision

Traditional
Method

HL 44.32 38.67 87.25%

IBLA 37.42 31.73 84.79%

Fusion 46.56 39.14 84.06%

CBLA 87.35 78.15 89.46%

WWPF 198.58 166.21 83.70%

Deep-Learning
Method

Sha-UWnet 36.74 31.27 85.12%

UWCNN 39.55 32.52 82.29%

USUIR 152.46 135.14 88.64%

URSCT 163.24 145.81 89.24%

Diff-Water 108.47 97.09 89.51%

Ours 172.68 155.81 90.23%
F
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In the results, boldface indicates the best data and blue denotes the suboptimal data.
FIGURE 8

Application examples of underwater feature matching. (A) RAW-Left (B) RAW-right (C) RAW (D) HL (E) IBLA (F) Fusion (G) CBLA (H) WWPE (I) Sha-
UWnet (J) UWCNN (K) USUIR (L) URSCT (M) Diff-Water (N) Ours.
TABLE 5 Mean evaluation results of underwater feature matching on the Test-C60 and Test-U45 dataset.

Method Precision F1 EPR

Traditional
Method

HL 0.6011 0.1406 0.0303

IBLA 0.6208 0.4789 0.1492

Fusion 0.6149 0.3311 0.0926

CBLA 0.6215 0.5435 0.2021

WWPF 0.6571 0.5252 0.1888

(Continued)
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4 Conclusion

This study presented a deep learning model for UIE that improves

blurring and color distortion caused by light scattering and attenuation.

The proposed model integrates a multi-feature cross-fusion module,

which combines edge features with encoder features and utilizes a

channel-cross attention mechanism, effectively enhancing the clarity of

blurred areas and improving edge detail capture. Additionally, the

spatial information enhancement module strengthens feature

interactions across different locations, enabling more natural

restoration of color-distorted regions, thereby bringing the image

closer to true colors and clarity. Through multi-dimensional

perception optimization, the model further improves clarity, color

accuracy, and edge details. Experimental results confirm the superior

ability of themodel to restore image details and correct color distortion.

Ablation studies highlight the effectiveness of both the multi-feature

cross-fusion module and multi-dimensional perception optimization

in enhancing detail and overall color consistency. However, the
TABLE 6 Inference Efficiency Comparison.

Method Per-image inference time

Traditional
Method

HL 0.284s

IBLA 0.622s

Fusion 1.756s

CBLA 0.199s

WWPF 0.652s

Deep-Learning
Method

Sha-UWnet 3.643s

UWCNN 2.911s

USUIR 1.876s

URSCT 1.061s

Diff-Water 44.322s

Ours 1.083s
In the results, boldface indicates the best data and blue denotes the suboptimal data.
TABLE 5 Continued

Method Precision F1 EPR

Deep-Learning
Method

Sha-UWnet 0.6666 0.0295 0.0057

UWCNN 0.6523 0.3145 0.0649

USUIR 0.6314 0.2227 0.0542

URSCT 0.6289 0.4445 0.1436

Diff-Water 0.6403 0.4474 0.1381

Ours 0.6719 0.4761 0.1989
In the results, boldface indicates the best data and blue denotes the suboptimal data.
FIGURE 9

Application examples of canny edge detection. (A) RAW (B) HL (C) IBLA (D) Fusion (E) CBLA (F) WWPE (G) Sha-UWnet (H) UWCNN (I) USUIR (J)
URSCT (K) Diff-Water (L) Ours.
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dehazing performance of the model in large-scale foggy underwater

images requires further improvement. Future work will incorporate

multispectral data to address the limitations, enhance dehazing

performance, and improve the overall robustness and generalizability

of the model in complex scenarios, ultimately providing more reliable

image enhancement solutions for practical underwater operations and

deep-sea exploration.
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