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Accurate forecasting of aquatic production is critical for sustainable fisheries
management. In this study, four neural network models, namely Back
Propagation (BP) neural network, BP neural networks optimized by Genetic
Algorithms (GA-BP), Long Short-Term Memory neural networks (LSTM), and
Radial Basis Function neural networks (RBF), are developed and compared to
predict aquatic production in Zhanjiang City, China. First, key influencing factors
are identified through Grey Relational Analysis (GRA), including GDP per capita,
sunshine duration, and Engel coefficient. The models are trained and tested using
historical production data, with performance evaluated by R*> and MAE metrics.
Results show that the RBF neural network achieves the highest prediction
accuracy (R?=0.96, MAE=27725), significantly outperforming BP (R?=0.73), GA-
BP (R?=0.93), and LSTM (R?=0.94). Sensitivity analysis is then conducted to rank
the influencing factors by importance. GDP per capita is found to be the most
critical factor, followed by climate-related variables (sunshine duration,
temperature) and socioeconomic indicators (Engel coefficient, consumer price
index). The robustness of the RBF model suggests that it can be effectively
applied for regional aquatic production forecasting, supporting policymakers in
resource allocation and risk mitigation. Furthermore, the factor prioritization
enables aquaculture practitioners to optimize farming strategies, such as
adjusting production scales based on economic and environmental trends.
This study not only provides a reliable modeling framework but also highlights
the key drivers affecting aquatic production, including economic, climatic, and
demographic factors.
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1 Introduction

Aquaculture is recognized as a critical component of global food
security and economic development, playing an indispensable role
in meeting nutritional needs and supporting livelihoods worldwide.
However, the industry currently faces unprecedented challenges in
production forecasting due to increasing climate variability,
resource constraints, and market fluctuations. These challenges
highlight the urgent need for more accurate prediction models to
support sustainable sector development.

Three main approaches are currently employed in aquatic
production forecasting, each presenting distinct advantages and
limitations. Statistical methods (Tan and Deng, 1995; Cho, 2006;
Ghani and Ahmad, 2010; Anthony Koslow and Davison, 2016;
Benavides et al,, 2022; Kalhoro et al, 2024), including time series
analysis and regression models, are widely applied in fisheries
research. Autoregressive Integrated Moving Average (ARIMA)
models are demonstrated to be effective for specific applications, as
shown by Siddique et al. (2024) in tilapia production forecasting.
However, these methods are found to struggle with complex
nonlinear relationships that characterize modern aquaculture
systems (Benavides et al., 2022; Kalhoro et al., 2024). Ecological
modeling approaches (Tsitsika et al., 2010; Naorem et al., 2013;
Raman et al.,, 2017; Panwar et al., 2018; Siddique et al., 2024) are
developed to address these limitations by incorporating
environmental parameters. The ecological modeling approach
considers the impact of the ecological environment on aquatic
production, including factors such as water temperature, salinity,
dissolved oxygen, and others. By integrating principles of biology and
ecology, the ecological modeling approach establishes ecological
models for prediction. The ecological modeling method can
comprehensively reflect the impact of environmental factors on
yield, but the model construction is complex and requires a large
amount of data (Naorem et al., 2013; Raman et al., 2017; Deng, 1990).

Machine learning techniques (Rahman et al., 2021; Zhao et al,
2021; Miguéis et al., 2022; Stephen et al.,, 2022; Law et al., 2019) are
increasingly adopted to overcome these challenges. Migueis et al.
(2022); Law et al,, 2019 proposed a daily fresh fish demand forecasting
model to promote a more sustainable supply chain and prevent food
waste. They used a representative store of a large European retail
company as an example to estimate the demand for fresh fish by long
short-term memory networks (LSTM), feedforward neural networks,
support vector regression, random forests, and Holt Winters statistical
models. The research results showed that compared with baseline and
statistical models, machine learning models provided accurate
predictions. To obtain control variables suitable for predicting fish
catch, based on the “Annual Fisheries Statistics” data released by the
Malaysian Ministry of Fisheries, Ghani and Ahmad (2010) used
stepwise multiple regression method with Minitab 15 and SPSS 17.0
for analysis. Their research showed that the number of fishermen and
the number of fishing gear licenses are factors affecting the catch of
marine fish. Jasmin et al. (2022) used the average dissolved oxygen and
biological floc count in shrimp farming systems as target parameters,
and considered 17 farming and meteorological parameters. Three
different feature selection techniques are used to create 12 different
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data subsets for model development. The model development utilized
three popular machine learning algorithms, namely Random Forest,
AdaBoost, and Deep Neural Networks. A total of 36 different models
are obtained and their accuracy is evaluated by 7 model validation
tests. Cross-disciplinary researchers are introduced by Quetglas et al.
(2011) to how artificial neural networks are applied in ecology, while
ecologists unfamiliar with artificial neural networks are assisted in
understanding the diverse practical applications of these tools in
aquatic ecology. Machine learning methods refer to training models
on a large amount of historical data to obtain forecasting models,
mainly including support vector machines, random forests, and neural
networks. Aquatic production is influenced by a series of factors, and
aquatic production prediction is a typical nonlinear problem. Neural
networks have strong nonlinear mapping and self-learning abilities.
Current research shows that neural network algorithms have great
potential in aquatic production prediction, and establishing accurate
aquatic production forecasting models by neural network algorithms
is theoretically feasible.

Zhanjiang City is recognized as a vital aquaculture center in
southern China, where an annual industrial output value exceeding
70 billion yuan is generated by the aquatic product industry chain,
while employment opportunities for over 1 million people are directly
and indirectly created (Zhanjiang Statistical Yearbook, 2023). Despite
its economic significance, Zhanjiang lacks a tailored forecasting
framework that accounts for its unique confluence of subtropical
climate, extensive coastal aquaculture, and evolving socioeconomic
factors-including rising per capita GDP, changing consumption
patterns, and fluctuating labor demographics. Existing regional
studies either rely on oversimplified statistical models or overlook
Zhanjiang’s specific challenges, leaving policymakers and industry
stakeholders without actionable predictive tools. To resolve the
aforementioned dilemmas, a targeted multi-phase forecasting
methodology for aquatic production in Zhanjiang is developed in
this research. Grey Relational Analysis (GRA) is utilized to
systematically identify the most influential variables affecting local
aquatic production, with integration of environmental (temperature,
sunshine duration), socioeconomic (GDP per capita, Engel
coefficient), and operational (aquaculture area, fishery population)
factors. A comprehensive dataset is compiled from the Guangdong
Rural Yearbook and Zhanjiang Statistical Yearbook, ensuring
temporal depth and regional specificity. Four neural network
architectures, namely Back Propagation (BP) neural network, BP
neural networks optimized by Genetic Algorithms (GA-BP), LSTM,
and Radial Basis Function neural networks (RBF), are deployed to
develop predictive models, with rigorous performance evaluation
using R* and MAE metrics. Neural network parameter sensitivity
analysis is applied to rank the importance of identified factors,
providing clear guidance for targeted intervention strategies.

The novelty of this approach lies in three interconnected
advancements: (1) its explicit focus on Zhanjiang’s unique
regional dynamics, (2) the integration of 12 multi-dimensional
influencing factors rarely combined in existing models, and (3) a
comparative framework that identifies the optimal neural network
architecture for coastal aquaculture contexts. By addressing the
limitations of statistical oversimplification, ecological data
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dependency, and generic machine learning approaches, both a
methodologically robust forecasting tool and actionable insights
for Zhanjiang’s aquaculture sector are delivered in this study-
ultimately supporting sustainable growth, market stability, and
informed policy formulation.

2 Data and methods
2.1 Data selection

Based on the current research progress (Jaureguizar et al., 2024),
the restrictive factors affecting the output of aquatic products in
Zhanjiang City from 1992 to 2022 have been obtained from the
Guangdong Rural Yearbook and Zhanjiang Statistical Yearbook.
These factors include the total aquaculture area, the number of
motorized fishing vessels, the fishery population, the annual average
temperature, and the sunshine durations. Moreover, considering
that the residents of Zhanjiang City are an important consumer
group of aquatic products, this paper also takes into account the
influences of Zhanjiang’s Engel coefficient, consumer price index,
household registered population, and per capita GDP on the output
of aquatic products. The first nine rows of Table 1 show the above
nine factors, and the tenth row indicates the output of aquatic
products in Zhanjiang City. The following content will continue to
study the impacts of these nine influencing factors on the output of
aquatic products in Zhanjiang City.

2.2 Grey relational analysis

Grey relational analysis(GRA) is an important method within the
theory of grey systems, originally proposed by the renowned scholar
Professor Deng Julong. The theoretical foundation of this analysis
method lies in determining the degree of correlation between different
factors by comparing the geometric similarity of their change curves.

10.3389/fmars.2025.1556294

In this paper, the grey correlation analysis is used to quantitatively
determine the degree of correlation between aquaculture area, number
of motorized fishing boats, fishery population, average annual
temperature, sunshine duration, Engel coefficient, consumer price
index, total number of registered residence registered persons, per
capita GDP and aquatic production. This paper uses the nine
influencing factors mentioned above as comparative sequences and
aquatic production as the reference sequence for GRA. The specific
steps are as follows:

2.2.1 Data normalization

Construct matrix A;j,3; using the complete dataset in Table 1,
with the first 9 rows as the comparison sequence and the 10th row
as the reference sequence. Due to the different dimensions of the
data in each row of matrix A3, it is necessary to use the mean
normalization method to standardize and obtain the standardized
matrix By, 3, The element b;; in Byg,3 is calculated by Equation 1.

(1)

B[S

i
ij

Where, a;; represents the elements in matrix Ajg,3;, and aj is
the mean value of the elements in each row of A;y3;, i=1,2,...10,
j=1,2,...31. When i=10, blO,j represents the normalized values of the
reference sequence.

2.2.2 Calculate the grey relational coefficients
between the reference sequence and the
reference sequence

Construct the correlation coefficient matrix C, and calculate the
elements in C using Equation 2.

_ min|b,-j —b10,j| +pmax|b,j—b10,j| i=1,2,...9

)

Cij
bt] + pmax!b,] - blO,j‘

Where the resolution coefficient pe(0,1], and the resolution
coefficient is set to 0.5 in this paper. The results of the first four
columns of matrix C are shown in Table 2.

TABLE 1 Partial data on factors affecting aquatic production in Zhanjiang City.

Year 1992 1993 1994 1995
Total Aquaculture Area (hectares) 51168 51719 52691 58266
Number of motorized
fishing boats 19288 18875 19280 19251
Fishery Population 293200 293441 295193 299243
Temperature (°C) 23.04 23.53 23.77 22.99
Sunshine Duration (h) 160.05 176.81 153.13 152.36
Engel’s Coefficient% 1464.3 1705.4 2569 3351.6
nsumer Price Index
(Pr(i(\)/ios:s Yeear :C(i()() (i:ase) 1056 1258 1258 15
household registered population 5678065 5820190 5937687 6038544
Per capita GDP 2348 2811 3728 4563
Total aquatic production (t) 330991 346868 367481 401816
Frontiers in Marine Science 03 frontiersin.org
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TABLE 2 The first four columns of data in the correlation coefficient matrix.

10.3389/fmars.2025.1556294

Year 1992 1993 1994 1995
Total Aquaculture Area (hectares) 0.946 0.948 0.95 0.944
Number of Motorized Fishing Vessels 0.882 0.888 0.888 0.894
Fishery Population 0.935 0.938 0.942 0.947
Temperature (°C) 0.888 0.888 0.890 0.901
Sunshine Duration (h) 0.882 0.868 0.896 0.903
Engel’s Coefficient% 0.544 0.504 0.397 0.334
Consumer Price Index (Previous Year = 100 Base) 0.882 0.854 0.858 0.880
household registered population 0.924 0.923 0.925 0.929
Per capita GDP 0.953 0.954 0.958 0.959

2.2.3 Calculate the value of GRA

The element c;; in the correlation matrix C represents the
degree of correlation between the i-th influencing factor and
the production in the j-th year. Using r :%Ejilﬂip the
correlation degree between various influencing factors and
aquatic production can be obtained. The results are shown
in Table 3.

The GRA value ranges between 0 and 1. The closer its value is
to 1, the stronger the correlation with the reference sequence
(aquatic production). According to Table 3, the correlation values
between the top eight influencing factors and aquatic production
are all above 0.9, and the correlation value between the last
ranked influencing factor, the Engel coefficient, and aquatic
production is also as high as 0.787, indicating that the nine
influencing factors selected in this paper have a strong
correlation with aquatic production. So, this paper selects the
nine influencing factors mentioned above as input parameters for
the neural network.

TABLE 3 Correlation and ranking of various influencing factors with
aquatic production.

The calculated results of grey relational analysis

Evaluation item The value of GRA  Ranking
Total Aquaculture Area 0.967 1
Number of motorized 0.943 .
fishing boats
Fishery Population 0.96 3
Temperature 0.946 4
Sunshine Duration 0.943 6
Engel’s Coefficient 0.787 9
Consumer Price Index 0.944 5
household registered population 0.966 2
Per capita GDP 0.919 8
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3 Aquaculture production forecasting
model based on BP neural network

3.1 BP neural network

The establishment of a BP neural network model mainly
involves three steps: initialization of network parameters, forward
propagation of information, and backward propagation of errors.
The basic structure of a BP neural network includes an input layer,
hidden layers (which can be one or multiple), and an output layer,
with each layer potentially containing multiple neurons. A
schematic diagram of a BP neural network is shown in Figure 1.

The information received by the input layer is the learning
sample after network parameter initialization, which is then passed
to each neuron in the hidden layer by Equation 3.

H = f(S 055 +)

The output value of the output layer is calculated using the

A3)

Equation 4.

Oy = Ejl':ll_ljwjk + b (4)

The error between the network output value and the actual
value yy is the function e, and the sum of e, is the objective
function E. See Equation 5 for details.

E= ka=13k = Ekm=1()’k -0)

If E < ¢ is satisfied, the algorithm ends. Otherwise, error back-

(5)

propagation calculation is performed to update weights and biases.
The update formula is shown below. See Equations 5, 6 for details.

oyt +1) = 0y(t) + 1 ;58) ©)
ij
b(t+1) = b(t) + ngf((?) %)

J

In the above five equations, wj;(t + 1) and b;(t + 1) respectively
represent the connection weight and bias value between the ith
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neuron in the input layer and the jth neuron in the hidden layer at
the (t+1)th iteration. n, [, and m are the number of nodes in the
input layer, hidden layer, and output layer, respectively. @ and b are
the parameters that need to be learned during training, 1 is the
learning rate, and f is the activation function. Non-linear activation
functions enable neural networks to better learn complex data
patterns, thereby enhancing their expressive power and learning
capabilities. Common activation functions include the sigmoid
function (also known as the S-shaped function) and the
hyperbolic tangent activation function (also known as the bipolar
S-shaped function). The sigmoid function is commonly used in
binary classification problems, which can map real numbers to the
(0,1) interval. The equation is as follows:

logsig(x) = I (8)

+e*

The hyperbolic tangent activation function maps real numbers
to the interval (-1,1). The formula for this function is as follows. See
Equation 9 for details:

-1 9)

tansig(x) =
2(x) 1 +e%

3.2 Modeling with BP neural networks

3.2.1 Data initialization
Based on a total of 31 sets of historical data from 1992-2022 in
Zhanjiang City, a neural network training and testing dataset is
constructed. Eliminate the influence of element dimension on input
neurons through Equation 10.
a; — mina

_ ) ij (10)

x., = "
! maxa; — minay

3.2.2 Model parameter initialization

Before model training, the weights Wi and Wik, as well as the
biases b]- and by, of the neural network are randomly initialized. The
maximum number of iterations for the network is set to 7=1000, the
error threshold is set to e=1x10°, and the learning rate is set to
1=0.01. The number of neurons in the hidden layer is set to 6, with
a total of 1 hidden layer.

3.2.3 Training of BP neural network

In model training, the logsign function (Equation 8) is used as
the activation function to assign input information to the (0,1)
interval, and the result is passed to the hidden layer neurons. Then,
the pureline activation function shown in Equation 11 is used to
pass the information to the output layer, and the output result can
be represented by Equation 4.

fy=t (11)

Equation 12 is selected to calculate the error E between the
output value and the true value.
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E=Se =/ 0k — 0k )’ (12)

Then, compare the error E with the error threshold & When the
error E < € or the iteration reaches 1000 times, output the
corresponding weights and biases. Otherwise, the network
performs backward adjustment based on the error, using gradient
descent to achieve error correction.

3.2.4 Neural network model testing

The model’s accuracy is validated using a test dataset. The test
dataset is input into the model trained in step (3), and the model’s
performance is evaluated based on the R* and MAE metrics. R
assesses the closeness of the model’s predicted values to the actual
values, where an R* closer to 1 indicates a better fit. MAE measures
the average magnitude of prediction errors, and without
considering the direction of the errors, a smaller value indicates
higher precision. The flowchart of the BP neural network is shown
in Figure 2.

3.3 Aquaculture production forecasting
model

Figures 3 and 4 show the comparison results between the true
values and the forecasting values of the training and testing sets,
respectively. The R* and MAE of the training set are 0.92 and 73700,
respectively, while the R* and MAE of the testing set are 0.73 and
92995, respectively. The weights and biases of the aquatic
production forecasting model based on BP neural network in
Zhanjiang City are shown in Tables 4 and 5. Considering the
statistical data of the training set comprehensively, it can be
concluded that the aquatic production forecasting model based
on BP neural network established in this paper has good
performance. However, the R? value of the testing set is low, and
the forecasting values of the test set fluctuate greatly. This is because
the initial weights and biases of the BP neural network are randomly
specified, which makes the established forecasting model prone to
falling into local minima and causing a decrease in accuracy. To
solve this problem, this paper combines GA with BP neural
network, uses GA to optimize the initial weights and biases of BP
neural network, and establishes a high-precision and robust
Zhanjiang aquatic production forecasting model based on GA-BP
neural network.

4 Aquaculture production forecasting
model based on GA-BP neural
network

4.1 Basic principles of GA
Genetic algorithms represent the data in the solution space as

genotype string structure data in the genetic space before searching,
and by choosing a reasonable coding mechanism, utilize a certain
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Error Back Propagation <+—— Signal Forward Propagation

Input layer

FIGURE 1
BP neural network structure.

coding form of the solution to evolve in order to improve the
algorithm and efficiency, and then realize the diversity of the
solution by crossover, mutation and other operations. Crossover
operation is the most important genetic operation in genetic
algorithm, which randomly matches individuals in a population
into pairs and exchanges part of chromosomes between them with a
certain probability (known as Crossover Rate, P.); Mutation
operation is that the value of a string in the genotypic string
structure data is changed with a certain probability (known as
Mutation Rate, P,,). Genetic algorithms basically do not use
external information during the evolution process, but are based
on fitness functions, designing fitness functions from the objective
function and ultimately retaining better individuals.

4.2 GA-BP neural network operation steps

4.2.1 Coding

To obtain reasonable initial weights and thresholds for the BP
neural network, a real number encoding method IS used for
optimization. The encoding length S=R*S;+8;*S,+S,+S,, where R,
S1, and S, are the number of input layer nodes, hidden layer nodes,
and output layer nodes of the BP neural network, respectively. In
the aquaculture production forecasting problem in Zhanjiang City,
R=9, §; = 6, S, = 1, and the encoding length S=67.

4.2.2 Fitness function

The fitness function is used to measure individual adaptability,
that is, to measure the error between predicted values and actual
values. Evaluate the quality of genes after selection, crossover, and
mutation operations, train the data using a BP neural network, and
use the reciprocal of the root mean square error between the
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Output layer

predicted value O; and the actual value y; as the fitness function.
The specific equation is shown below. See Equation 13 for details.

1

fit = ——
\/ %2?:1()’1‘ - Oi)z

4.2.3 Initialize the population
Set the initial population size to P=10, and then randomly generate
an initial population of P individuals, W=(W;, W,..., Wp)T.

(13)

4.2.4 Choose

In genetic algorithms, selection operations are used to
determine which individuals can be selected as the parent
individuals for the next generation. Choose normalGeomSelect
for selection operation, which is a type of normalized geometric
selection. By normalizing the fitness values of individuals and
selecting parent individuals based on the normalized fitness
values. Specifically, the following equation is used to calculate the
probability of an individual in the selection process. See Equation 14
for details.

Prob(i) = (1 - p)p’ (14)

4.2.5 Crossover operation

Using the real number crossover method as the crossover
operator, the calculation equation for the crossover operation
between the kth and ith chromosomes at position [ is described as
follows. See Equation 15 for details.

{akj :akj(l _b)+aijb (15)

a,»j = a,j(l - b) + akjb
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TABLE 4 The results of the weights (wy) from the input layer to the hidden layer.

Neuron

numbering it
Neuron No.1 -0.1724 -0.5932 03828 1.3176 -1.3124 -1.6235 -2.0370 -0.8389 0.7445
Neuron No.2 -0.4042 0.9240 0.0489 -1.7684 -0.4351 0.9384 -1.2787 -0.5182 -2.1554
Neuron No.3 1.6423 -0.5750 0.9300 -1.4341 03633 -1.1327 -1.0882 1.4605 0.3932
o Neuron No.4 -1.0454 0.4406 -0.5475 0.5909 -0.5008 1.4182 1.4085 1.6316 -1.6724
Neuron No.5 1.9451 -0.2634 -0.2867 1.1086 2.0558 1.3422 0.6334 -0.0920 -0.5901
Neuron No.6 -1.7671 -1.8819 0.6974 1.7790 -0.7576 -0.2231 -0.5945 0.5166 -0.0619

Where b is a random number of [0, 1].

4.2.6 Mutation

To maintain population diversity and prevent the population
from falling into a local optimum, genetic mutation is necessary.
The calculation equation for single-point mutation on the jth gene
of the ith individual is as follows. See Equation 16 for details.

ajj + (ajj = Ay )rF 7> 0.5
aij = (16)

ajj + (Apin — a)rF r < 0.5

where a,,,, and a,,;, are the upper and lower bounds of genes
ay;, respectively, r is a random number of [0,1], F = (1 - g/ Goan)® g
is the current iteration count, G,y is the maximum evolution
count, G,,x=30.

The optimal weights and thresholds obtained by the genetic
algorithm are substituted as the initial weights and biases into the
BP neural network, and then the training data set is used to build a
model for the neural network. The flowchart of the GA-BP neural
network is shown in Figure 5 below.

4.3 Aquaculture production forecasting
model

Figure 6 shows the fitness curve. From Figure 6, it can be seen
that the fitness gradually decreases with increasing iteration times.
Figures 7 and 8 show the comparison results between the true values
and the forecasting values of the training and testing sets,
respectively. The R* and MAE of the training set are 0.99 and
17045, respectively, while the R* and MAE of the testing set are 0.93

TABLE 5 by, ax and by parameter table.

and 43428, respectively. The weights and biases of the aquatic
production forecasting model based on GA-BP neural network in
Zhanjiang City are shown in Tables 6 and 7.

The above results indicate that optimizing the initial weights
and biases of the BP neural network through genetic algorithm can
avoid the problem of the neural network model getting stuck in
local minima and causing a decrease in the accuracy and robustness
of the prediction model.

However, there are also some drawbacks to using GA-BP neural
networks. When dealing with large-scale datasets or complex tasks,
the convergence speed of genetic algorithms may become slower.
GA-BP have many parameters that need to be adjusted, such as
crossover probability, mutation probability, population size, and
number of iterations. The selection of these parameters has a
significant impact on the performance of the algorithm. Improper
parameter settings may lead to decreased algorithm performance or
even the inability to find the global optimal solution. Therefore, in
practical applications, a significant amount of time and effort is
required to debug and optimize these parameters.

5 Aquaculture production forecasting
model based on LSTM neural network

5.1 LSTM neural network

The Long Short-Term Memory (LSTM) neural network is
originally proposed by Hochreiter and Schmidhuber in 1997.1t is
a special type of recurrent neural network (RNN) specifically
designed to handle and predict long-term dependencies in

bi Wk bo
Neuron No.1 3.5255 Neuron No.1 -0.2479
Neuron No.2 1.8000 Neuron No.2 -0.3366
Neuron No.3 -0.7405 Neuron No.3 1.1695
-0.1025
Neuron No.4 -0.7226 Neuron No.4 -0.5112
Neuron No.5 2.0509 Neuron No.5 0.1599
Neuron No.6 -3.4945 Neuron No.6 -0.0028
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FIGURE 5

Flowchart of GA-BP neural network.

sequential data. Traditional RNNs encounter issues such as
vanishing or exploding gradients when processing long sequences.
This primarily arises because during backpropagation, gradients
can decrease or increase exponentially with the increase in time
steps, making it difficult for the network to learn long-term
dependencies. To address this limitation of RNNs, LSTM
introduces gating mechanisms. Over time, it evolved into a
framework centered around the cell state and gate structures. The
network architecture of the LSTM model is illustrated in Figure 9.
These gating mechanisms control the flow of information, enabling
the network to remember or forget information. The cell state serves
as the pathway for information transmission, allowing input
information to persist through the sequence, i.e., the “memory” of
the network. LSTM has three main gates: the Forget Gate, the Input
Gate, and the Output Gate. The principles of LSTM are detailed on
the website: https://doi.org/10.1162/nec0.1997.9.8.1735.

The Forget Gate determines which information should be
forgotten. It generates a value between 0 and 1 through a sigmoid
function, representing the degree of retention for each state value.
Values closer to 0 indicate that the information should be discarded,
while values closer to 1 indicate that the information should be
retained. The Input Gate decides which new information should be
stored in the cell state. It consists of two parts: a sigmoid layer that
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determines which values will be updated, and a tanh layer that
generates a new candidate value vector. The input of the sigmoid
layer and the tanh layer of the output Gate are multiplied to obtain
the updated candidate value. The Output Gate determines which
parts of the current cell state will be output. It first passes through a
sigmoid layer to decide which cell states will be output, then
generates a candidate value for the output state through a tanh
layer, and finally combines these two parts to form the final output.

Assuming that the output from the previous time step is h,_,
and the input at the current time step is x;,, the computation
methods for the input gate i,, forget gate f;, and output gate o, at
the current time step are as follows, where the sigmoid function and
tanh function are used as activation functions. See Equations 17-19
for details.

iy = 0wy + hy_ywy; + by) (17)
fir = 0wy + hy_ywiye + by) (18)
0y = G(thxo + htflwho + bo) (19)

Where w.;, Wyr, Wyo, Wii» Wiy and wy, are weight parameters,
while wy;, wys, wy, are bias parameters.
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Fitness change curve.

5.2 Modeling with LSTM neural networks

The number of input features is 9, and the number of LSTM
units is 4. The Adam optimization algorithm is used for gradient
descent, with a maximum number of iterations set to 1500. The
initial learning rate is set to 0.01, and the learning rate decay strategy
is set to piecewise. This means that the learning rate will change
during training according to preset rules. The learning rate decay
factor is set to 0.1. When the condition for learning rate decay is
met, the current learning rate will be multiplied by this factor. The
learning rate decay period is set to 1200, meaning that after 1200
epochs of training, the learning rate will be multiplied by the decay
factor. The dataset is shuffled at the beginning of each epoch, which
helps the model generalize better and prevent overfitting.
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FIGURE 7
Comparison of true and forecasting values in the training set.
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Comparison of true and forecasting values in the testing set.

5.3 Aquaculture production forecasting
model

Figures 10 and 11 present the comparative results between the
actual values and the forecasted values for the training and testing
sets, respectively. The training set has an R* value of 0.998 and an
MAE of 11236, whereas the testing set has an R” value of 0.94 and an
MAE of 43499.The R* value of LSTM is closer to 1 and its MAE
value is smaller compared to GA-BP, indicating that the differences
between the predicted values and the true values are generally
smaller, and the fitting effect is better than that of GA-BP.

6 Aquaculture production forecasting
model based on RBF neural network

6.1 RBF neural network

In terms of function approximation, the BP neural network
employs the negative gradient descent method, which belongs to
global approximation. Consequently, it has issues such as slow
convergence speed and being prone to falling into local minima,
resulting in significant errors in prediction problems. The Radial
Basis Function (RBF) is a neural network architecture proposed by J.
Moody and C. Darken in the late 1980s. The RBF neural network
achieves a nonlinear mapping relationship between input data and
output data by constructing radial basis functions (typically Gaussian
functions). It has the capabilities of optimal approximation and
overcoming local minima problems. The structure of RBF neural
network is shown in Figure 12.

6.2 RBF neural network operation steps

Taking 9 influencing factors of aquatic product yield as inputs,
where d=9 in the Figure 13, the relationship between the input layer
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TABLE 6 The results of the weights (@) from the input layer to the hidden layer.

Neuron

numbering it
Neuron No.1 -0.0164 0.1865 -0.0472 -0.7108 -0.1516 03288 0.9441 0.7102 -0.6013
Neuron No.2 -0.0288 -0.1609 03207 0.1833 03150 0.5888 -0.1430 0.0879 0.6714
Neuron No.3 0.9630 -0.2736 0.9599 -0.5434 0.5700 05348 0.1891 -0.2385 -0.8931
o Neuron No.4 -0.5906 0.6142 -0.5112 -0.4756 -0.8215 0.5907 -0.9927 0.0193 -0.8777
Neuron No.5 -0.7636 -0.4763 0.1822 0.2009 -0.6992 -0.4409 -0.2933 -0.7281 0.9050
Neuron No.6 0.1998 -0.3682 0.5537 -0.4956 0.8302 0.5997 -0.2256 02347 0.5818

and the hidden layer is a nonlinear mapping, and the basis function
is a Gaussian function.

|l = cill?
T] (20)

1

Ri(x) = exp|-

Among them, i=1,2,...,m; x is an n-dimensional input vector.
|| = ¢;|| denotes the vector norm, representing the distance between x
and ¢;; the value R;(x) of Gaussian function attains its unique
maximum at the center of a certain basis function. According to
the Equation 20, as ||x — ¢;|| increases, the value of the basis function
R;(x) decreases until it approaches zero. For a given input value x,
only a small portion near the center of x is activated. In the Gaussian
function, ¢; represents the center value of the ith basis function, which
has the same dimensionality as the input vector and is obtained based
on the K-Means clustering method. The specific steps are as follows:

6.2.1 Network initialization
Randomly select h training samples as the clustering centers ¢;
(i=1,2,...,h).

6.2.2 Grouping the input training sample set
according to the nearest neighbor rule

Assign x,, to the respective clustering set 9, (p=1,2,...,p) based
on the Euclidean distance between x;, and the center c;.

6.2.3 Readjust the clustering centers

Calculate the average value of the training samples in each
clustering set p, which is the new clustering center c;. If the new
clustering centers no longer change, the obtained ¢; are the final
basis function centers for the RBF neural network. Otherwise,

TABLE 7 b, @y, and by parameter table.

return to step (2) for the next round. In the Gaussian function, o;
represents the standardization constant for the width of the ith basis
function center. It can be solved by calculation Equation 21:

Cmax

o; ,
V2h

Where c,,,, represents the maximum distance between the

1,2,...h (21)

selected centers. The connection weights between the hidden
layer and the output layer can be directly calculated using the
least squares method, with the calculation Equation 22:

w= exp(CZLHxP - Cin)) p=L12,..psi=12,..h  (22)

max

The spreading speed of the radial basis function is set to 1000.

6.3 Aquaculture production forecasting
model

Figures 13 and 14 present the comparative results between the
actual values and the forecasted values for the training and testing
sets, respectively. The training set has an R* value of 0.999 and an
MAE of 5460, whereas the testing set has an R* value of 0.96 and an
MAE of 27725.

7 Model comparison

The Table 8 presents the performance of four neural network
models (BP, GA-BP, LSTM, and RBF) on both training and testing

bi Wy bo
Neuron No.1 -0.0332 Neuron No.1 0.5854
Neuron No.2 0.2991 Neuron No.2 0.0034
Neuron No.3 0.8912 Neuron No.3 0.8354
-0.9855
Neuron No.4 -0.5051 Neuron No.4 -0.7322
Neuron No.5 0.5683 Neuron No.5 -0.4791
Neuron No.6 -0.2870 Neuron No.6 0.5634
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Xt

FIGURE 9
Network structure of the LSTM model.

Ct

he

datasets. For the BP neural network on the training set:The R* value
is 0.92, indicating a high degree of fit on the training data. The MAE
is 73,700, representing an average absolute error between predicted
and actual values of 73,700.0n the testing set, the R* drops to 0.73,
suggesting poor generalization ability on unseen data, indicative of
significant overfitting. The MAE increases to 92,995, indicating
larger prediction errors on the testing set. For the GA-BP neural
network on the training set:The R*> value improves to 0.99,
indicating a very high degree of fit on the training data. The
MAE significantly decreases to 17,045, with a notable reduction
in prediction error. On the testing set, the R? is 0.93, showing a
significant improvement compared to the BP neural network’s
performance on the testing set, indicating stronger generalization
ability of the GA-BP model. The MAE is 43,428, which, although

Comparison of prediction results on the training set
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FIGURE 10
Comparison of true and forecasting values in the training set.

still indicating some error, is substantially lower than that of the BP
neural network. For the LSTM neural network on the training set:
The R® value is as high as 0.998, indicating nearly perfect fit on the
training data. The MAE is 11,236, representing very small
prediction errors. On the testing set, the R* is 0.94, indicating
strong generalization ability of the LSTM model on the testing set.
The MAE is 43,499, slightly higher than that of GA-BP on the
testing set, but considering LSTM’s advantages in processing time
series data, this level of error is still acceptable. For the RBF neural
network on the training set:The R* value is nearly perfect at 0.999,
indicating a very high degree of fit on the training data. The MAE is
5,460, representing very small prediction errors. On the testing set,
the R? is 0.96, indicating strong generalization ability of the RBF
model. The MAE is 27,725, the smallest among the four models on

Comparison of prediction results on the test set
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Comparison of true and forecasting values in the testing set.
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d input nodes
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FIGURE 12

The schematic diagram of the Radial Basis Function (RBF) neural network.

the testing set, demonstrating the RBF model’s excellent
performance in prediction accuracy. So, RBF neural network has
the highest accuracy and best robustness in predicting
aquatic production.

Figure 15 displays the time series prediction comparison plot,
Figure 16 presents the bootstrap confidence interval plot, Figure 17
illustrates the error distribution boxplot, Figure 18 shows the annual
error trend analysis, Figure 19 demonstrates the model performance
ranking chart, Figure 20 exhibits the model performance benchmark
plot, and Figure 21 reveals the residual diagnostic plots. To
comprehensively address concerns regarding dataset limitations
and model robustness, our multi-modal analysis demonstrates
RBF’s consistent superiority through seven key visualizations: (1)
The time series prediction comparison plot (Figure 15) reveals RBF’s
precise tracking of actual production trends across the entire 1992
2022 period, particularly in the 2018-2022 test window; (2) Bootstrap
confidence interval plots (Figure 16) confirm RBF’s stability

Comparison of prediction results on the test set

105 RMSE=7623.5702
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25
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FIGURE 13

Comparison of true and forecasting values in the training set.
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(R?=0.960 + 0.246) through 1000 resampling iterations, showing
46% lower variability than BP; (3) Error distribution boxplots
(Figure 17) quantify RBF’s exceptional test-set consistency
(IQR=5.6% vs BP’s 18.3%); (4) Annual error trend analysis
(Figure 18) demonstrates RBF’s sustained [-5%,+15%] error bounds
throughout climatic and economic fluctuations; (5) The model
performance ranking chart (Figure 19) definitively positions RBF as
top-performer (test R*=0.960>LSTM’s 0.940); (6) Performance
benchmark plots (Figure 20) highlight RBF’s minimal
generalization gap (AR’=0.039) and lowest test MAE (27,725 tons);
while (7) residual diagnostic plots (Figure 21) validate RBF’s
statistically robust error structure (0=17.4, no heteroscedasticity).
Collectively, this evidence chain-spanning temporal accuracy,
statistical stability, error characteristics, and ranking metrics-
conclusively establishes RBF as the optimal architecture for small-
sample aquatic production forecasting.

The superior performance of the RBF neural network over
LSTM in this study can be attributed to several key factors that are
closely related to the characteristics of the available dataset and the
nature of aquaculture production systems. It should be noted that
the 31-year time series (1992-2022) represents the most extensive
temporal coverage currently available for Zhanjiang’s aquaculture
production records, which inherently limits the complexity of
models that can be effectively applied. The annual resolution of
this dataset is found to be better suited to RBF’s localized
approximation capabilities than to LSTM’s sequential learning
strengths. While LSTM networks are typically effective for
modeling complex temporal dependencies in high-frequency data,
the year-to-year variations in aquaculture production are observed
to be influenced more by aggregated environmental and
socioeconomic conditions than by intricate sequential patterns.
This fundamental characteristic of the data explains why the
simpler RBF architecture achieves better performance. The RBF
network’s design is demonstrated to be particularly appropriate for
this application, as its fewer parameters make it less susceptible to
overfitting when trained on limited data-a crucial advantage given
the relatively small dataset available for this regional study.
Furthermore, the RBF network’s ability to model stable, nonlinear
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FIGURE 14
Comparison of true and forecasting values in the testing set.

relationships between input variables and production output is
shown to align well with the gradual trends that characterize
multi-year aquaculture production data. Sensitivity analysis
confirms the dominance of static factors in predicting annual

1400 : :

(a) Full Time Series Predictions
T T
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TABLE 8 Comparison of forecasting models based on BP, GA-BP, LSTM
and RBF neural network.

Types of
neural
networks
Training set 0.92 73700
BP
Testing set 0.73 92995
Training set 0.99 17045
GA-BP
Testing set 0.93 43428
Training set 0.998 11236
LSTM
Testing set 0.94 43499
Training set 0.999 5460
RBF
Testing set 0.96 27725

production, with variables such as GDP per capita and
aquaculture area being identified as having greater predictive
power than purely time-dependent features. This finding provides
a clear explanation for why RBF’s strength in modeling static
nonlinear mappings proves more effective than LSTM’s sequential
learning capabilities for this specific forecasting task. Although
LSTM achieves excellent performance on the training set, a
slightly larger generalization gap is observed compared to RBF,
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suggesting that the additional complexity of the LSTM architecture
may not be justified given the available data. These results are
consistent with established principles in machine learning
applications, where traditional methods are frequently found to
outperform more complex architectures when working with limited
training samples. The practical implications are significant for
aquaculture management, as they demonstrate that reliable
production forecasting can be achieved without resorting to
resource-intensive deep learning approaches, particularly when
working with the longest available but still limited time series
data typical of regional production records.
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8 Parameter sensitivity analysis

Based on the weight and bias data of GA-BP neural network,
this paper adopts the parameter sensitivity analysis method
proposed by Zhang and Goh (2018) to analyze the relative
importance of factors affecting aquatic production in Zhanjiang.
The contribution of each factor to aquatic production is obtained.
The principle of the parameter sensitivity analysis method is shown
in the following equation. See Equations 23-27 for details.

Ay =0 oy x byl (23)
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Parameter sensitivity analysis results.
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Figure 22 shows the results of parameter sensitivity analysis. The
influencing factors 1-9 represent, in order, the total aquaculture area,
the number of motorized fishing boats, the fishery population, the
temperature, the sunshine duration, the Engel’s coefficient, the
consumer price index, the household registered population, and the
per capita GDP. It can be seen from Figure 22 that the most important
factor affecting aquaculture output is per capita GDP, followed by
sunshine hours, Engel coefficient, consumer price index, temperature,
fishery population, total area of aquaculture, total registered residence
population and number of motorized fishing boats.

9 Conclusion

To forecast the aquatic production in Zhanjiang City, this paper
establishes a forecasting model for aquatic production by
integrating the advantages of GRA, GA, and BP neural network.
Subsequently, the theory of parameter sensitivity analysis is
employed to quantitatively determine the contribution of each
influencing factor to the aquatic production. The main
conclusions of this paper are as follows:

1. The GRA can effectively quantify the appropriateness of the
selection factors that affect aquatic production.

. After optimizing the BP neural network by GA, the
accuracy and robustness of the aquatic production
forecasting model are significantly improved, with the R2
increasing from 0.73 to 0.93 and the MAE decreasing from
92995 to 43428 in the test set.

3. Compared with BP neural network, GA-BP neural
network, and LSTM, the RBF neural network model has
the highest forecast accuracy and the most advantage in
robustness. So, when establishing a forecast model for
aquatic production, RBF is the optimal choice.

. The most significant factor affecting the aquaculture output
is per capita GDP, followed by sunshine hours, Engel
coefficient, consumer price index, temperature, fishery
population, total area of aquaculture, total registered
residence population and number of motorized fishing boats.
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