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artificial neural network
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Accurate forecasting of aquatic production is critical for sustainable fisheries

management. In this study, four neural network models, namely Back

Propagation (BP) neural network, BP neural networks optimized by Genetic

Algorithms (GA-BP), Long Short-Term Memory neural networks (LSTM), and

Radial Basis Function neural networks (RBF), are developed and compared to

predict aquatic production in Zhanjiang City, China. First, key influencing factors

are identified through Grey Relational Analysis (GRA), including GDP per capita,

sunshine duration, and Engel coefficient. Themodels are trained and tested using

historical production data, with performance evaluated by R² and MAE metrics.

Results show that the RBF neural network achieves the highest prediction

accuracy (R²=0.96, MAE=27725), significantly outperforming BP (R²=0.73), GA-

BP (R²=0.93), and LSTM (R²=0.94). Sensitivity analysis is then conducted to rank

the influencing factors by importance. GDP per capita is found to be the most

critical factor, followed by climate-related variables (sunshine duration,

temperature) and socioeconomic indicators (Engel coefficient, consumer price

index). The robustness of the RBF model suggests that it can be effectively

applied for regional aquatic production forecasting, supporting policymakers in

resource allocation and risk mitigation. Furthermore, the factor prioritization

enables aquaculture practitioners to optimize farming strategies, such as

adjusting production scales based on economic and environmental trends.

This study not only provides a reliable modeling framework but also highlights

the key drivers affecting aquatic production, including economic, climatic, and

demographic factors.
KEYWORDS

aquatic production, grey relational analysis (GRA), back propagation (BP) neural
networks, genetic algorithms (GA), long short-term memory (LSTM), radial basis
function (RBF)
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1 Introduction

Aquaculture is recognized as a critical component of global food

security and economic development, playing an indispensable role

in meeting nutritional needs and supporting livelihoods worldwide.

However, the industry currently faces unprecedented challenges in

production forecasting due to increasing climate variability,

resource constraints, and market fluctuations. These challenges

highlight the urgent need for more accurate prediction models to

support sustainable sector development.

Three main approaches are currently employed in aquatic

production forecasting, each presenting distinct advantages and

limitations. Statistical methods (Tan and Deng, 1995; Cho, 2006;

Ghani and Ahmad, 2010; Anthony Koslow and Davison, 2016;

Benavides et al., 2022; Kalhoro et al., 2024), including time series

analysis and regression models, are widely applied in fisheries

research. Autoregressive Integrated Moving Average (ARIMA)

models are demonstrated to be effective for specific applications, as

shown by Siddique et al. (2024) in tilapia production forecasting.

However, these methods are found to struggle with complex

nonlinear relationships that characterize modern aquaculture

systems (Benavides et al., 2022; Kalhoro et al., 2024). Ecological

modeling approaches (Tsitsika et al., 2010; Naorem et al., 2013;

Raman et al., 2017; Panwar et al., 2018; Siddique et al., 2024) are

developed to address these limitations by incorporating

environmental parameters. The ecological modeling approach

considers the impact of the ecological environment on aquatic

production, including factors such as water temperature, salinity,

dissolved oxygen, and others. By integrating principles of biology and

ecology, the ecological modeling approach establishes ecological

models for prediction. The ecological modeling method can

comprehensively reflect the impact of environmental factors on

yield, but the model construction is complex and requires a large

amount of data (Naorem et al., 2013; Raman et al., 2017; Deng, 1990).

Machine learning techniques (Rahman et al., 2021; Zhao et al.,

2021; Miguéis et al., 2022; Stephen et al., 2022; Law et al., 2019) are

increasingly adopted to overcome these challenges. Miguéis et al.

(2022); Law et al., 2019 proposed a daily fresh fish demand forecasting

model to promote a more sustainable supply chain and prevent food

waste. They used a representative store of a large European retail

company as an example to estimate the demand for fresh fish by long

short-term memory networks (LSTM), feedforward neural networks,

support vector regression, random forests, and Holt Winters statistical

models. The research results showed that compared with baseline and

statistical models, machine learning models provided accurate

predictions. To obtain control variables suitable for predicting fish

catch, based on the “Annual Fisheries Statistics” data released by the

Malaysian Ministry of Fisheries, Ghani and Ahmad (2010) used

stepwise multiple regression method with Minitab 15 and SPSS 17.0

for analysis. Their research showed that the number of fishermen and

the number of fishing gear licenses are factors affecting the catch of

marine fish. Jasmin et al. (2022) used the average dissolved oxygen and

biological floc count in shrimp farming systems as target parameters,

and considered 17 farming and meteorological parameters. Three

different feature selection techniques are used to create 12 different
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data subsets for model development. The model development utilized

three popular machine learning algorithms, namely Random Forest,

AdaBoost, and Deep Neural Networks. A total of 36 different models

are obtained and their accuracy is evaluated by 7 model validation

tests. Cross-disciplinary researchers are introduced by Quetglas et al.

(2011) to how artificial neural networks are applied in ecology, while

ecologists unfamiliar with artificial neural networks are assisted in

understanding the diverse practical applications of these tools in

aquatic ecology. Machine learning methods refer to training models

on a large amount of historical data to obtain forecasting models,

mainly including support vector machines, random forests, and neural

networks. Aquatic production is influenced by a series of factors, and

aquatic production prediction is a typical nonlinear problem. Neural

networks have strong nonlinear mapping and self-learning abilities.

Current research shows that neural network algorithms have great

potential in aquatic production prediction, and establishing accurate

aquatic production forecasting models by neural network algorithms

is theoretically feasible.

Zhanjiang City is recognized as a vital aquaculture center in

southern China, where an annual industrial output value exceeding

70 billion yuan is generated by the aquatic product industry chain,

while employment opportunities for over 1 million people are directly

and indirectly created (Zhanjiang Statistical Yearbook, 2023). Despite

its economic significance, Zhanjiang lacks a tailored forecasting

framework that accounts for its unique confluence of subtropical

climate, extensive coastal aquaculture, and evolving socioeconomic

factors-including rising per capita GDP, changing consumption

patterns, and fluctuating labor demographics. Existing regional

studies either rely on oversimplified statistical models or overlook

Zhanjiang’s specific challenges, leaving policymakers and industry

stakeholders without actionable predictive tools. To resolve the

aforementioned dilemmas, a targeted multi-phase forecasting

methodology for aquatic production in Zhanjiang is developed in

this research. Grey Relational Analysis (GRA) is utilized to

systematically identify the most influential variables affecting local

aquatic production, with integration of environmental (temperature,

sunshine duration), socioeconomic (GDP per capita, Engel

coefficient), and operational (aquaculture area, fishery population)

factors. A comprehensive dataset is compiled from the Guangdong

Rural Yearbook and Zhanjiang Statistical Yearbook, ensuring

temporal depth and regional specificity. Four neural network

architectures, namely Back Propagation (BP) neural network, BP

neural networks optimized by Genetic Algorithms (GA-BP), LSTM,

and Radial Basis Function neural networks (RBF), are deployed to

develop predictive models, with rigorous performance evaluation

using R² and MAE metrics. Neural network parameter sensitivity

analysis is applied to rank the importance of identified factors,

providing clear guidance for targeted intervention strategies.

The novelty of this approach lies in three interconnected

advancements: (1) its explicit focus on Zhanjiang’s unique

regional dynamics, (2) the integration of 12 multi-dimensional

influencing factors rarely combined in existing models, and (3) a

comparative framework that identifies the optimal neural network

architecture for coastal aquaculture contexts. By addressing the

limitations of statistical oversimplification, ecological data
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dependency, and generic machine learning approaches, both a

methodologically robust forecasting tool and actionable insights

for Zhanjiang’s aquaculture sector are delivered in this study-

ultimately supporting sustainable growth, market stability, and

informed policy formulation.
2 Data and methods

2.1 Data selection

Based on the current research progress (Jaureguizar et al., 2024),

the restrictive factors affecting the output of aquatic products in

Zhanjiang City from 1992 to 2022 have been obtained from the

Guangdong Rural Yearbook and Zhanjiang Statistical Yearbook.

These factors include the total aquaculture area, the number of

motorized fishing vessels, the fishery population, the annual average

temperature, and the sunshine durations. Moreover, considering

that the residents of Zhanjiang City are an important consumer

group of aquatic products, this paper also takes into account the

influences of Zhanjiang’s Engel coefficient, consumer price index,

household registered population, and per capita GDP on the output

of aquatic products. The first nine rows of Table 1 show the above

nine factors, and the tenth row indicates the output of aquatic

products in Zhanjiang City. The following content will continue to

study the impacts of these nine influencing factors on the output of

aquatic products in Zhanjiang City.
2.2 Grey relational analysis

Grey relational analysis(GRA) is an important method within the

theory of grey systems, originally proposed by the renowned scholar

Professor Deng Julong. The theoretical foundation of this analysis

method lies in determining the degree of correlation between different

factors by comparing the geometric similarity of their change curves.
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In this paper, the grey correlation analysis is used to quantitatively

determine the degree of correlation between aquaculture area, number

of motorized fishing boats, fishery population, average annual

temperature, sunshine duration, Engel coefficient, consumer price

index, total number of registered residence registered persons, per

capita GDP and aquatic production. This paper uses the nine

influencing factors mentioned above as comparative sequences and

aquatic production as the reference sequence for GRA. The specific

steps are as follows:

2.2.1 Data normalization
Construct matrix A10�31 using the complete dataset in Table 1,

with the first 9 rows as the comparison sequence and the 10th row

as the reference sequence. Due to the different dimensions of the

data in each row of matrix A10�31, it is necessary to use the mean

normalization method to standardize and obtain the standardized

matrix B10�31. The element bij in B10�31 is calculated by Equation 1.

bij =
aij
aij

(1)

Where, aij represents the elements in matrix A10�31, and aij is

the mean value of the elements in each row of A10�31, i=1,2,…10,

j=1,2,…31. When i=10, b10,j represents the normalized values of the

reference sequence.

2.2.2 Calculate the grey relational coefficients
between the reference sequence and the
reference sequence

Construct the correlation coefficient matrix C, and calculate the

elements in C using Equation 2.

cij =
min bij − b10,j

�� �� + rmax bij − b10,j
�� ��

bij + rmax bij − b10,j
�� �� , i = 1, 2,…9 (2)

Where the resolution coefficient re(0, 1�, and the resolution

coefficient is set to 0.5 in this paper. The results of the first four

columns of matrix C are shown in Table 2.
TABLE 1 Partial data on factors affecting aquatic production in Zhanjiang City.

Year 1992 1993 1994 1995 …

Total Aquaculture Area (hectares) 51168 51719 52691 58266

…

Number of motorized
fishing boats

19288 18875 19280 19251

Fishery Population 293200 293441 295193 299243

Temperature (°C) 23.04 23.53 23.77 22.99

Sunshine Duration (h) 160.05 176.81 153.13 152.36

Engel’s Coefficient% 1464.3 1705.4 2569 3351.6

Consumer Price Index
(Previous Year = 100 Base)

105.6 125.8 125.8 115

household registered population 5678065 5820190 5937687 6038544

Per capita GDP 2348 2811 3728 4563

Total aquatic production (t) 330991 346868 367481 401816
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2.2.3 Calculate the value of GRA
The element cij in the correlation matrix C represents the

degree of correlation between the i-th influencing factor and

the production in the j-th year. Using ri =
1
31o31

j=1cij, the

correlation degree between various influencing factors and

aquatic production can be obtained. The results are shown

in Table 3.

The GRA value ranges between 0 and 1. The closer its value is

to 1, the stronger the correlation with the reference sequence

(aquatic production). According to Table 3, the correlation values

between the top eight influencing factors and aquatic production

are all above 0.9, and the correlation value between the last

ranked influencing factor, the Engel coefficient, and aquatic

production is also as high as 0.787, indicating that the nine

influencing factors selected in this paper have a strong

correlation with aquatic production. So, this paper selects the

nine influencing factors mentioned above as input parameters for

the neural network.
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3 Aquaculture production forecasting
model based on BP neural network

3.1 BP neural network

The establishment of a BP neural network model mainly

involves three steps: initialization of network parameters, forward

propagation of information, and backward propagation of errors.

The basic structure of a BP neural network includes an input layer,

hidden layers (which can be one or multiple), and an output layer,

with each layer potentially containing multiple neurons. A

schematic diagram of a BP neural network is shown in Figure 1.

The information received by the input layer is the learning

sample after network parameter initialization, which is then passed

to each neuron in the hidden layer by Equation 3.

Hj = f (on
i=1wijxi + bj) (3)

The output value of the output layer is calculated using the

Equation 4.

Ok =ol
j=1Hjwjk + bk (4)

The error between the network output value and the actual

value yk is the function ek, and the sum of ek is the objective

function E. See Equation 5 for details.

E =om
k=1ek =om

k=1(yk − Ok  )  (5)

If E ≤ e is satisfied, the algorithm ends. Otherwise, error back-

propagation calculation is performed to update weights and biases.

The update formula is shown below. See Equations 5, 6 for details.

wij(t + 1) = wij(t) + h
∂ E(t)
∂wij(t)

(6)

bj(t + 1) = bj(t) + h
∂ E(t)
∂ bj(t)

(7)

In the above five equations, wij(t + 1) and bj(t + 1) respectively

represent the connection weight and bias value between the ith
TABLE 2 The first four columns of data in the correlation coefficient matrix.

Year 1992 1993 1994 1995

Total Aquaculture Area (hectares) 0.946 0.948 0.95 0.944

Number of Motorized Fishing Vessels 0.882 0.888 0.888 0.894

Fishery Population 0.935 0.938 0.942 0.947

Temperature (°C) 0.888 0.888 0.890 0.901

Sunshine Duration (h) 0.882 0.868 0.896 0.903

Engel’s Coefficient% 0.544 0.504 0.397 0.334

Consumer Price Index (Previous Year = 100 Base) 0.882 0.854 0.858 0.880

household registered population 0.924 0.923 0.925 0.929

Per capita GDP 0.953 0.954 0.958 0.959
TABLE 3 Correlation and ranking of various influencing factors with
aquatic production.

The calculated results of grey relational analysis

Evaluation item The value of GRA Ranking

Total Aquaculture Area 0.967 1

Number of motorized
fishing boats

0.943 7

Fishery Population 0.96 3

Temperature 0.946 4

Sunshine Duration 0.943 6

Engel’s Coefficient 0.787 9

Consumer Price Index 0.944 5

household registered population 0.966 2

Per capita GDP 0.919 8
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neuron in the input layer and the jth neuron in the hidden layer at

the (t+1)th iteration. n, l, and m are the number of nodes in the

input layer, hidden layer, and output layer, respectively. w and b are

the parameters that need to be learned during training, h is the

learning rate, and f is the activation function. Non-linear activation

functions enable neural networks to better learn complex data

patterns, thereby enhancing their expressive power and learning

capabilities. Common activation functions include the sigmoid

function (also known as the S-shaped function) and the

hyperbolic tangent activation function (also known as the bipolar

S-shaped function). The sigmoid function is commonly used in

binary classification problems, which can map real numbers to the

(0,1) interval. The equation is as follows:

logsig(x) =
1

1 + e−x
(8)

The hyperbolic tangent activation function maps real numbers

to the interval (-1,1). The formula for this function is as follows. See

Equation 9 for details:

tansig(x) =
2

1 + e−2x
− 1 (9)
3.2 Modeling with BP neural networks

3.2.1 Data initialization
Based on a total of 31 sets of historical data from 1992–2022 in

Zhanjiang City, a neural network training and testing dataset is

constructed. Eliminate the influence of element dimension on input

neurons through Equation 10.

xij =
aij —minaij

maxaij —minaij
(10)
3.2.2 Model parameter initialization
Before model training, the weights wij and wjk, as well as the

biases bj and bk, of the neural network are randomly initialized. The

maximum number of iterations for the network is set to t=1000, the
error threshold is set to e=1×10-6, and the learning rate is set to

h=0.01. The number of neurons in the hidden layer is set to 6, with

a total of 1 hidden layer.
3.2.3 Training of BP neural network
In model training, the logsign function (Equation 8) is used as

the activation function to assign input information to the (0,1)

interval, and the result is passed to the hidden layer neurons. Then,

the pureline activation function shown in Equation 11 is used to

pass the information to the output layer, and the output result can

be represented by Equation 4.

f (t) = t (11)

Equation 12 is selected to calculate the error E between the

output value and the true value.
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E =okek =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ok(yk − Ok  )

2
q

(12)

Then, compare the error E with the error threshold e. When the

error E ≤ e or the iteration reaches 1000 times, output the

corresponding weights and biases. Otherwise, the network

performs backward adjustment based on the error, using gradient

descent to achieve error correction.

3.2.4 Neural network model testing
The model’s accuracy is validated using a test dataset. The test

dataset is input into the model trained in step (3), and the model’s

performance is evaluated based on the R2 and MAE metrics. R2

assesses the closeness of the model’s predicted values to the actual

values, where an R2 closer to 1 indicates a better fit. MAE measures

the average magnitude of prediction errors, and without

considering the direction of the errors, a smaller value indicates

higher precision. The flowchart of the BP neural network is shown

in Figure 2.
3.3 Aquaculture production forecasting
model

Figures 3 and 4 show the comparison results between the true

values and the forecasting values of the training and testing sets,

respectively. The R2 and MAE of the training set are 0.92 and 73700,

respectively, while the R2 and MAE of the testing set are 0.73 and

92995, respectively. The weights and biases of the aquatic

production forecasting model based on BP neural network in

Zhanjiang City are shown in Tables 4 and 5. Considering the

statistical data of the training set comprehensively, it can be

concluded that the aquatic production forecasting model based

on BP neural network established in this paper has good

performance. However, the R2 value of the testing set is low, and

the forecasting values of the test set fluctuate greatly. This is because

the initial weights and biases of the BP neural network are randomly

specified, which makes the established forecasting model prone to

falling into local minima and causing a decrease in accuracy. To

solve this problem, this paper combines GA with BP neural

network, uses GA to optimize the initial weights and biases of BP

neural network, and establishes a high-precision and robust

Zhanjiang aquatic production forecasting model based on GA-BP

neural network.
4 Aquaculture production forecasting
model based on GA-BP neural
network

4.1 Basic principles of GA

Genetic algorithms represent the data in the solution space as

genotype string structure data in the genetic space before searching,

and by choosing a reasonable coding mechanism, utilize a certain
frontiersin.org

https://doi.org/10.3389/fmars.2025.1556294
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Hu et al. 10.3389/fmars.2025.1556294
coding form of the solution to evolve in order to improve the

algorithm and efficiency, and then realize the diversity of the

solution by crossover, mutation and other operations. Crossover

operation is the most important genetic operation in genetic

algorithm, which randomly matches individuals in a population

into pairs and exchanges part of chromosomes between them with a

certain probability (known as Crossover Rate, Pc); Mutation

operation is that the value of a string in the genotypic string

structure data is changed with a certain probability (known as

Mutation Rate, Pm). Genetic algorithms basically do not use

external information during the evolution process, but are based

on fitness functions, designing fitness functions from the objective

function and ultimately retaining better individuals.
4.2 GA-BP neural network operation steps

4.2.1 Coding
To obtain reasonable initial weights and thresholds for the BP

neural network, a real number encoding method IS used for

optimization. The encoding length S=R*S1+S1*S2+S1+S2, where R,

S1, and S2 are the number of input layer nodes, hidden layer nodes,

and output layer nodes of the BP neural network, respectively. In

the aquaculture production forecasting problem in Zhanjiang City,

R=9, S1 = 6, S2 = 1, and the encoding length S=67.

4.2.2 Fitness function
The fitness function is used to measure individual adaptability,

that is, to measure the error between predicted values and actual

values. Evaluate the quality of genes after selection, crossover, and

mutation operations, train the data using a BP neural network, and

use the reciprocal of the root mean square error between the
Frontiers in Marine Science 06
predicted value Oi and the actual value yi as the fitness function.

The specific equation is shown below. See Equation 13 for details.

fit =
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
non

i=1(yi − oi)
2

q (13)
4.2.3 Initialize the population
Set the initial population size to P=10, and then randomly generate

an initial population of P individuals, W=(W1, W2,…, Wp)
T.

4.2.4 Choose
In genetic algorithms, selection operations are used to

determine which individuals can be selected as the parent

individuals for the next generation. Choose normalGeomSelect

for selection operation, which is a type of normalized geometric

selection. By normalizing the fitness values of individuals and

selecting parent individuals based on the normalized fitness

values. Specifically, the following equation is used to calculate the

probability of an individual in the selection process. See Equation 14

for details.

Prob(i) = (1 − p)pi (14)
4.2.5 Crossover operation
Using the real number crossover method as the crossover

operator, the calculation equation for the crossover operation

between the kth and ith chromosomes at position l is described as

follows. See Equation 15 for details.

akj = akj(1 − b) + aijb

aij = aij(1 − b) + akjb

(
(15)
FIGURE 1

BP neural network structure.
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FIGURE 2

Flowchart of BP neural network.
FIGURE 3

Comparison of true and forecasting values in the training set.
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FIGURE 4

Comparison of true and forecasting values in the testing set.
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Where b is a random number of [0, 1].

4.2.6 Mutation
To maintain population diversity and prevent the population

from falling into a local optimum, genetic mutation is necessary.

The calculation equation for single-point mutation on the jth gene

of the ith individual is as follows. See Equation 16 for details.

aij =
aij + (aij − amax)rF r > 0:5

aij + (amin − aij)rF r ≤ 0:5

(
(16)

where amax and amin are the upper and lower bounds of genes

aij, respectively, r is a random number of [0,1], F = (1 − g=Gmax)
2, g

is the current iteration count, Gmax is the maximum evolution

count, Gmax=30.

The optimal weights and thresholds obtained by the genetic

algorithm are substituted as the initial weights and biases into the

BP neural network, and then the training data set is used to build a

model for the neural network. The flowchart of the GA-BP neural

network is shown in Figure 5 below.
4.3 Aquaculture production forecasting
model

Figure 6 shows the fitness curve. From Figure 6, it can be seen

that the fitness gradually decreases with increasing iteration times.

Figures 7 and 8 show the comparison results between the true values

and the forecasting values of the training and testing sets,

respectively. The R2 and MAE of the training set are 0.99 and

17045, respectively, while the R2 and MAE of the testing set are 0.93
Frontiers in Marine Science 08
and 43428, respectively. The weights and biases of the aquatic

production forecasting model based on GA-BP neural network in

Zhanjiang City are shown in Tables 6 and 7.

The above results indicate that optimizing the initial weights

and biases of the BP neural network through genetic algorithm can

avoid the problem of the neural network model getting stuck in

local minima and causing a decrease in the accuracy and robustness

of the prediction model.

However, there are also some drawbacks to using GA-BP neural

networks. When dealing with large-scale datasets or complex tasks,

the convergence speed of genetic algorithms may become slower.

GA-BP have many parameters that need to be adjusted, such as

crossover probability, mutation probability, population size, and

number of iterations. The selection of these parameters has a

significant impact on the performance of the algorithm. Improper

parameter settings may lead to decreased algorithm performance or

even the inability to find the global optimal solution. Therefore, in

practical applications, a significant amount of time and effort is

required to debug and optimize these parameters.
5 Aquaculture production forecasting
model based on LSTM neural network

5.1 LSTM neural network

The Long Short-Term Memory (LSTM) neural network is

originally proposed by Hochreiter and Schmidhuber in 1997.It is

a special type of recurrent neural network (RNN) specifically

designed to handle and predict long-term dependencies in
TABLE 4 The results of the weights (wik) from the input layer to the hidden layer.

Neuron
numbering

i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9

wik

Neuron No.1 -0.1724 -0.5932 0.3828 1.3176 -1.3124 -1.6235 -2.0370 -0.8389 0.7445

Neuron No.2 -0.4042 0.9240 0.0489 -1.7684 -0.4351 0.9384 -1.2787 -0.5182 -2.1554

Neuron No.3 1.6423 -0.5750 0.9300 -1.4341 0.3633 -1.1327 -1.0882 1.4605 0.3932

Neuron No.4 -1.0454 0.4406 -0.5475 0.5909 -0.5008 1.4182 1.4085 1.6316 -1.6724

Neuron No.5 1.9451 -0.2634 -0.2867 1.1086 2.0558 1.3422 0.6334 -0.0920 -0.5901

Neuron No.6 -1.7671 -1.8819 0.6974 1.7790 -0.7576 -0.2231 -0.5945 0.5166 -0.0619
fr
TABLE 5 bik, wk, and b0 parameter table.

bik wk b0

Neuron No.1 3.5255 Neuron No.1 -0.2479

-0.1025

Neuron No.2 1.8000 Neuron No.2 -0.3366

Neuron No.3 -0.7405 Neuron No.3 1.1695

Neuron No.4 -0.7226 Neuron No.4 -0.5112

Neuron No.5 2.0509 Neuron No.5 0.1599

Neuron No.6 -3.4945 Neuron No.6 -0.0028
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sequential data. Traditional RNNs encounter issues such as

vanishing or exploding gradients when processing long sequences.

This primarily arises because during backpropagation, gradients

can decrease or increase exponentially with the increase in time

steps, making it difficult for the network to learn long-term

dependencies. To address this limitation of RNNs, LSTM

introduces gating mechanisms. Over time, it evolved into a

framework centered around the cell state and gate structures. The

network architecture of the LSTM model is illustrated in Figure 9.

These gating mechanisms control the flow of information, enabling

the network to remember or forget information. The cell state serves

as the pathway for information transmission, allowing input

information to persist through the sequence, i.e., the “memory” of

the network. LSTM has three main gates: the Forget Gate, the Input

Gate, and the Output Gate. The principles of LSTM are detailed on

the website: https://doi.org/10.1162/neco.1997.9.8.1735.

The Forget Gate determines which information should be

forgotten. It generates a value between 0 and 1 through a sigmoid

function, representing the degree of retention for each state value.

Values closer to 0 indicate that the information should be discarded,

while values closer to 1 indicate that the information should be

retained. The Input Gate decides which new information should be

stored in the cell state. It consists of two parts: a sigmoid layer that
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determines which values will be updated, and a tanh layer that

generates a new candidate value vector. The input of the sigmoid

layer and the tanh layer of the output Gate are multiplied to obtain

the updated candidate value. The Output Gate determines which

parts of the current cell state will be output. It first passes through a

sigmoid layer to decide which cell states will be output, then

generates a candidate value for the output state through a tanh

layer, and finally combines these two parts to form the final output.

Assuming that the output from the previous time step is ht−1
and the input at the current time step is xt , the computation

methods for the input gate it , forget gate ft , and output gate ot at

the current time step are as follows, where the sigmoid function and

tanh function are used as activation functions. See Equations 17-19

for details.

it = s (xtwxi + ht−1whi + bi) (17)

ft = s (xtwxf + ht−1whf + bf ) (18)

ot = s (xtwxo + ht−1who + bo) (19)

Where wxi, wxf , wxo, whi, whf and who are weight parameters,

while whi, whf , who are bias parameters.
FIGURE 5

Flowchart of GA-BP neural network.
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5.2 Modeling with LSTM neural networks

The number of input features is 9, and the number of LSTM

units is 4. The Adam optimization algorithm is used for gradient

descent, with a maximum number of iterations set to 1500. The

initial learning rate is set to 0.01, and the learning rate decay strategy

is set to piecewise. This means that the learning rate will change

during training according to preset rules. The learning rate decay

factor is set to 0.1. When the condition for learning rate decay is

met, the current learning rate will be multiplied by this factor. The

learning rate decay period is set to 1200, meaning that after 1200

epochs of training, the learning rate will be multiplied by the decay

factor. The dataset is shuffled at the beginning of each epoch, which

helps the model generalize better and prevent overfitting.
Frontiers in Marine Science 10
5.3 Aquaculture production forecasting
model

Figures 10 and 11 present the comparative results between the

actual values and the forecasted values for the training and testing

sets, respectively. The training set has an R² value of 0.998 and an

MAE of 11236, whereas the testing set has an R² value of 0.94 and an

MAE of 43499.The R² value of LSTM is closer to 1 and its MAE

value is smaller compared to GA-BP, indicating that the differences

between the predicted values and the true values are generally

smaller, and the fitting effect is better than that of GA-BP.

6 Aquaculture production forecasting
model based on RBF neural network

6.1 RBF neural network

In terms of function approximation, the BP neural network

employs the negative gradient descent method, which belongs to

global approximation. Consequently, it has issues such as slow

convergence speed and being prone to falling into local minima,

resulting in significant errors in prediction problems. The Radial

Basis Function (RBF) is a neural network architecture proposed by J.

Moody and C. Darken in the late 1980s. The RBF neural network

achieves a nonlinear mapping relationship between input data and

output data by constructing radial basis functions (typically Gaussian

functions). It has the capabilities of optimal approximation and

overcoming local minima problems. The structure of RBF neural

network is shown in Figure 12.
6.2 RBF neural network operation steps

Taking 9 influencing factors of aquatic product yield as inputs,

where d=9 in the Figure 13, the relationship between the input layer
FIGURE 6

Fitness change curve.
FIGURE 7

Comparison of true and forecasting values in the training set.
FIGURE 8

Comparison of true and forecasting values in the testing set.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1556294
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Hu et al. 10.3389/fmars.2025.1556294
and the hidden layer is a nonlinear mapping, and the basis function

is a Gaussian function.

Ri(x) = exp½− x − cik k2
2s 2

i
� (20)

Among them, i=1,2,…,m; x is an n-dimensional input vector.

x − cik k denotes the vector norm, representing the distance between x

and ci; the value Ri(x) of Gaussian function attains its unique

maximum at the center of a certain basis function. According to

the Equation 20, as x − cik k increases, the value of the basis function

Ri(x) decreases until it approaches zero. For a given input value x,

only a small portion near the center of x is activated. In the Gaussian

function, ci represents the center value of the ith basis function, which

has the same dimensionality as the input vector and is obtained based

on the K-Means clustering method. The specific steps are as follows:

6.2.1 Network initialization
Randomly select h training samples as the clustering centers ci

(i=1,2,…,h).

6.2.2 Grouping the input training sample set
according to the nearest neighbor rule

Assign xp to the respective clustering set ϑp (p=1,2,…,p) based

on the Euclidean distance between xp and the center ci.

6.2.3 Readjust the clustering centers
Calculate the average value of the training samples in each

clustering set p, which is the new clustering center ci. If the new

clustering centers no longer change, the obtained ci are the final

basis function centers for the RBF neural network. Otherwise,
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return to step (2) for the next round. In the Gaussian function, si

represents the standardization constant for the width of the ith basis

function center. It can be solved by calculation Equation 21:

si =
cmaxffiffiffiffiffi
2h

p , i = 1, 2,…h (21)

Where cmax represents the maximum distance between the

selected centers. The connection weights between the hidden

layer and the output layer can be directly calculated using the

least squares method, with the calculation Equation 22:

w = exp(
h

c2max
xp − ci

�� ��2),  p = 1, 2,…p; i = 1, 2,…h (22)

The spreading speed of the radial basis function is set to 1000.
6.3 Aquaculture production forecasting
model

Figures 13 and 14 present the comparative results between the

actual values and the forecasted values for the training and testing

sets, respectively. The training set has an R² value of 0.999 and an

MAE of 5460, whereas the testing set has an R² value of 0.96 and an

MAE of 27725.
7 Model comparison

The Table 8 presents the performance of four neural network

models (BP, GA-BP, LSTM, and RBF) on both training and testing
TABLE 6 The results of the weights (wik) from the input layer to the hidden layer.

Neuron
numbering

i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9

wik

Neuron No.1 -0.0164 0.1865 -0.0472 -0.7108 -0.1516 0.3288 0.9441 0.7102 -0.6013

Neuron No.2 -0.0288 -0.1609 0.3207 0.1833 0.3150 0.5888 -0.1430 0.0879 -0.6714

Neuron No.3 0.9630 -0.2736 0.9599 -0.5434 0.5700 0.5348 0.1891 -0.2385 -0.8931

Neuron No.4 -0.5906 0.6142 -0.5112 -0.4756 -0.8215 0.5907 -0.9927 0.0193 -0.8777

Neuron No.5 -0.7636 -0.4763 0.1822 0.2009 -0.6992 -0.4409 -0.2933 -0.7281 0.9050

Neuron No.6 0.1998 -0.3682 0.5537 -0.4956 0.8302 0.5997 -0.2256 0.2347 0.5818
fr
TABLE 7 bik, wk, and b0 parameter table.

bik wk b0

Neuron No.1 -0.0332 Neuron No.1 0.5854

-0.9855

Neuron No.2 0.2991 Neuron No.2 0.0034

Neuron No.3 0.8912 Neuron No.3 0.8354

Neuron No.4 -0.5051 Neuron No.4 -0.7322

Neuron No.5 0.5683 Neuron No.5 -0.4791

Neuron No.6 -0.2870 Neuron No.6 0.5634
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datasets. For the BP neural network on the training set:The R² value

is 0.92, indicating a high degree of fit on the training data. The MAE

is 73,700, representing an average absolute error between predicted

and actual values of 73,700.On the testing set, the R² drops to 0.73,

suggesting poor generalization ability on unseen data, indicative of

significant overfitting. The MAE increases to 92,995, indicating

larger prediction errors on the testing set. For the GA-BP neural

network on the training set:The R² value improves to 0.99,

indicating a very high degree of fit on the training data. The

MAE significantly decreases to 17,045, with a notable reduction

in prediction error. On the testing set, the R² is 0.93, showing a

significant improvement compared to the BP neural network’s

performance on the testing set, indicating stronger generalization

ability of the GA-BP model. The MAE is 43,428, which, although
Frontiers in Marine Science 12
still indicating some error, is substantially lower than that of the BP

neural network. For the LSTM neural network on the training set:

The R² value is as high as 0.998, indicating nearly perfect fit on the

training data. The MAE is 11,236, representing very small

prediction errors. On the testing set, the R² is 0.94, indicating

strong generalization ability of the LSTM model on the testing set.

The MAE is 43,499, slightly higher than that of GA-BP on the

testing set, but considering LSTM’s advantages in processing time

series data, this level of error is still acceptable. For the RBF neural

network on the training set:The R² value is nearly perfect at 0.999,

indicating a very high degree of fit on the training data. The MAE is

5,460, representing very small prediction errors. On the testing set,

the R² is 0.96, indicating strong generalization ability of the RBF

model. The MAE is 27,725, the smallest among the four models on
FIGURE 10

Comparison of true and forecasting values in the training set.

FIGURE 11

Comparison of true and forecasting values in the testing set.
FIGURE 9

Network structure of the LSTM model.
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the testing set, demonstrating the RBF model’s excellent

performance in prediction accuracy. So, RBF neural network has

the highest accuracy and best robustness in predicting

aquatic production.

Figure 15 displays the time series prediction comparison plot,

Figure 16 presents the bootstrap confidence interval plot, Figure 17

illustrates the error distribution boxplot, Figure 18 shows the annual

error trend analysis, Figure 19 demonstrates the model performance

ranking chart, Figure 20 exhibits the model performance benchmark

plot, and Figure 21 reveals the residual diagnostic plots. To

comprehensively address concerns regarding dataset limitations

and model robustness, our multi-modal analysis demonstrates

RBF’s consistent superiority through seven key visualizations: (1)

The time series prediction comparison plot (Figure 15) reveals RBF’s

precise tracking of actual production trends across the entire 1992–

2022 period, particularly in the 2018–2022 test window; (2) Bootstrap

confidence interval plots (Figure 16) confirm RBF’s stability
Frontiers in Marine Science 13
(R²=0.960 ± 0.246) through 1000 resampling iterations, showing

46% lower variability than BP; (3) Error distribution boxplots

(Figure 17) quantify RBF’s exceptional test-set consistency

(IQR=5.6% vs BP’s 18.3%); (4) Annual error trend analysis

(Figure 18) demonstrates RBF’s sustained [-5%,+15%] error bounds

throughout climatic and economic fluctuations; (5) The model

performance ranking chart (Figure 19) definitively positions RBF as

top-performer (test R²=0.960>LSTM’s 0.940); (6) Performance

benchmark plots (Figure 20) highlight RBF ’s minimal

generalization gap (DR²=0.039) and lowest test MAE (27,725 tons);

while (7) residual diagnostic plots (Figure 21) validate RBF’s

statistically robust error structure (s=17.4, no heteroscedasticity).

Collectively, this evidence chain-spanning temporal accuracy,

statistical stability, error characteristics, and ranking metrics-

conclusively establishes RBF as the optimal architecture for small-

sample aquatic production forecasting.

The superior performance of the RBF neural network over

LSTM in this study can be attributed to several key factors that are

closely related to the characteristics of the available dataset and the

nature of aquaculture production systems. It should be noted that

the 31-year time series (1992-2022) represents the most extensive

temporal coverage currently available for Zhanjiang’s aquaculture

production records, which inherently limits the complexity of

models that can be effectively applied. The annual resolution of

this dataset is found to be better suited to RBF’s localized

approximation capabilities than to LSTM’s sequential learning

strengths. While LSTM networks are typically effective for

modeling complex temporal dependencies in high-frequency data,

the year-to-year variations in aquaculture production are observed

to be influenced more by aggregated environmental and

socioeconomic conditions than by intricate sequential patterns.

This fundamental characteristic of the data explains why the

simpler RBF architecture achieves better performance. The RBF

network’s design is demonstrated to be particularly appropriate for

this application, as its fewer parameters make it less susceptible to

overfitting when trained on limited data-a crucial advantage given

the relatively small dataset available for this regional study.

Furthermore, the RBF network’s ability to model stable, nonlinear
FIGURE 12

The schematic diagram of the Radial Basis Function (RBF) neural network.
FIGURE 13

Comparison of true and forecasting values in the training set.
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relationships between input variables and production output is

shown to align well with the gradual trends that characterize

multi-year aquaculture production data. Sensitivity analysis

confirms the dominance of static factors in predicting annual
Frontiers in Marine Science 14
production, with variables such as GDP per capita and

aquaculture area being identified as having greater predictive

power than purely time-dependent features. This finding provides

a clear explanation for why RBF’s strength in modeling static

nonlinear mappings proves more effective than LSTM’s sequential

learning capabilities for this specific forecasting task. Although

LSTM achieves excellent performance on the training set, a

slightly larger generalization gap is observed compared to RBF,
FIGURE 14

Comparison of true and forecasting values in the testing set.
TABLE 8 Comparison of forecasting models based on BP, GA-BP, LSTM
and RBF neural network.

Types of
neural

networks
R2 MAE

BP
Training set 0.92 73700

Testing set 0.73 92995

GA-BP
Training set 0.99 17045

Testing set 0.93 43428

LSTM
Training set 0.998 11236

Testing set 0.94 43499

RBF
Training set 0.999 5460

Testing set 0.96 27725
FIGURE 15

(a, b) Time series prediction comparison plot.
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FIGURE 16

Bootstrap confidence interval plot.
FIGURE 17

(a, b) Error distribution boxplot.
FIGURE 18

Annual error trend analysis.
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suggesting that the additional complexity of the LSTM architecture

may not be justified given the available data. These results are

consistent with established principles in machine learning

applications, where traditional methods are frequently found to

outperform more complex architectures when working with limited

training samples. The practical implications are significant for

aquaculture management, as they demonstrate that reliable

production forecasting can be achieved without resorting to

resource-intensive deep learning approaches, particularly when

working with the longest available but still limited time series

data typical of regional production records.
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8 Parameter sensitivity analysis

Based on the weight and bias data of GA-BP neural network,

this paper adopts the parameter sensitivity analysis method

proposed by Zhang and Goh (2018) to analyze the relative

importance of factors affecting aquatic production in Zhanjiang.

The contribution of each factor to aquatic production is obtained.

The principle of the parameter sensitivity analysis method is shown

in the following equation. See Equations 23-27 for details.

A: k =o5
i=1 wik � bikj j (23)
FIGURE 19

Model performance ranking chart.
FIGURE 20

(a-c) Model performance benchmark plot.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1556294
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Hu et al. 10.3389/fmars.2025.1556294
FIGURE 21

Residual diagnostic plots.
FIGURE 22

Parameter sensitivity analysis results.
Frontiers in Marine Science frontiersin.org17

https://doi.org/10.3389/fmars.2025.1556294
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Hu et al. 10.3389/fmars.2025.1556294
bik: =
wik � bikj j

A: k
(24)

Ci: =o7
k=1bik (25)

D = max (Ci:) (26)

Si: =
Ci:

D
� 100% (27)

Figure 22 shows the results of parameter sensitivity analysis. The

influencing factors 1–9 represent, in order, the total aquaculture area,

the number of motorized fishing boats, the fishery population, the

temperature, the sunshine duration, the Engel’s coefficient, the

consumer price index, the household registered population, and the

per capita GDP. It can be seen from Figure 22 that the most important

factor affecting aquaculture output is per capita GDP, followed by

sunshine hours, Engel coefficient, consumer price index, temperature,

fishery population, total area of aquaculture, total registered residence

population and number of motorized fishing boats.

9 Conclusion

To forecast the aquatic production in Zhanjiang City, this paper

establishes a forecasting model for aquatic production by

integrating the advantages of GRA, GA, and BP neural network.

Subsequently, the theory of parameter sensitivity analysis is

employed to quantitatively determine the contribution of each

influencing factor to the aquatic production. The main

conclusions of this paper are as follows:
Fron
1. The GRA can effectively quantify the appropriateness of the

selection factors that affect aquatic production.

2. After optimizing the BP neural network by GA, the

accuracy and robustness of the aquatic production

forecasting model are significantly improved, with the R2

increasing from 0.73 to 0.93 and the MAE decreasing from

92995 to 43428 in the test set.

3. Compared with BP neural network, GA-BP neural

network, and LSTM, the RBF neural network model has

the highest forecast accuracy and the most advantage in

robustness. So, when establishing a forecast model for

aquatic production, RBF is the optimal choice.

4. The most significant factor affecting the aquaculture output

is per capita GDP, followed by sunshine hours, Engel

coefficient, consumer price index, temperature, fishery

population, total area of aquaculture, total registered

residence population and number of motorized fishing boats.
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Miguéis, V. L., Pereira, A., Pereira, J., and Figueira, G. (2022). Reducing fresh fish
waste while ensuring availability: Demand forecast using censored data and machine
learning. J. Cleaner Production. doi: 10.1016/j.jclepro.2022.131852

Naorem, O. S., Kumar, P., Bhar, L. M., Singh, K. N., Singh, P., Naorem, O. S., et al.
(2013). Forecasting of fish production from ponds – a nonlinear model approach.
Indian J. Fisheries 60, 67–71.
Frontiers in Marine Science 19
Panwar, S., Kumar, A., Singh, K., Sarkar, S., Gurung, B., and Rathore, A. (2018).
Growth modelling and forecasting of common carp and silver carp in culture ponds: A
re-parametrisation approach. Indian J. Fisheries.

Quetglas, A., Ordines, F., and Guijarro, B. (2011). The Use of Artificial Neural
Networks (ANNs) in Aquatic Ecology (Spain: Instituto Español de Oceanografía, Centre
Oceanogràfic de les Balears).

Rahman, L. F., Marufuzzaman, M., Alam, L., Bari, M. A., Sumaila, U. R., and Sidek, L.
M. (2021). Developing an ensembled machine learning prediction model for marine
fish and aquaculture production. Sustainability 13. doi: 10.3390/su13169124

Raman, R. K., Sathianandan, T. V., Sharma, A. P., Sathianandan, T. V., Sharma,
A. P., and Mohanty, B. P. (2017). Modelling and forecasting marine fish production
in odisha using seasonal ARIMA model. Natl. Acad. Sci. Lett. 40. doi: 10.1007/
s40009-017-0581-2

Siddique, M. A. B., Mahalder, B., Haque, M. M., Shohan, H. M., Biswas, J. C., Akhtar,
S., et al. (2024). Corrigendum to “Forecasting of Tilapia (Oreochromis niloticus)
production in Bangladesh using ARIMA model. Heliyon 10. doi: 10.1016/
j.heliyon.2024.e27111

Stephen, S., Yadav, V. K., and Kumar, R. (2022). Comparative study of statistical and
machine learning techniques for fish production forecasting in Andhra Pradesh under
climate change scenario. Indian J. Geo-Marine Sci.

Tan, X. R., and Deng, J. L. (1995). Grey relational analysis: A new method for
multifactor statistical analysis. Stat. Res.

Tsitsika, E. V., Maravelias, C. D., and Haralabous, J. (2010). Modeling and
forecasting pelagic fish production using univariate and multivariate
ARIMA mode l s . F i sh e r i e s S c i . 73 , 9 79–988 . do i : 10 . 1 111 / j . 1 4 44 -
2906.2007.01426.x

Zhang, W., and Goh, A. T. C. (2018). Assessment of soil liquefaction based on
capacity energy concept and back-propagation neural networks. Integrating Disaster
Sci. Manage., 41–51. doi: 10.1016/B978-0-12-812056-9.00003-8

Zhao, S., Zhang, S., Liu, J., Wang, H., and Zhao, R. (2021). Application of machine
learning in intelligent fish aquaculture: A review. Aquaculture 540, 736724.
doi: 10.1016/j.aquaculture.2021.736724
frontiersin.org

https://doi.org/10.1016/j.envdev.2015.08.005
https://doi.org/10.1016/j.rsma.2022.102716
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1016/j.ecss.2024.108795
https://doi.org/10.1016/j.ecss.2024.108692
https://doi.org/10.1016/j.annals.2019.01.014
https://doi.org/10.1016/j.jclepro.2022.131852
https://doi.org/10.3390/su13169124
https://doi.org/10.1007/s40009-017-0581-2
https://doi.org/10.1007/s40009-017-0581-2
https://doi.org/10.1016/j.heliyon.2024.e27111
https://doi.org/10.1016/j.heliyon.2024.e27111
https://doi.org/10.1111/j.1444-2906.2007.01426.x
https://doi.org/10.1111/j.1444-2906.2007.01426.x
https://doi.org/10.1016/B978-0-12-812056-9.00003-8
https://doi.org/10.1016/j.aquaculture.2021.736724
https://doi.org/10.3389/fmars.2025.1556294
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

	Intelligent forecasting model for aquatic production based on artificial neural network
	1 Introduction
	2 Data and methods
	2.1 Data selection
	2.2 Grey relational analysis
	2.2.1 Data normalization
	2.2.2 Calculate the grey relational coefficients between the reference sequence and the reference sequence
	2.2.3 Calculate the value of GRA


	3 Aquaculture production forecasting model based on BP neural network
	3.1 BP neural network
	3.2 Modeling with BP neural networks
	3.2.1 Data initialization
	3.2.2 Model parameter initialization
	3.2.3 Training of BP neural network
	3.2.4 Neural network model testing

	3.3 Aquaculture production forecasting model

	4 Aquaculture production forecasting model based on GA-BP neural network
	4.1 Basic principles of GA
	4.2 GA-BP neural network operation steps
	4.2.1 Coding
	4.2.2 Fitness function
	4.2.3 Initialize the population
	4.2.4 Choose
	4.2.5 Crossover operation
	4.2.6 Mutation

	4.3 Aquaculture production forecasting model

	5 Aquaculture production forecasting model based on LSTM neural network
	5.1 LSTM neural network
	5.2 Modeling with LSTM neural networks
	5.3 Aquaculture production forecasting model

	6 Aquaculture production forecasting model based on RBF neural network
	6.1 RBF neural network
	6.2 RBF neural network operation steps
	6.2.1 Network initialization
	6.2.2 Grouping the input training sample set according to the nearest neighbor rule
	6.2.3 Readjust the clustering centers

	6.3 Aquaculture production forecasting model

	7 Model comparison
	8 Parameter sensitivity analysis
	9 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


