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The Asian Summer Monsoon provides critical water source to over a billion

people. However, there is mounting evidence regarding how precipitation

associated with the Asian Summer Monsoon varies spatially and temporally,

prompting further exploration of the underlying mechanisms. Here, we

reconstruct a ~2900-year summer precipitation record through grain-size and

clay analyses of core M5-8 retrieved from the Bohai Sea in China. Our records

indicate that the warm (cold) phase of the Atlantic Multidecadal Variability

significantly increases (decreases) summer precipitation in North China

through atmosphere-ocean feedback and circum-global teleconnection. Over

the past millennium, eastern China exhibited a distinctive tripole pattern of

summer precipitation. During the Medieval Climate Anomaly, it exhibited a

positive-negative-positive structure in North, Central, and South China,

respectively. In contrast, during the Little Ice Age, the pattern flipped to a

negative-positive-negative structure. These patterns were influenced by

external forcings, including solar activity and volcanic eruptions, which directly

influenced atmospheric circulation patterns and modulated internal climate

variability. Our study provides an improved understanding of the summer

precipitation variability in East Asia, and emphasizes the external and internal

forcings in shaping the spatial patterns of monsoon precipitation.
KEYWORDS

Asian summer monsoon, Bohai Sea, external forcing, Atlantic multidecadal variability,
tripole precipitation pattern
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1 Introduction

The Asian Summer Monsoon (ASM) precipitation exhibits

variability across interannual, multidecadal, and centennial time

scales, exerting a significant influence on the welfare of billions of

residents in East Asia. The primary driver of ASM precipitation

variability varies across different time scales (Wang et al., 2001,

Wang et al., 2017; Cheng et al., 2016). On the orbital scale, the ASM

exhibits a notable precession cycle due to the migration of the

Intertropical Convergence Zone (ITCZ) in response to variations in

low-latitude solar radiation (Wang et al., 2008; Cheng et al., 2016).

Over the millennial scale, ASM precipitation is known to be

sensitive to changes in the Atlantic Meridional Overturning

Circulation (Porter and An, 1995; Wang et al., 2001). Overall,

external forcings primarily drive the ASM precipitation on both

orbital and millennial scales.

On centennial and multidecadal scales, the forcing factor of

ASM is less well understood. On the one hand, external forcings

such as solar radiation, greenhouse gases, and volcanism can affect

the land-sea temperature gradient, thereby controlling the intensity

of ASM (Mann et al., 2009; Chen et al., 2020). On the other hand,

various oceanic and atmospheric processes, including the

Intertropical Convergence Zone (ITCZ), El Niño-Southern

Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and

North Atlantic Oscillation (NAO) are known to significantly

influence ASM precipitation (Yancheva et al., 2007; Linderholm

et al., 2011; Jiang et al., 2021b). Previous studies have suggested that

the Atlantic Multidecadal Variability (AMV) is also a driving force

of ASM precipitation variability (Lu et al., 2006; Wang et al., 2009).

However, little is known about the long-term effects of AMV on

ASM (Wang et al., 2013; Zhu et al., 2021), which hinders our

comprehensive understanding of the ASM behavior.

Evidence from both instrumental and paleoclimate records

indicates that the ASM exhibits spatial variations in precipitation

intensity (e.g., Ding et al., 2008; Jiang et al., 2021a). However, there

remains debate surrounding the driving forces and spatial pattern of

the ASM. In recent decades, eastern China has experienced either a

dipole or tripole structure (Ding et al., 2008; He et al., 2017). The dipole

structure exhibits a opposite precipitation pattern from the south to

north of the Yangtze River, while the tripole structure demonstrates a

pattern of “+/-/+” or “-/+/-” in North-Central-South China (Ding et al.,

2008; Wang et al., 2022). These precipitation structures were believed

to be influenced byWestern Pacific Subtropical High (WPSH), ENSO,

NAO, and ASM intensity (Ding et al., 2009; Rao et al., 2016b; He et al.,

2017). Similar precipitation structures were also observed during the

last deglaciation (Dai et al., 2021) and the Holocene (Rao et al., 2016a).

Over the past millennium, however, two distinct precipitation patterns

have been identified, i.e., a dipole structure (Chen et al., 2015b) and an

alternating dipole and tripole structure (Wang et al., 2022). The former

was supposed to be modulated by ENSO through the shifts and

intensity of WPSH, while the latter was influenced by the

interactions among monsoon intensity, PDO, and AMV phases

(Chen et al., 2015b; Wang et al., 2022).

In this study, we reconstructed the ASM precipitation variations

from the Bohai Sea sediment grain size in North China over the past
Frontiers in Marine Science 02
~2900 years. This record was compared with those from Central

China and South China to understand the spatiotemporal ASM

precipitation patterns in eastern China (east of approximate 105°E).

We then investigated the potential mechanisms of the reconstructed

precipitation variations in North China and the summer

precipitation patterns in eastern China, and found that they were

primarily influenced by solar radiation, volcanic activity, and AMV.
2 Regional marine
hydrodynamic characteristics

The Bohai Sea, with an average depth of approximately 18

meters, is a shallow marine environment exhibiting relatively low

salinity due to substantial freshwater input from rivers such as the

Yellow and Haihe Rivers (Li et al., 2020). Ocean circulations of the

Bohai Sea include the Yellow Sea Warm Current, Liaodong Coastal

Current, and Bohai Sea Coastal Current (Figure 1). Surface

circulations are driven by the direction and intensity of regional

seasonal winds (Wang et al., 2010). In summer, the Yellow Sea

Warm Current weakens or disappears, allowing the cold Yellow Sea

Water to enter through the Bohai Strait (Figure 1B). Summer winds

drive northward boundary currents in shallow coastal waters (Dou

et al., 2014). In winter, the high-salinity Yellow Sea Warm Current

enters the Bohai Sea, splits into two branches in the northwestern

Bohai Sea, forming the anti-cyclonic Liaodong Gyre (Fang et al.,

2000), and creating a counterclockwise circulation influenced by the

Yellow River’s diluted water (Figure 1C, Zhao et al., 1995). In

addition, strong winter winds cause vertical mixing and drive

southward currents. These dynamical conditions and the Yellow

River’s sediment load produce fine-grained mud, coarse-grained

sand, and mixed deposits in the Bohai Sea (Li et al., 2010; Qiao

et al., 2017).
3 Materials and methods

3.1 Materials

The sediment core M5-8 (39.09°N, 120.0°E), retrieved from the

central basin of the Bohai Sea at a water depth of 22 meters, is 3.46

meters long and has a grayish-black color (Figure 1). The low

salinity of the Bohai Sea results in decreased foraminifera

abundance in marine sediments. Efforts to identify suitable dating

materials, such as shells and charcoal, in the study cores were

unsuccessful, resulting in only three 14C dates obtained from

benthic foraminifera in core M5-8. To constrain a more reliable

age-model, we used the mass magnetic susceptibility data from

cores M12-8, M5-8, and BHB15-6 to refine the age-depth model,

yielding additional age tie points (Li et al., 2023). The age

uncertainties for these tie points were provided by the initial age-

depth model, established using 14C dating and calculated with

Undatable software (Lougheed and Obrochta, 2019). The

obtained age model for core M5-8, shown in Supplementary

Figure 1, spans ~2900 years.
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3.2 Grain-size and clay mineral analysis

For the grain-size analysis, a total of 159 bulk samples were

pretreated using the H2O2-HCl procedure to remove organic

matter and carbonates, respectively. Grain size frequency

distributions were measured using a Malvern Mastersizer 3000G

laser diffraction particle analyzer at the Centre for Marine
Frontiers in Marine Science 03
Magnetism (CM2), Southern University of Science and

Technology, Shenzhen, China. Clay mineral studies were

conducted on 15 samples of the <2 mm fraction, which was

separated using Stoke’s settling velocity principle (Dane et al.,

2002), following the removal of organic matter and carbonate

through treatment with 15% hydrogen peroxide and 25% acetic

acid. Clay mineral assemblages were determined by X-ray
FIGURE 1

(A) Locations of the core M5-8 and other key sites are mentioned in the text, including 1: Dali Lake (Wen et al., 2017), 2: Gonghai Lake (Chen et al.,
2015a), 3: Nvshan Lake (Jiang et al., 2021b), 4: Dajiuhu Peat (He et al., 2003), 5: Heshang Cave (Li et al., 2014), 6: core YHS (Zhao et al., 2024), 7:
Daping Swamp (Zhong et al., 2017), 8: core DA (Zhang et al., 2024). The background shading represents the climatological summer (June-July-
August) precipitation (unit: mm/year) from the GPCP data (Adler et al., 2003), while the black vectors depict the 850 hPa wind pattern (unit: m/s)
from the NCEP Reanalysis II data over the Asia Summer Monsoon region (Kanamitsu et al., 2002). The data for both variables cover the period of
1979-2014 on a 2.5°×2.5° global grid. The monsoon boundary is modified from Zhou et al. (2016). The Ocean circulations in the Bohai Sea in
summer (B, C) winter season (modified after Li et al., 2020). YSWC, Yellow Sea Warm Current; YSCW, Yellow Sea Cold Water; BSCC, Bohai Sea
Coastal Current,; LNCC, Liaonan Coastal Current; LDCC, Liaodong Coastal Current. The red star indicates the position of core M5-8. The mud area
(defined by mean grain size less than 16 mm) was delineated by gray lines (Qiao et al., 2017).
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diffraction using a D8 ADVANCE diffractometer with CuKa
radiation (40kV, 40 mA) at the Key Laboratory of Marine

Geology and Environment, Institute of Oceanology, Chinese

Academy of Sciences, Qingdao, China.
3.3 Climate model simulations

To verify the variations in precipitation patterns over the past

millennium, historical simulations in the National Center for

Atmospheric Research (NCAR) Community Earth System Model

Last Millennium Ensemble (CESM-LME) archive (Otto-Bliesner

et al., 2016) are used for the period 850-1850 CE. The LME is a set of

transient climate simulations that includes two categories: (1) an all-

forcing experiment in which all transient forcings (including

greenhouse gases, land-use changes, ozone, aerosols, and volcanic

eruptions) are incorporated together, and (2) single-forcing

simulations where each transient forcing factor is applied

individually. In this study, we used the monthly precipitation and

850 hPa wind from the 13 all-forcing experiments, 4 solar radiation

sensitivity experiments, and 5 volcanic eruption sensitivity

experiments from the CESM-LME archive to investigate the

spatial patterns of summer precipitation and the corresponding

synoptic circulation. CESM-LME experiments were run with the

Community Earth System Model version 1.1 with a horizontal

resolution of 1.9×2.5 degrees. The forcing data used in CESM-LME

as shown in Supplementary Table 1.
4 Results

4.1 Clay mineralogy and
sediment provenance

The clay mineral assemblages of core M5-8, as shown in

Supplementary Table 2, are dominated by illite, which

constitutes 50.55 to 64.71% of the composition, with an average

of 59.72%. Smectite (12.79-22.94%), kaolinite (9.52-13.17%), and

chlorite (10.37-15.9%) are also present but in relatively lower

proportions, with average contents of 16.16%, 11.14%, and

12.98%, respectively.

The Yellow River discharges approximately 0.7 billion tons of

sediments annually into the surrounding oceans and is considered to

be the primary source of sediment for the Bohai Sea (Qiao et al., 2017;

Li et al., 2020). The composition of clay minerals indicate that the

core M5-8 sediments mainly originated from the Yellow River

(Figure 2), which is consistent with the provenance indicated by

clay minerals in the surface sediments of the Bohai Sea (Yu et al.,

2017). Furthermore, the distribution of heavy minerals and

magnetic properties provides additional evidence supporting that

the Yellow River is the main sediment source for the central basin

of the Bohai Sea (Han et al., 2013; Li et al., 2020). Consequently, it

can be reasonably inferred that the sediment of core M5-8 is

predominantly derived from the Yellow River, which receives a

substantial sediment supply from the Loess Plateau (Ren and Shi,
Frontiers in Marine Science 04
1986). This makes our site an ideal location to capture the variability

of precipitation over the northern section of the tripole

precipitation regime.
4.2 Grain size distribution and
climate significance

Figure 3 displays the variation in grain size distribution for the

sediment from core M5-8. The grain size frequency distribution

curves and the grain size standard deviation model reveal a bimodal

grain size structure (Figures 3A, B), probably suggesting the

influence of two distinct hydrodynamics in the region. The main

components of the sediments are silt (26.98-64.46%, with an

average of 49.41%) and sand (21.67-66.78%, with an average of

42.12%). Minor amounts of clay are also present (4.85-14.25%, with

an average of 8.47%).

Approximately 85% of the Yellow River’s annual sediment load

is discharged into the sea during the flood season, which occurs in

the summer (Li et al., 1998). Seasonal variations in the intensity of

the monsoon winds leads to corresponding changes in the

hydrodynamic conditions of the Bohai Sea, with stronger

hydrodynamic conditions during winter when the monsoon

winds are intense and weaker conditions during summer when

the monsoon winds are less intense (Figure 1, Wang et al., 2014;

Yang et al., 2011). Coarse-grained sediments deposit near the

Yellow River delta in summer and are resuspended and exported

to the surrounding ocean in winter due to strong hydrodynamic

conditions (Li et al., 2010; Wang et al., 2014), while fine-grained

sediments are transported seaward in summer under weaker

hydrodynamic conditions (Li et al., 2010; Meng et al., 2023).
FIGURE 2

Provenance discrimination plot of clay minerals. The Yellow River
data are from Zhang et al. (2019) and Yang et al. (2003), the Haihe,
Luanhe, Dalinghe, and Liaohe Rivers data are from Dou et al. (2014),
and the Loess Plateau data are from Zhang et al. (2019) and Ren and
Shi (1986).
frontiersin.org

https://doi.org/10.3389/fmars.2025.1556480
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Li et al. 10.3389/fmars.2025.1556480
Previous studies have shown that the Yellow River runoff is

primarily governed by the ASM (Yi et al., 2012; Wu et al., 2020),

indicating that fine-grained sediments can serve as a proxy for

variations in ASM-driven precipitation. Data from the Lijin station

over the past 70 years show a high correlation between the Yellow

River’s annual runoff and sediment load, both of which are also

related to basin’s summer precipitation (Supplementary Figure 2).

This indicates that increased summer precipitation leads to higher

runoff and sediment load, including the fine-grained sediment.

Although certain indices were affected by the Yellow River

diversion, the sediment grain size remains a reliable indicator of

regional precipitation proxy (Zhou et al., 2013; Zhang et al., 2020).

Under normal regional dynamic conditions, the fine-grained

fraction of sediment (<20 mm, ~>5.6 j) can be transported as
Frontiers in Marine Science 05
suspended particles from rivers to the sea (Fan et al., 2002). In this

study, we define the fine-grained fraction of <20 mm in core M5-8 as

a proxy for the intensity of ASM.
4.3 The ASM variations during the
late Holocene

The fine-grained sediments extracted from core M5-8 provide a

high-resolution ASM precipitation record covering ~2900 years

(Figure 4b). From ~900 BCE to around 1000 CE, there was a

gradual decreasing trend in ASM precipitation. During the last

millennium, ASM precipitation exhibited a notably high intensity

between 1000 and 1300 CE, but was comparatively weak from 1450
FIGURE 3

Sediment grain size results for core M5-8. (A) Grain size frequency distribution curves for all samples. (B) The grain size standard deviation model.
(C) Variations in clay/silt/sand content, mean grain size, and the fine-grained fraction (<20 mm) since ~900 BCE.
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to 1900 CE (Figure 4b). Our findings are generally consistent with

other ASM studies carried out in North China (Figures 4a, c) within

the bounds of chronological uncertainties (Chen et al., 2015a;

Wen et al., 2017), which further confirms that our results

accurately represent the regional behaviors of ASM precipitation.
Frontiers in Marine Science 06
On the other hand, the precipitation patterns in China exhibit

significant spatial variations, especially during the last millennium

(Figure 4). During the Medieval Climate Anomaly (MCA, 1000 -

1300 CE; IPCC, 2007), both the ASM records from North China

(Figures 4a–c) and South China (Figures 4g–i) suggest a relatively
FIGURE 4

Comparison of Asian Summer Monsoon precipitation records from (a) Dali Lake at 43.26° (Wen et al., 2017), (b) core M5-8, (c) Gonghai Lake
(Chen et al., 2015a), (d) Nvshan Lake (Jiang et al., 2021b), (e) Dajiuhu Peat (He et al., 2003), (f) Heshang Cave (Li et al., 2014), (g) core YHS
(Zhao et al., 2024), (h) Daping Swamp (Zhong et al., 2017), (i) core DA (Zhang et al., 2024). MCA, Medieval Climate Anomaly; LIA, Little Ice Age.
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wet condition. In contrast, the records from the Central China

(Figures 4d, f) reveal a dry condition. However, during the Little Ice

Age (LIA, 1400 - 1900 CE; IPCC, 2007), the aforementioned

precipitation patterns were reversed (Figure 5). Consequently,

these results indicate that a tripole precipitation pattern (i.e.,

“-/+/-” or “+/-/+”) existed in eastern China during the

last millennium.
Frontiers in Marine Science 07
5 Discussion

5.1 Influence factors of ASM precipitation
in North China

Numerous studies have demonstrated that factors such as the

migration of the ITCZ, ENSO, solar irradiance, etc. play significant
FIGURE 5

(A) Variation of fine-grained fraction from core M5-8. (B) Bulk Ti content of Cariaco Basin sediments from ODP Site 1002 (Haug et al., 2001). (C) 30°
N summer insolation (Laskar et al., 2004). (D) Tropical Pacific mean-state index (Jiang et al., 2023b). (E) Mode of THE North Atlantic Oscillation
(NAO) (Trouet et al., 2009; Olsen et al., 2012). (F) Variation of the Atlantic multidecadal variability (AMV) using a 15-year weight moving average
window (purple) (Lapointe et al., 2020). (G) Z-score normalization curve for the fine-grained fraction from core M5-8.
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roles in modulating precipitation variability in the ASM region,

spanning across various timescales from interannual to millennial

(e.g., Jiang et al., 2021b; Yancheva et al., 2007; Zhang et al., 2021). As

shown in Figure 5, a positive correlation is observed between our

ASM record (Figure 5B), 30°N summer insolation (Figure 5C), and

especially the migration of the ITCZ. This suggests that the

southward migration of the ITCZ directly contributed to the

reduction in precipitation decrease in North China since ~900

BCE by weakening the ASM.

In terms of the internal variability of the climate system, the

impact of ENSO on summer precipitation appears to have been

more significant in the last millennium than in previous periods

(Figures 5A, D). The WPSH is considered instrumental in

facilitating the impact of ENSO on precipitation variations in

eastern China (Chen et al., 2015b; Jiang et al., 2021b). A La Niña

(El Niño) state would result in a strengthening and southwestward

(weakening and northeastward) shift of the WPSH, as well as a

strengthening (weakening) of the ASM (Ong-Hua and Feng, 2011).

These changes in atmospheric circulation patterns contribute to an

intensification (diminishment) of precipitation over North China

(Rao et al., 2016b; He et al., 2017). Consequently, the observed

increase (decrease) in North China precipitation during the MCA

(LIA) can be influenced by the La Niña (El Niño) state

(Figures 5A, D).

In addition to the low-latitude variability, the contribution of

mid- and high-latitude variability, such as NAO and AMV, to ASM

precipitation should not be ignored. The signals of the NAO are

transmitted to East Asia via stationary waves and influence the

summer precipitation in the region (Linderholm et al., 2011).

However, our ASM record displays no significant correlation with

the variations in the NAO mode during the late Holocene

(Figures 5A, E, G), which is inconsistent with the weather station

data (Sung et al., 2006). Conversely, our ASM record demonstrates

a robust positive correlation with AMV, consistent with the modern

observations and ensemble experiments (Lu et al., 2006; Wang et al.,

2009), where high summer precipitation corresponds to the warm

AMV phase and vice versa (Figures 5F, G). This enhanced ASM

precipitation during the warm AMV phase is due to the coupled

atmosphere-ocean feedback in the western Pacific and Indian

Oceans as well as the circum-global teleconnection wave train

pattern over Eurasia (Lu et al., 2006). Similarly, Gao et al. (2017)

proposed that compared to other climate drivers like NAO and

PDO, AMV has been the dominant forcing factor on monsoon and

extreme precipitation in the ASM region over the past few decades.

Overall, our data indicates that southward ITCZ migration has led

to reduced precipitation in North China since ~900 CE. Superimposed

on this long-term trend, the AMVmodulates precipitation, with warm

phases potentially enhancing it and cold phases reducing it.
5.2 External forcings contributing to the
tripole precipitation pattern in
eastern China

The ASM precipitation records in eastern China reveal a tripole

precipitation pattern over the last millennium (Figure 4). This finding
Frontiers in Marine Science 08
differ from previous studies that identified dipole or alternating dipole

and tripole structures (Chen et al., 2015b; Wang et al., 2022). Previous

studies suggested that the dominant factors influencing summer

precipitation patterns in eastern China were ENSO or the coupled

PDO, AMV, and ASM (e.g., Chen et al., 2015b; Wang et al., 2022).

However, external forcings such as solar radiation and volcanic activity

have undergone significant changes over the past thousand years

(Crowley, 2000; Mann et al., 2009). These distinct variations in

external forcing give rise to diverse atmospheric circulation patterns,

ocean-atmosphere interactions, and sea surface temperature (SST)

modes, ultimately leading to obvious spatial variations in

precipitation (Otterå et al., 2010; Man and Zhou, 2011; Liu et al.,

2014). Additionally, internal forcings like ENSO, PDO, and AMO can

be modulated by solar radiation and/or volcanic activity, thereby

influencing the ASM precipitation (Paik et al., 2020; Liu et al., 2022;

Sun et al., 2022; Du et al., 2023). The impact of external forcing factors

such as solar radiation on ASM is amplified through internal forcing

factors (Du et al., 2023). Consequently, it is unlikely that internal

forcings played a major role in determining the summer precipitation

patterns in eastern China. Instead, they were probably primarily

modulated by external forcings. Therefore, we employed numerical

experiments using the CESM-LME (Otto-Bliesner et al., 2016) to

investigate the impact of external forcing on the tripole precipitation

pattern in eastern China.

The numerical model results reveal a distinct tripole

precipitation pattern in eastern China during the MCA and LIA

(Figures 6A, B), demonstrating remarkable concordance with

precipitation records (Figure 4). During the MCA, intensified

solar radiation strengthens the ASM, inducing cyclonic

circulation over South China and anti-cyclonic circulation over

North China. These were achieved through both direct influences of

the ITCZ northern shift and indirect influences of the circum-global

teleconnection wave train through a positive AMV-like phase

(Zhang et al., 2018; Qin et al., 2022), leading to divergence over

Central China (Figure 6A). These circulation anomalies lead to an

increase in precipitation in both South and North China, while

suppressing precipitation in Central China (Figure 6A). Conversely,

during the LIA, reduced solar radiation and increased volcanic

activity weakened the ASM, leading to convergence over Central

China (Figure 6B), due to the southern shift of the ITCZ and the

negative AMV-like phase. Consequently, these altered circulation

anomalies result in a reversal of the precipitation pattern compared

to the MCA (Figure 6B).

To understand the drivers of these changes, we used the single

forcing simulations of the CESM-LME. The solar radiation

sensitivity experiment shows a relatively weak tripole structure,

with wetter conditions over North China and South China and drier

conditions in Central China during the MCA and the opposite

during the LIA (Figures 6E, F). However, the drying/wetting of

Central China is relatively weak and displaced northward compared

to the all-forcing simulation (Figures 6A, B). Meanwhile, the

volcanic forcing sensitivity experiment shows MCA drying and

LIA wetting patterns over Central China that are similar to those in

the full forcing simulation (Figures 6C, D). Furthermore, the

differences between MCA and LIA from solar activity and

volcanic eruption sensitivity experiments are not exactly the same
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as in the all-forcing experiments (Supplementary Figure 3). These

results indicate that the tripole pattern in precipitation was not

solely determined by one factor, but rather by the combined effects

of solar radiation and volcanic activity.

In addition, external forcings contribute significantly to the SST

patterns by directly influencing the tropical SST (Jiang et al., 2023a;

Otterå et al., 2010), thereby impacting the monsoon precipitation

variability in eastern China (Chen et al., 2015b; Jiang et al., 2021b).

Intense (weak) solar radiation and weak (intense) volcanic

eruptions could cause the tropical Pacific to become similar to a

La Niña (El Niño) anomaly through the ocean dynamical

thermostat mechanism (Clement et al., 1996; Jiang et al., 2023a).
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As a result, this leads to more (less) precipitation in North and

South China, and less (more) precipitation in Central China (He

et al., 2017; Jiang et al., 2021b).

In summary, the combined influences of solar radiations and

volcanic eruptions on ASM precipitation over eastern China are

achieved through direct influences on circulation patterns and

indirect influences on internal variability, such as AMV and

ENSO. In the face of increasing greenhouse gas emissions

and climate warming, we proposed that eastern China may

experience a tripole precipitation structure on the centennial

scale, with a potential trend of increasing precipitation in North

China (Jiang et al., 2021a; You and Wang, 2021).
FIGURE 6

Spatial distributions of summer (June to August) precipitation anomalies (shade, unit: mm/day) and 850hPa wind anomalies (vector, unit: m/s) during
the MCA (A, C, E) and LIA (B, D, F) from CESM-LME all-forcing experiments (A, B), volcanic eruption sensitivity experiments (C, D), and solar radiation
sensitivity experiments (E, F). The region marked by the dashed line represents eastern China. The blue grid indicates 90% confidence.
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6 Conclusions

This study reconstructs a ~2900-year ASM precipitation record

for North China based on grain-size and clay mineral analyses of

core M5-8 retrieved from the Bohai Sea, China. The sediment

source is predominantly the Yellow River, with fine-grained

particles serving as a proxy for ASM precipitation. Our results

demonstrate that southward migration of the ITCZ has driven long-

term reduced precipitation in North China, with the AMV

superimposing fluctuations through atmosphere-ocean feedback

and circum-global teleconnection. Furthermore, a synthesis of

paleoclimate records from eastern China over the last millennium

reveals a tripole precipitation pattern, characterized by a positive-

negative-positive (negative-positive-negative) structure in North,

Central, and South China during MCA (LIA), respectively. CESM-

LME simulations establish that this summer precipitation pattern

arose from the combined effects of solar radiation variations and

volcanic forcing, which directly modulated circulation patterns and

indirectly influenced internal variability, including AMV

and ENSO.
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