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Giant diatom blooms driven by
deep water upwelling since late
MIS3? Evidence from the rim of
the Mariana Trench
Junyu Lin1,2, Dong Xu1,2*, Yue Li2, Liming Ye1,2, Qian Ge1,2,
Yeping Bian1,2, Xibin Han1,2, Weiyan Zhang1,2

and Shenghui Cheng1,2

1State Key Laboratory of Submarine Geoscience, Hangzhou, China, 2Second Institute of
Oceanography, Ministry of Natural Resources, Hangzhou, China
Laminated Diatom Mats (LDMs) in the low-latitude Western Pacific provide key

insights into global climate and carbon cycling. While Ethmodiscus rex (E. rex)

LDMs research has advanced, two critical aspects remain to be elucidated: (1) the

precise chronology of LDMs formation, and (2) its relationship with oceanic

circulation patterns and associated nutrient flux variations. In this study, we

employed AMS 14C dating coupled with carbonate content variations to

constrain the formation age of LDMs, complemented by comprehensive

geochemical and clay mineral analyses of core E20, we found: (1) Diatom

blooms occurred mainly from Last Glacial Maximum (LGM) to early Holocene;

(2) Sediments are mostly volcanic, with increased material in E. rex layers

suggesting stronger deep currents transported volcanic debris; (3) Blooms

weren’t solely caused by Asian dust-derived nutrients. We propose deep current

intensification and topographic upwelling drove diatom growth, highlighting deep

ocean processes’ role in surface productivity and LDMs formation. This advances

understanding of their climate and carbon cycle significance.
KEYWORDS

last glacial period, Western Pacific, Mariana Trench, laminated diatom mats,
Ethmodiscus rex
1 Introduction

The low-latitude Western Pacific is a pivotal region for global sea-air interactions, with

its interannual variability exerting a substantial influence on global climate dynamics (Yan

et al., 1992; Webster et al., 1998; Hollstein et al., 2018; Bowman et al., 2023). Studies have

demonstrated the low-latitude Western Pacific’s capacity for atmospheric CO2

sequestration during glacial periods (Bradtmiller et al., 2006; Xiong et al., 2013; Xu et al.,

2020). Recent discoveries of extensive Laminated Diatom Mats (LDMs) in the low-latitude
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Western Pacific have significantly enhanced our understanding of

global climate dynamics and carbon cycling processes (Xiong et al.,

2013; Luo et al., 2018a, 2018b; Tang et al., 2024).

Diatoms, which contribute approximately 40% of marine

primary productivity (Nelson et al., 1995), play a crucial role in

the biological pump, exhibiting higher carbon sequestration

efficiencies compared to calcareous organisms (Harrison, 2000).

Diatom mats typically form through the bloom of ‘giant’ or ‘shade’

diatoms, which are rapidly buried and preserved as laminated

sediments (Kemp and Baldauf, 1993; Zhai et al., 2009). These

mats deliver significant quantities of organic carbon and biogenic

silica to the seafloor, thereby influencing atmospheric CO2 partial

pressure regulation and playing a pivotal role in the global carbon

cycle and silica cycle (Kemp and Villareal, 2013). To date, diatom

mats have been documented in the Pacific, Atlantic, Indian, and

Southern Oceans (Kemp et al., 2006). The Western Pacific’s

predominant mat-forming diatom species, Ethmodiscus rex (E.

rex), exhibits unique ecological adaptations, including the

capacity to thrive in oligotrophic, stratified subsurface waters and

perform vertical migrations (Kemp and Baldauf, 1993; Yoder et al.,

1994; Kemp et al., 2010). E. rex LDMs are found across various

geomorphological units in the Western Pacific, including trenches

(hadal zones) (Luo et al., 2017; Zhang et al., 2019; Huang et al.,

2020; Lai et al., 2023; Tang et al., 2024), basins (Zhai et al., 2009;

Xiong et al., 2010; Shen et al., 2017; Zhang et al., 2021), ridges

(Shibamoto and Harada, 2010; Cai, 2019; Li et al., 2021). Most E. rex

LDMs have been dated to the Last Glacial Maximum (LGM) (Zhai

et al., 2009; Xiong et al., 2010) and the Last Deglaciation (LD) (Tang

et al., 2024), with a limited number of studies reporting Holocene

diatom mats (Zhang et al., 2024).

Three primary hypotheses have been proposed to explain the

formation mechanism of E. rex diatom mats in the Western Pacific

during the LGM: (1) The Silica Ventilation Hypothesis (Zhai et al.,

2009), this hypothesis proposes that the northward expansion of

silica-rich Antarctic Intermediate Water (AAIW) during the last

glacial period could have stimulated diatom blooms. (2) The Eolian-

Silicon-Induced Bloom Hypothesis (Xiong et al., 2013, 2015), this

mechanism suggests that diatom blooms were fueled by nutrients

(Si and Fe) derived from Asian dust. These blooms occurred in

stratified seawater environments, with diatoms subsequently

deposited on the seafloor through a process termed ‘fall

dumping’. (3) The Middle-Deep Water Upwelling Stimulation

Hypothesis (Zhang et al., 2021), this hypothesis proposes that

diatom blooms were triggered by a reduction in seawater

stratification and the upwelling of nutrient-rich waters from mid

and deep layers. Additionally, the thermohaline circulation of

surface seawater played a critical role in this process. Although

widely recognized, the “Silicon-Induced Bloom Hypothesis” still

faces challenges in explaining certain phenomena, including:1)E.

rex LDMs have not been reported in the northwestern corner of the

Philippine Basin (northwest of core WPS1/2, see Figure 1), which is

closer to the eolian dust source. Instead, E. rex LDMs are more

commonly found around the Mariana-Yap Trench, a region farther

from the dust source (Luo et al., 2017; Zhang et al., 2019, 2024;

Huang et al., 2020; Lai et al., 2023). 2) Although substantial eolian
Frontiers in Marine Science 02
dust deposition occurred in the Western Pacific during marine

oxygen isotope stage (MIS) 4 and 6 (Han et al., 2002; Maeda et al.,

2002; Xu et al., 2015), no E. rex LDMs have been documented in

these periods, despite reported increases in opal mass accumulation

rates (MAR) during MIS6 and MIS4 (Maeda et al., 2002). Recently,

Xiong et al. (2022) refined their hypothesis, suggesting that strong

aridity during the LGM prevented the formation of a subsurface

barrier layer, allowing deep key nutrients (nitrate and/or

phosphate) to reach surface waters, thereby stimulating blooms of

E. rex and the subsequent formation of LDMs in the Indo-Pacific

Warm Pool (IPWP).

A review of current research on E. rex LDMs in the Western

Pacific reveals some key limitations, including but not limited to: (1)

Uncertainty in the age of LDMs. The chronological framework of

LDMs remains contentious, particularly regarding the reliability of

AMS 14C dating applied to diatom-rich samples (Xiong et al., 2013;

Zhang et al., 2021); (2) Numerous cores containing E. rex-rich

layers have been recovered from submarine high-relief topography.

Researchers have investigated the relationship between the

formation of these E. rex-rich layers and changes in current

dynamics (and nutrient supply), as documented in cores from the

Bermuda Rise in the North Atlantic (Hendry et al., 2014), the 23-33°

S section of the Mid-Atlantic Ridge (Romero and Schmieder, 2006),

and the 90°E Ridge in the Indian Ocean (Broecker et al., 2000).

However, in the Western Pacific, LDMs records are predominantly

derived from deep-water environments, with a conspicuous scarcity

of cores collected from submarine high-relief topography (Cai,

2019; Li et al., 2021). Furthermore, the influence of current

systems has received remarkably little attention; (3) The lack of

geochemical criteria for classifying LDM or diatomaceous clay (DC)

presents another limitation. For instance, there are no established

thresholds for total SiO2 or opal content in sediments to definitively

categorize deposits as either LDM or DC. This knowledge gap

hinders robust assessment of diatom bloom intensity in the

Western Pacific and obscures the mechanisms underlying

their formation.

This study presents a comprehensive analysis of the

geochemical signatures and clay mineral assemblages in core E20

from the Mariana Arc, which exhibits alternating E. rex LDMs and

calcareous clay sequences. Through integrated analysis of LDMs

distribution patterns, seabed topography, and deep current

dynamics during the last glacial period, we propose a new

mechanistic framework for LDMs formation in the low-latitude

Western Pacific.
2 Materials and methods

2.1 Study area

The study area is situated primarily within the Mariana

subduction zone, a classic example of an ocean-ocean subduction

zone formed by the westward subduction of the Pacific plate

beneath the Philippine plate. This region features a complex

trench-arc-basin system, with the Mariana Island Arc, the Parece
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Vela Basin, the Kyushu-Palau Ridge, and the West Philippine Basin

developing sequentially from east to west. The deep-sea basins near

island arcs and ridges accumulate sediments comprising both distal

sources, such as Asian inland dust transported by the East Asian

winter monsoon, and proximal sources, including materials from

ridge (seamount) erosion and volcanic activities (Scott and

Kroenke, 1980; Seo et al., 2014). Recent studies have revealed that

the E. rex LDMs in western Pacific are predominantly located in

low-lying basins, rifts, and trenches (hadal zones) due to the “funnel

effect”: the variations in seafloor topography can cause some

stations to block lateral transport by bottom currents, allowing

deposited diatom mat fragments to accumulate and preserve, while

others are carried away by current flushing (Tang et al., 2024).

The study area is located within the oligotrophic North Pacific

Subtropical Gyre, where strong stratification significantly inhibits

vertical mixing between surface waters and the deeper ocean (Dai

et al., 2023). The deep water in this area is influenced by the

Circumpolar Deep Water (CDW), a component of the Antarctic

Bottom Water (AABW) (Lumpkin and Speer, 2007), which can be

further divided into Lower Circumpolar Deep Water (LCDW) and

Upper Circumpolar Deep Water (UCDW) (Chiswell et al., 2015).

Below approximately 3500 meters in the western Pacific, the deep

water is predominantly influenced by the LCDW (Zhang et al.,
Frontiers in Marine Science 03
2022). Recent mooring observations reveal that the Yap-Mariana

Junction acts as a key conduit for the LCDW to flow into the

western Pacific. Furthermore, the abyssal current from the West

Mariana Basin (WMB) enters the North Pacific Basin (NPB) via the

Kyushu-Palau Ridge (KPR) Channel (Wang et al., 2023). The

seabed topography in these critical channels is highly complex,

with the deep flow fields and water mass structures displaying

pronounced seasonal variability (Wang et al., 2023). The

intermediate water in the study area is likely influenced by the

North Pacific Intermediate Water (NPIW), whereas the surface

water dynamics are predominantly controlled by the North

Equatorial Current (NEC) (Figure 1).
2.2 Sample information

Core E20 was collected from a depression (12.000167°N,

140.200575°E) on the Mariana Arc at a water depth of

approximately 4100 meters (Figure 1c). The 331 cm-long core

displays pronounced lithological variability, comprising three

distinct sedimentary units from base to top: U3 (280–331 cm),

composed of brown pelagic clay/calcareous clay; U2 (10–280 cm),

dominated by fragments of the giant diatom E. rex, forming yellow-
FIGURE 1

Sketch map of the study area and the core sites. (a) Current distribution in the study area (modified after Hu et al., 2015; Hu and Piotrowski, 2018;
Xiao et al., 2020; Tang et al., 2024). (b) The black boxed area in panel (a). (c) Seafloor topography around core E20. WPB, West Philippine Basin; PVB,
Parece Vela Basin; MT, Mariana Trench; SR, Shatsky Rise; AABW, Antarctic Bottom Water; LCDW, Lower Circumpolar Deep Water; UCDW, Upper
Circumpolar Deep Water; NEC, North Equatorial Current; NPIW, North Pacific Intermediate Water; KC, Kuroshio Current; EAWM, East Asian Winter
Monsoon. Valcanic rock samples (red triangles): Marianan Arc and Marianan Trench (Ikeda et al., 2016); Palau-Kyushu Ridge (Lelikov et al., 2018;
Ishizuka et al., 2011). Cores with LDMs (pink dots): BC11, BC13, GC03, GC04 and GC05 (Luo et al., 2017, 2018); JL7KGC05 (Zhang et al., 2019);
JL7KBC03 (Zhang et al., 2024); MT03 (Lai et al., 2023); WPD-12, WPD-03 (Xiong et al., 2013); XT47 (Zhang et al., 2021); WPS-1/2 (Tang et al., 2024);
P38 (Cai, 2019). Other cores (black dot): PC313 (Khim et al., 2012); MD05-2920 (Tachikawa et al., 2011); MD06-3050 (Sun et al., 2017); S-2 (Yamane,
2003); PC15 (Wang et al., 2021); PC631 (Seo et al., 2014); PV090510 (Ming et al., 2014); V21-146 (Han et al., 2002); SO202-39-3 (Korff et al., 2016);
S2612 and NGC108 (Maeda et al., 2002).
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brown to greyish-yellow laminations with occasional grey

laminations and a loose structure. This unit is further subdivided

into two parts: the upper part (U2-1, 10–115 cm) contains a small

amount of detrital material, and the lower part (U2-2, 115–280 cm)

is characterized by a higher abundance of diatoms; U1 (0–10 cm) is

a layer of brown calcareous siliceous clay (Li et al., 2021).
2.3 Analytical method

Successive samples were collected at 2 cm intervals, with the final

sample extending 328–330 cm, resulting in a total of 165 subsamples

used for analyses of major elements, organic carbon and nitrogen,

and carbonate content. Major elements were determined using an

AxiosMAX (Netherlands) X-ray fluorescence spectrometry (XRF).

Sample pretreatment followed the method described by Liao et al.

(2024), and the analytical results have a relative error of <5%. Loss on

ignition was measured by high temperature calcination at 1,000°C

for 40 minutes. The total carbon, organic carbon and nitrogen

contents were analyzed using an Elementar Vario elemental

analyzer (Germany). Sample pretreatment followed the method

described in Luo et al. (2017), and the analytical accuracy was

±0.01%. The CaCO3 content was calculated following the method

of Khim et al. (2012), and the biogenic silica (opal) content was

calculated following the method of Nath et al. (1989).

Clay fractions (<2 mm) were extracted according to Stoke’s

settling velocity principle for clay mineral composition analysis

(Wan et al., 2007). A total of 17 samples were collected from core

E20: two samples from U1 (2–4 cm and 6–8 cm) and fifteen samples

from U3 (at 2 cm intervals between 292–330 cm). No samples were

taken from U2 due to the extremely high concentration of bioclastic

debris in this unit. The pretreatment of clay mineral samples

followed the method described by Wan et al. (2007) and can be

summarized as follows: (1) Removal of salts, approximately 8–10 g

of dried sample was washed with deionized water; (2) Removal of

organic matter, 20 mL of 20% hydrogen peroxide was added; (3)

Removal of CaCO3, dilute hydrochloric acid was added; (4)

Extraction of clay fractions, the <2 mm clay fraction was extracted

and prepared into oriented clay slices using the ‘smearing method’.

Clay mineral analysis was conducted using an X’Pert PRO X-ray

diffractometer (Netherlands) with the following parameters: tube

voltage of 45 kV, tube current of 40 mA, scan range of 3° to 35° (2q),
and scan speed of 1.8°/min. The relative contents of four clay

minerals (illite, smectite, chlorite, and kaolinite) were calculated

using the BISCAYE method (Biscaye, 1965).

The sedimentation rates of different units (U1-U3) were

calculated based on the AMS14C dating results from Li et al., 2021.
3 Results

3.1 Major elements composition

The average content of major elemental oxides in core E20

decreases in the following order: SiO2 > CaO > Na2O > Al2O3 >
Frontiers in Marine Science 04
Fe2O3 > MgO > K2O > TiO2 > MnO > P2O5. The concentration of

SiO2 ranges from 22.03% to 81.45%, with an average of 64.60%,

whereas the average concentrations of the remaining oxides are all

below 10% (Supplementary Table S1).

The contents of major oxides exhibit distinct segmentation with

depth (Figure 2), a pattern that aligns with changes in the brightness

curve (L*) and a* values (Li et al., 2021). This segmentation

correlates closely with lithological variations, showing more

pronounced fluctuations in U1 and U3 (clay layers) and relatively

minor variations in U2 (diatom layer). As illustrated in Figure 2, the

profiles of TiO2, Al2O3, Fe2O3, K2O, MgO, MnO, and P2O5 display

similar trends, with peak concentrations in U3 and the lowest

concentrations in U2. The high SiO2 values in U2 reflect the

significant influence of siliceous biogenic debris. In contrast, the

CaO content shows a pronounced peak in U3 and an upward trend

in U1. The Na2O profile is unique, with the highest concentrations

observed in U2, likely attributable to the high pore water content in

this unit.

The mean values of major oxides in core E20 and potential

source areas were normalized to the upper continental crust (UCC)

(Figure 3a). The results reveal distinct geochemical patterns across

the sedimentary units. U1 is relatively enriched in CaO and MnO

but deficient in SiO2, Al2O3, K2O, and TiO2. U2 is characterized by

relatively high concentrations of SiO2 and Na2O but exhibits lower

concentrations of most other major oxides. In U3, the sediments are

relatively enriched in Fe2O3, MgO, CaO, MnO, and P2O5 but

deficient in SiO2, Al2O3, and K2O. In general, the clay-rich

sections (U1 and U3) of core E20 exhibit a major oxide

composition most similar to that of Mariana Trench sediments,

although they are relatively enriched in CaO (Figure 3b). Compared

to Mariana Arc and Mariana Trough basalts, these sections are

more enriched in Na2O, K2O, and MnO but deficient in Fe2O3,

MgO, and TiO2.

Although widely reported, many E. rex-rich deposits often

contain significant amounts of clay minerals and thus cannot be

simply classified as LDMs. In typical LDM samples from core E20,

SiO2 content exceeds 60% (Figure 2). Due to potential dilution

effects from calcareous or lithogenic detritus, distinguishing

between LDM and DC (diatom clay) based solely on total SiO2 or

opal content is inaccurate. Based on analytical results from Site E20,

we recommend using the SiO2/Al2O3 ratio as the diagnostic

criterion: samples with SiO2/Al2O3 >10 are classified as LDM;

those with ratios between 4–10 as DC; and samples with ratios <4

as pelagic clay (PC).
3.2 TOC and TN contents

The total organic carbon (TOC) content in core E20 ranges

from 0.13% to 0.67%, with an average of 0.28%. U1 has an average

TOC content of 0.40%, while U2 and U3 have lower averages of

0.28% and 0.24%, respectively. Within U2, the upper part (U2-1)

has an average TOC content of 0.22%, whereas the lower part (U2-

2) has a higher average of 0.33% and contains the highest TOC

value in the core. The total nitrogen (TN) content ranges from
frontiersin.org

https://doi.org/10.3389/fmars.2025.1556799
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Lin et al. 10.3389/fmars.2025.1556799
0.08% to 0.30%, with an average of 0.16%. U1 has a mean TN

content of 0.17%, which shows an inverse relationship with TOC.

U2 has an average TN content of 0.17%, with the highest value

observed at 68 cm. U3 has a mean TN content of 0.12%. The TOC/

TN ratio in core E20 ranges from 0.59 to 4.50, with an average

of 1.82.
3.3 Carbonate contents

In U3, the average CaCO3 content is 26.49%, with significant

variability. In contrast, U2 has a lower average CaCO3 content of

6.89%, showing minimal variation. Within U2, the lower part (U2-2)

has an average CaCO3 content of 6.41%, while the upper part (U2-1)
Frontiers in Marine Science 05
has a slightly higher average of 7.62%. In U1, the CaCO3 content

gradually increases toward the top, with an average of 27.55%.
3.4 Clay mineral composition

The clay mineral composition of the E20 core sediments is

dominated by illite, with an average content of 54%. Smectite has an

average content of 19%, while chlorite and kaolinite are present in

smaller amounts, averaging 15% and 13%, respectively (Supplementary

Table S2).

In U3, the clay mineral content is highly variable. In contrast,

the two samples from U1 show a decrease in illite content and a

significant increase in smectite content compared to U3.
FIGURE 3

UCC (Upper Continental Crust) normalization of major oxides in core E20 (a) and potential source regions (b). Data sources: Chinese loess (Qiao
et al., 2011); Mariana Arc and Mariana Trough (Ikeda et al., 2016); Mariana Trench (Luo et al., 2018b); Kyushu-Palau Ridge (Lelikov et al., 2018;
Ishizuka et al., 2011); PC15 volcanic ashes (Wang et al., 2021); UCC (Taylor and McLennan, 1985).
FIGURE 2

Geochemical profiles and core scan results (photo, L*, and a*) of core E20. The five blue dots represent planktonic foraminiferal ages, while the two
black dots correspond to organic carbon ages. Core scan results and AMS 14C ages are from Li et al. (2021). The green shaded area indicate
diatom mat.
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3.5 The age of diatom mats in core E20

No age reversal is observed in core E20 (Supplementary Table

S3, Li et al., 2021). Foraminiferal ages from the 0–2 cm and 4–6 cm

layers in U1 indicate a low average sedimentation rate of 1.73 cm/

kyr. The sedimentation rate increases significantly between the 4–6

cm and 38–40 cm intervals, reaching 16.35 cm/kyr. This places the

age of the lower boundary of U1 at 10.9 ka. Foraminiferal dating

from the 282–284 cm layer (just below the lower boundary of U2)

yields an age of 41.96 ka, indicating that the diatom bloom occurred

after this time. Assuming a constant sedimentation rate in the

LDMs section and using the two dating results (24.08 ka from the

238–240 cm interval and 12.68 ka from the 38–40 cm interval, bulk

sediment), we estimate that diatom mats first appeared at 280 cm

around 26.48 ka. This aligns with the earliest diatom bloom age

reported by Zhai et al. (2009). Given the absence of diatoms and

lower water content in U3, we assume its sedimentation rate is

lower than that of U1.
4 Discussion

4.1 Glacial-interglacial cycle of carbonate
content in E20

E. rex LDMs in the Western Pacific are predominantly found in

deep-water basins and trenches, with their ages (from 28.6 ka to

6.76 ka) primarily determined by AMS 14C dating of organic matter

(Zhai et al., 2009; Luo et al., 2018b; Tang et al., 2024; Zhang et al.,

2024). To our knowledge, the currently available AMS 14C dating on

foraminifers (G. ruber) in LDMs from the Western Pacific is

exclusively documented in Core P38 (water depth: 3838 m)

recovered from the Caroline Ridge (or southern slope of the

Mariana Trench). In this core, the basal age of LDMs is

approximately 46.06 ka, while foraminifers from 4–6 cm depth in

the overlying DC layer (0–14 cm) yield an age of 8.87 ka. In Core

E20, the AMS 14C ages of foraminifers from DC layer both above

and below the LDMs (Figure 2) are broadly consistent with those

from corresponding lithological units in Core P38. However, no

AMS 14C dating on foraminifers has been conducted within the

LDMs of core E20. Nevertheless, by comparing carbonate content

profiles with other Western Pacific cores, we can better constrain

the depositional timeframe of core E20.

Numerous sediment cores from the Western Pacific exhibit

carbonate content variations that deviate from the typical ‘Pacific-

style cycle’—a pattern generally characterized by high values during

glacial periods and low values during interglacial periods. SinceMIS 6,

the carbonate records predominantly display an inverse trend, with

lower concentrations during glacials and higher concentrations during

interglacials (Maeda et al., 2002; Yamane, 2003; Khim et al., 2012;

Tachikawa et al., 2011; Sun et al., 2017; Figure 4).

Microscopic observations have revealed that the carbonate-rich

layers in E20 contain abundant foraminifers and no evidence of

microbial sulfate reduction related authigenic carbonates (Liu et al.,

2024) was found. Assuming constant CaCO3 productivity,
Frontiers in Marine Science 06
variations in CaCO3 content are primarily controlled by the

dilution of detrital material (both lithogenic and siliceous

biogenic debris) and the dissolution of CaCO3. Sun et al. (2017)

suggest that CaCO3 dissolution was the dominant control in core

MD06–3050 from the Benham Rise. During MIS2 and MIS4,

MD06–3050 exhibits higher sedimentation rates, increased

foraminiferal shell fragmentation ratios, and lower CaCO3

contents compared to MIS1, MIS3, and MIS5. Core E20 and

MD06–3050 are located at similar latitudes, meaning both sites

are influenced by the NEC and Kuroshio Current (KC) in the upper

ocean and the LCDW in the lower ocean. Additionally, both sites

are distant from direct fluvial inputs and may receive eolian

contributions from the Asian interior (Sun et al., 2017; Li et al.,

2021). Therefore, comparing the CaCO3 content of E20 andMD06–

3050 provides a more accurate estimate of the age of U3 in E20.

Assuming an average sedimentation rate of 1.5 cm/kyr (slightly

lower than the rate of section U1) for section U3 of core E20, the

CaCO3 profiles of E20 and MD06–3050 show remarkable coherence

and align well with other western Pacific carbonate records (Figure 4).

These findings validate the assumption that the estimated average

sedimentation rate of 1.5 cm/kyr for section U3 in core E20 is

reasonable. Consequently, the U3 interval spans approximately 32.7

ka, constraining the basal age of E20 to ~74.7 ka, which corresponds to

the termination ofMIS 5. This chronological framework indicates that

sediment accumulation in core E20 initiated near the MIS 5/4

boundary, with the ~270 cm thick LDMs predominantly deposited

from the onset of MIS 2 through the early Holocene.
4.2 More volcanic matter and less dust
input during the diatom blooms

Provenance studies are crucial for understanding the formation

mechanisms of diatom mats and associated environmental changes.

The “Eolian-Silicon-Induced Bloom” hypothesis is fundamentally

supported by silicon (Si) isotopic signatures in diatom mats, which

suggest that the primary source of bioavailable Si is eolian dust

deposition (Xiong et al., 2015; Tang et al., 2024). Additionally,

mineralogical and geochemical studies indicate that non-biogenic

detritus within or adjacent to the LDMs originates from a mixture

of Asian eolian dust and submarine volcanic material (Xiong et al.,

2010; Lai et al., 2023; Luo et al., 2018a).

Illite and chlorite are common land-derived minerals in the clay

mineral composition of marine sediments. Kaolinite, on the other

hand, is abundant in soils of intertropical regions with warm and

humid climates, while smectite is typically derived from the

weathering of volcanic materials (Chamley, 1989). In core E20,

the trends in illite and chlorite contents are similar, suggesting a

shared origin. In contrast, the smectite and illite contents exhibit

opposing trends (Figure 5a). As illustrated in Figure 5b, the clay

mineral composition of E20 reflects a mixture of eolian dust

(characterized by high illite and chlorite contents) and volcanic

material (characterized by high smectite content). The clay mineral

composition of U3 is similar to that of sediments from the Kyushu-

Palau Ridge (Seo et al., 2014), while the two samples from U1 show
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greater influence from volcanic material, with compositions

resembling those of Mariana Trench sediments (Luo et al., 2018a;

Lai et al., 2023).

Asian dust is characterized by higher K content and lower Fe

and Mg contents compared to material from the western Pacific
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island arcs/ridges (Figure 3b; Qiao et al., 2011; Ikeda et al., 2016). In

the K2O/Al2O3-Fe2O3/Al2O3 and K2O/Al2O3-MgO/Al2O3

correlation plots (Figure 6), the E20 samples generally align more

closely with Mariana Trench sediments. The chemical index of

alteration (CIA) is positively correlated with the degree of sediment
FIGURE 4

Changes in sedimentation rate and CaCO3 content since MIS 5 in core E20, compared to the CaCO3 curves of reference cores. Blue shaded areas
indicate stadial periods. Reference cores from the Western Pacific Warm Pool include PC313 (Khim et al., 2012), MD05-2920 (Tachikawa et al., 2011),
and MD06-3050 (Sun et al., 2017). Reference cores from the Shatsky Rise include S-2 (Yamane, 2003), S2612, and NGC108 (Maeda et al., 2002).
FIGURE 5

Clay mineral composition of core E20 and Illite/Smectite ratio of core WPD-03 (a) and potential source regions (b). Blue shaded areas indicate
stadial periods. Data sources: Chinese loess and West Philippine Basin (Wan et al., 2012); Luzon rivers (Liu et al., 2009); Mariana Trench (Luo et al.,
2018a; Lai et al., 2023); PC15 volcanic ashes (Wang et al., 2021); Kyushu–Palau Ridge (Seo et al., 2014); Parece Vela Basin (Ming et al., 2014).
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weathering, with values ranging from 30 to 45 for fresh basalts and

45 to 55 for granite and granodiorite (Nesbitt and Young, 1982).

The combination of CIA and A-CN-K diagrams is widely used to

assess sediment weathering intensity and trace changes in sediment

sources (Bi et al., 2015; Xiong et al., 2018). As shown in Figure 7,

most U3 samples exhibit weak weathering and are similar to

Mariana Trench samples, indicating the influence of local

volcanic material. The U1 samples show even weaker weathering.

Notably, all six samples (three in U3 and three in U1) with CIA

values below 40 are located just below or above the LDMs,

suggesting the presence of diatom fragments with lower Al

content but higher pore water content compared to typical

pelagic sediments.
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Clay mineralogy and geochemical signatures reveal a

pronounced increase in volcanic material admixture within U1

relative to U3. In U2 (LDMs), recurrent peaks in Fe2O3/Al2O3 ratios

(Figure 8a) further corroborate the syn-depositional input of

volcanic-derived constituents during LDMs formation. These

findings collectively demonstrate that volcanic material

incorporation was pervasive throughout both the peak diatom

bloom phase (LDM deposition) and its termination stage (DC

formation). In core WPD-03, the LDM interval exhibits a

marginally lower illite/smectite ratio compared to the underlying

DC layer (Figure 5a; Xiong et al., 2013). This disparity likely reflects

a proportional increase in volcanic-sourced material rather than a

decline in eolian illite delivery.

Critically, the observed coupling between diatom productivity

pulses and volcanic material enrichment does not necessitate a

direct causative link to episodic volcanic eruptions (submarine or

subaerial). Sedimentological evidence indicates that diatom mat

deposition occurs over millennial-scale intervals, starkly contrasting

with the short-lived, event-driven nature of volcanic eruptions.

Furthermore, no robust sedimentological or tephrochronological

evidence exists for large-magnitude volcanic eruptions in the

western Pacific margin during the LGM.

We hypothesize that the volcanic material influx coincident

with diatom blooms may instead reflect enhanced deep-current

vigor during these periods. Such hydrodynamic intensification

could have facilitated the lateral redistribution of weathered

volcanic detritus from proximal submarine sources, ultimately

concentrating these materials at the depositional site.
4.3 Source and significance of Fe in LDMs

In U2 of core E20, depleted Fe2O3 levels inversely correlate with

SiO2 (Supplementary Figure S1d) yet maintain positive covariation

with Al2O3, TiO2, and MgO (Supplementary Figures S1a–c),

indicating predominantly lithogenic rather than biogenic iron
FIGURE 6

Relationships between (a) K2O/Al2O3-Fe2O3/Al2O3 and (b) K2O/Al2O3-MgO/Al2O3 in core E20 and potential source areas. Data sources: Chinese
loess (Qiao et al., 2011); Mariana Arc and Mariana Trough (Ikeda et al., 2016); Mariana Trench (Luo et al., 2018b); Palau-Kyushu Ridge (Lelikov et al.,
2018; Ishizuka et al., 2011).
FIGURE 7

CIA-A-CN-K diagram illustrating the degree of chemical weathering.
Data sources: Chinese loess (Qiao et al., 2011); Mariana Arc and
Mariana Trough (Ikeda et al., 2016); Mariana Trench (Luo et al.,
2018b); Kyushu–Palau Ridge (Lelikov et al., 2018; Ishizuka
et al., 2011).
frontiersin.org

https://doi.org/10.3389/fmars.2025.1556799
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Lin et al. 10.3389/fmars.2025.1556799
provenance within LDMs through detrital sediment incorporation

(Xiong et al., 2022). The association of certain Fe2O3/Al2O3 peaks

with moderate SiO2 contents (Supplementary Figure S1) suggests

periodic inputs of volcanic material, likely sourced from adjacent

ridges or seamounts, into the sedimentary record. While iron input

from eolian dust may support diatom growth and contribute to

diatom mat formation (Xiong et al., 2013, 2015), it is not the

primary limiting factor for diatom blooms. Instead, the iron (and

possibly silicon) supplied by eolian dust should be regarded as a

contributing, rather than decisive, factor in diatom productivity.

Asian eolian dust primarily consists of unreactive iron-bearing

minerals, which supply only limited bioavailable iron for diatom

growth (Chen et al., 2020). In the stratified, high-nitrate, low-

chlorophyll (HNLC) subarctic Pacific Ocean, long-term changes

in diatom productivity have been predominantly driven by

variations in upwelling and stratification, with sporadic iron

fertilization from volcanic ash inputs playing a secondary role

(Chen et al., 2020). In the equatorial Pacific, upwelling delivers

two orders of magnitude more dissolved iron than eolian dust

(Winckler et al., 2016). In subtropical gyres, iron is generally not

considered a limiting nutrient for primary production, as excess

iron tends to accumulate once major nutrients are depleted (Moore

et al., 2013).

The duration of LDMs in core E20 is significantly longer than

the peak periods of typical terrestrial and marine aeolian dust

accumulation since MIS2 (Figures 9a, b). Therefore, we do not

believe that the diatom blooms recorded in E20 were solely

triggered by nutrients such as iron (and silicon) brought by Asian

inland dust.
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4.4 Diatom blooms stimulated by
enhanced middle-deep water upwelling?

Traditionally, the formation of E. rex LDMs was thought to

depend on stratification (Kemp et al., 2000; Kemp and Villareal,

2013; Xiong et al., 2013, 2015). However, recent studies of diatom

and radiolarian assemblages suggest that diatom blooms may not

necessarily require stratified conditions. Instead, strong E. rex

blooms during the LGM may have been driven by weak upper

water stratification and the upwelling of nutrient-rich lower waters

(Zhang et al., 2021). This raises the question: Why and where does

middle-deep water upwelling occur?

Existing studies indicate a correlation between the distribution

of E. rex LDMs and the bottom topography in the Western Pacific.

We propose a new hypothesis for how middle-deep water upwelling

may have stimulated diatom blooms (Figure 10). During the last

glacial period, the Antarctic Circumpolar Current (ACC) weakened

(Basak et al., 2018), but the generation of AABW may have

increased (Hall et al., 2001; Hu and Piotrowski, 2018; Lynch-

Stieglitz et al., 2016), leading to a faster deep Pacific overturning

circulation (Figure 9h; Hu and Piotrowski, 2018) and an intensified

western boundary deep inflow into the North Pacific (Figure 9e;

Hall et al., 2001). In the North Pacific, the western branch of LCDW

accelerates into the Philippine Sea primarily via the northern

passage of the Mariana Trench (Wang et al., 2023; Figure 10).

Upon encountering topographic features such as island arcs, ridges,

and seamounts, the upwelling of deep water brings middle-deep

nutrients to the euphotic zone and shoals the nutricline (Kemp and

Villareal, 2018), stimulating the growth of buoyancy-regulating
FIGURE 8

Content and ratio profiles of key parameters in core E20 (a–f) and core WPD-03 (g, h). Data for WPD-03 are from Xiong et al. (2012). Blue shaded
areas indicate glacial periods. DC, Diatomaceous clay; PC, Pelagic clay.
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diatoms (e.g., E. rex) that thrive in the Deep Chlorophyll Maximum

(DCM) (Kemp and Villareal, 2018). After blooming, the siliceous

biogenic debris settles and drifts, eventually becoming trapped in

depressions through the “funnel effect”, which is intrinsically linked

to the redistribution processes of diatomaceous detritus (Tang et al.,

2024), thus forming E. rex LDMs. In the following section, we will

present several lines of evidence supporting this hypothesis.

Firstly, numerous studies have consistently demonstrated the

existence of biological-physical coupling phenomena in the

proximity of prominent topographic features (e.g. Dower and

Mackas, 1996; Sokolov and Rintoul, 2007; Wang et al., 2024; Xie

et al., 2024). Sokolov and Rintoul (2007) found that most regions of

elevated chlorophyll in the open Southern Ocean can be explained

by upwel l ing of nutrients (both macronutrients and

micronutrients) where the ACC interacts with topography,

followed by downstream advection. In the Indonesian Seas,

regions with narrow straits, steep topography and dynamic

circulation with strong vertical mixing display high net

community production and chlorophyll‐a, suggesting that vertical

nutrient transport dominates biological productivity (Xie et al.,

2024). Although constrained by limited spatial resolution, the

nitrate concentration profile spanning the Mariana Trench and

KPR system reveals a pronounced spatial pattern: the nutricline

depth in the topographically elevated western sector is consistently

shallower compared to adjacent areas (Supplementary Figure S2).

Secondly, sedimentary records provide robust evidence for

intensified deep current activity in the western Pacific during the

last glacial period. This is supported by: (1) the dissolution of fine-
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grained magnetic minerals in sediments near Shatsky Rise

(Figure 9g; Korff et al., 2016) and (2) enhanced carbonate

dissolution in a core from Benham Rise (Figure 9f; Sun et al.,

2017) during MIS 2, both of which suggest a stronger influence of

southern-sourced deep water masses. Additionally, in regions with

pronounced topographic variability, if the illite/smectite ratio in

sedimentary records is interpreted as an indicator of deep current

intensity rather than eolian dust input, the lower ratios observed in

LDMs (e.g., in core WPD-03) would imply more vigorous deep

current activity. Furthermore, the two-stage evolution in LDMs in

core E20-from U2-2 (LGM) to U2-1 (LD), reveals a progressive

decrease in TOC content and an increase in the MnO/Al2O3 ratio

upward through the sequence. This trend likely reflects improved

bottom-water oxygenation or enhanced deep-water ventilation

during the deglacial period. Notably, this phased transition in

sedimentation aligns closely with reconstructed variations in

Southern Ocean deep water formation since the last glacial

period, as evidenced by previous studies (Basak et al., 2018).

Finally, the diatom mats discovered near the Mariana Trench

exhibit the most extensive temporal span, ranging from late MIS 3

(Cai, 2019) to the mid-Holocene (Zhang et al., 2024). In contrast,

those found in the Philippine Sea display a relatively shorter

chronological duration. This discrepancy likely suggests that the

key deep-water passages adjacent to the Mariana Trench are more

responsive to LCDW intrusions, exhibiting intensified mixing and

upwelling processes. These dynamics facilitate the upward transport

of nutrient-rich deep waters, thereby enhancing local productivity

relative to other regions.
FIGURE 9

Comparative records of aeolian dust flux, biogenic opal content, and deep-current activity indicators: (a) Mass accumulation rate (MAR) from the
Chinese Loess Plateau (Sun and An, 2005); (b) Eolian dust flux from core V21–146 on the Shatsky Rise (Han et al., 2002); (c, d) Opal content of core
E20 and WPD-03 (Xiong et al., 2013); (e) Mean grain size of sortable silt (SS mean) of ODP 1123 (Hall et al., 2001); (f) Shell fragment ratio from core
MD06-3050 (Sun et al., 2017); (g) Magnetic mineral index (ARM100mt) from core SO202-39-3 (Korff et al., 2016); (h) Deep Pacific transit time (Hu and
Plotrowskl, 2018). Blue shaded areas indicate glacial periods.
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The absence of E. rex LDMs during MIS4 in the study area may

be attributed to weak LCDW. Indirect evidence from sedimentary

archives near the Shatsky Rise (Korff et al., 2016) supports this: no

significant magnetic mineral dissolution was observed during MIS4,

in contrast to pronounced dissolution during MIS2 and MIS6

(Figure 9g; Korff et al., 2016), suggesting a weaker influence of

Antarctic-sourced bottom water during MIS4. Prior to the

formation of the LGM E. rex LDMs in Core XT47 near the

Kyushu-Palau Ridge, four peaks in radiolarian abundance and

opal content were recorded, possibly linked to glacial-interglacial

changes (Zhang et al., 2021). Future studies of long cores,

particularly those located on the rims of the Mariana Trench, will

help determine whether E. rex LDMs formed during MIS6 and

earlier glacial periods, ultimately uncovering the true mechanisms

behind their formation in the low-latitude Western Pacific.
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5 Conclusion

(1) Core E20 comprises both calcium-rich and silica-rich

sediments. Notably, the variations in carbonate content do not align

with the ‘Pacific-type dissolution cycle’ but instead mirror the records

observed in other cores from the western Pacific, exhibiting higher

concentrations during interglacial periods. Diatom blooms in core E20

predominantly occurred from the LGM to the early Holocene, leading

to a substantial dilution effect on carbonate content.

(2) The lithogenic detritus in core E20 is primarily derived from

volcanic sources, with a smaller component originating from eolian

dust. The synchronous occurrence of volcanic material influx and

diatom blooms suggests an intensification of deep-current activity,

which likely facilitated the lateral transport of weathered volcanic

detritus from nearby submarine sources.
FIGURE 10

(a) Distribution of representative cores containing laminated diatom mats (LDMs) in the western Pacific, overlaid with the deep current pathways
based on observational data (Wang et al., 2023); (b) Schematic illustration depicting the formation process of LDMs. The locations of LDM-bearing
cores are derived from Luo et al. (2018a); Xiong et al. (2013); Tang et al. (2024); Shibamoto and Harada (2010); Cai (2019), and Zhang et al. (2021).
WPB, West Philippine Basin; KPR, Kyushu-Palau Ridge; PVB, Parece Vela Basin; MA, Mariana Arc; MT, Mariana Trench; CR, Caroline Ridge.
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(3) The input of iron from eolian dust acts as a beneficial

supplement rather than a critical requirement for diatom blooms.

(4) A new hypothesis is proposed to explain how middle-deep

water upwelling may have stimulated these blooms. During the last

glacial period, the intensified western branch of the LCDW

accelerated into the Philippine Sea, primarily through the

northern passage of the Mariana Trench. When encountering

topographic features such as ridges and seamounts, the upwelling

of deep water transported middle-deep nutrients to the euphotic

zone, promoting the growth of buoyancy-regulating diatoms. These

diatoms eventually formed E. rex LDMs as they became trapped in

depressions due to the “funnel effect.”
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