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Underwater instance
segmentation: a method
based on channel spatial
cross-cooperative attention
mechanism and feature
prior fusion
Zhiqian He1, Lijie Cao1,2*, Xiaoqing Xu1 and Jianhao Xu1

1College of Information Engineering, Dalian Ocean University, Dalian, China, 2Key Laboratory of
Marine Information Technology of Liaoning Province (Dalian Ocean University), Dalian, China
In aquaculture, underwater instance segmentation methods offer precise

individual identification and counting capabilities. However, due to the inherent

unique optical characteristics and high noise in underwater imagery, existing

underwater instance segmentation models struggle to accurately capture the

global and local feature information of objects, leading to generally lower

detection accuracy in underwater instance segmentation models. To address

this issue, this study proposes a novel Channel Space Coordinates Attention

(CSCA) attention module and a Channel A Prior Attention Fusion (CAPAF) feature

fusion module, aiming to improve the accuracy of underwater instance

segmentation. The CSCA module effectively captures local and global

information by combining channel and spatial attention weight, while the

CAPAF module optimizes feature fusion by removing redundant information

through learnable parameters. Experimental results demonstrate significant

improvements when these two modules are applied to the YOLOv8 model,

with the mAP@0.5 metric increasing by 3.2% and 2% on the UIIS underwater

instance segmentation dataset. Furthermore, the instance segmentation

accuracy is significantly improved on the UIIS and USIS10K datasets after these

two modules are applied to other networks.
KEYWORDS

underwater instance segmentation, YOLO, attention mechanism, feature fusion,
instance segmentation
1 Introduction

With the widespread application of underwater instance segmentation methods in

aquaculture, it has significantly improved the precision and efficiency of management. For

example, this method enables real-time monitoring (Yang et al., 2024) and growth tracking

of cultured organisms (Fan et al., 2021), thereby optimizing feeding strategies and disease
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prevention measures. Simultaneously, it has reduced manual

intervention and promoted the development of aquaculture

automation, further advancing the economic development and

technological innovation of the aquaculture industry. Therefore,

researching methods to enhance the accuracy of underwater image

instance segmentation is of crucial importance for the continuous

progress of aquaculture technology.

In recent years, with the rapid development of deep learning,

many scholars have applied deep learning image instance

segmentation methods to aquaculture. For example (Kannan,

2020), use analysis optimization techniques such as genetic

algorithms, particle swarm optimization, and differential

evolution to initialize the parameter set and finally detect the

objects in the underwater images using evolution-based Gaussian

mixture models and shape matching (Zhang L. et al., 2024).

proposed an improved BoTS-YOLOv5s-seg model based on

YOLOv5, which reached 90.9% mAP@0.5 in the individual

counts of farmed fish (Zheng et al., 2024). proposed a video

object segmentation-based method for fish individual recognition

in underwater complex environments, and the key metric Rank1

value of the method achieved >96% accuracy on the public datasets

DlouFish, WideFish, and Fish-seg datasets (Siri et al., 2024).

proposed an improved two-stage R-FCN model achieving 99.94%

accuracy, 99.58% accuracy and recall, and 99.27% F-measure on the

Fish4knowledge dataset (Li et al., 2017). developed an adaptive

thresholding underwater image segmentation method using image

segmentation to detect fish feed consumption (Chen et al., 2024).

proposed a new MPG-Net semantic segmentation model for

aquaculture ponds to effectively improve the segmentation

accuracy of individual aquaculture ponds using residual links and

Global Context module and Polarized Self-Attention (Ma et al.,

2018). proposed NWPU underwater image database to improve the

quality of underwater images through enhanced image technique.

However, the above scholars are applying the image instance

segmentation method to the aquaculture field, not analyzing the

underwater image characteristics to improve the performance of the

underwater instance segmentation method.

Numerous scholars have recognized that efficient underwater

instance segmentation methods are crucial for applications in the

aquaculture sector and can significantly improve the efficiency of

aquaculture management, thereby promoting the industry’s

sustainable development. Therefore, some scholars have proposed

numerous underwater instance segmentation methods based on the

characteristics of underwater images. For example, improving the

performance of underwater instance segmentation models by means

of image enhancementmethods (Wang et al., 2024), such as adjusting

brightness, contrast, color balance, and applying filters, can effectively

improve the models’ training effect and generalization ability

(Farhadi Tolie et al., 2024). These enhancement operations can

simulate different underwater environmental conditions, helping

the model learn better and recognize complex underwater scenes,

thus achieving higher accuracy and robustness in the segmentation

task (Peng et al., 2023). In addition, some scholars improve the model

performance by designing or selecting a network architecture that is

more suitable for the characteristics of the underwater environment;
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for example, ZhiQian (He et al., 2024) propose an underwater image

semantic segmentation network (UISS-Net) to improve the boundary

accuracy of underwater image object segmentation (Zhang Z. et al.,

2024). proposed a lightweight semantic segmentation model for

underwater fish images with an improved U-Net to address the low

progress of current underwater image segmentation (ZhangW. et al.,

2024). proposed a real-time semantic segmentation network called

WaterBiSeg-Net to address the problems of slow inference and large

computation in existing underwater detection algorithms (Shen et al.,

2024). proposed a multi-information-aware attention module

(MIPAM) based on spatial downsampling and channel

segmentation to solve the underwater image noise interference

(Han et al., 2023). proposed an iterative attention feature fusion

mechanism to fully perceive the features and contextual information

at different scales and proposed an underwater fish segmentation

method based on improved PSPNet network (IST-PSPNet) to greatly

improve the segmentation accuracy of underwater fish. However, the

above researchers and scholars have mainly relied on increasing the

network depth of the model and enhancing the underwater image

data to improve the segmentation accuracy of underwater images.

These methods do not effectively use the channel and spatial

information in the model, and the full use of contextual

information in the feature fusion process has not been fully

considered. Therefore, exploring how to effectively use spatial and

channel information in the model and efficiently integrate contextual

information in the feature fusion stage has become a key challenge in

improving the performance of underwater image segmentation.

To address the prevalent noise issues and detail blurring in

underwater images, which lead to insufficient feature extraction in

instance segmentation models and the failure to exploit contextual

information fully, this work proposes a novel Channel Space

Coordinates Attention (CSCA) mechanism and a Channel A

Prior Attention Fusion (CAPAF) feature fusion module. The

CSCA attention is achieved by extracting spatial and channel

attention weights from the feature maps and, drawing on the

method of the Transformer architecture, multiplying these

weights to obtain a matrix of spatial and channel correlation

attention weights. By multiplying this matrix with the input

feature maps, we can obtain attention weights with spatial-

channel coordination. This allows the CSCA mechanism to

possess both a global receptive field for capturing long-range

dependencies and a local receptive field for channel and spatial

feature maps, thereby effectively enhancing the depth of feature

extraction. The CAPAF module, on the other hand, extracts key

information by filtering contextual information and adjusting the

proportion of feature fusion using learnable parameters, solving the

insufficient integration of contextual information in the model and

ensuring the full utilization of contextual information. Finally, we

embed the CSCA attention mechanism and the CAPAF module

into several mainstream instance segmentation models, and the

experimental results consistently show that the performance of

these models has been significantly verified, corroborating

their effectiveness.

The structure of the remainder of this work is as follows: Section

2 delves into the related literature; Section 3 outlines the CSCA
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attention mechanism and the CAPAF feature fusion module

proposed herein; Section 4 presents the experimental findings,

encompassing a detailed account of the experimental setup and

outcomes; finally, Section 5 draws conclusions from the study.
2 Related work

2.1 YOLO

In recent years, instance segmentation has become an

important research area in computer vision and has attracted

widespread attention. The YOLO network proposed by (Redmon

et al., 2016) is significantly innovative compared to traditional two-

stage target detection models. The network achieves direct

prediction of target coordinates through the design of a fully

convolutional neural network, which simplifies the detection

process and improves the detection efficiency. The objective

detection and instance segmentation task networks were

subsequently provided in the YOLOv5 release by Ultralytics LLC,

respectively. Then, to solve the problem of anchor-based needs to

set many hyperparameters, the YOLOv8 version based on anchor-

free was subsequently introduced. YOLOv8 does not need to preset

the anchor and only needs to regress the target centroid and width-

height of feature maps at different scales, which reduces the time-

consuming and arithmetic power. Due to this, the YOLO series

network has fast detection speed and high accuracy and is easy to

train and deploy for many scholars who are applied to the

aquaculture field. Therefore, the CSCA attention and CAPAF

modules proposed in this work validate their effectiveness

through application in the YOLO series networks.
2.2 Attention mechanism

The human visual system can spontaneously focus attention on

information-rich key areas in complex visual scenes. As a computer

vision technique, the attention mechanism aims to simulate this

property of human vision. The core of the mechanism lies in

shifting the focus of visual processing from the global image to

key feature points in the image. In this way, the attention

mechanism effectively motivates the model to focus on the more

discriminative elements of the input features, thus significantly

improving the model’s performance (Woo et al., 2018). proposed

the Convolutional Block Attention Module (CBAM) by adjusting

spatial and channel attention weights (Hou et al., 2021). proposed

coordinate attention by embedding the location information into

the channel attention, thus allowing the mobile network to acquire

information about a larger area without introducing large overheads

(Huang et al., 2024). proposed a new Channel Prior Convolutional

Attention (CPCA) method, which adopted multi-scale depth-

separable convolutional modules to constitute spatial attention

and could dynamically assign attentional weights in both channel
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and spatial dimensions (Yang et al., 2021). proposed a conceptually

simple and very effective attention SimAM module that derives 3D

attention weights for feature maps without additional parameters.

The above attention mechanism focuses too much on the channel

and spatial information. However, it ignores the coordination

between the channel and spatial information. Therefore, this work

proposes the CSCA attention mechanism, which obtains the

characteristic channel-space coordination attention weight matrix

by establishing the channel and spatial correlation matrix.
2.3 Feature fusion

In order to maximize the utility of features extracted from the

backbone network (Lin et al., 2017), innovatively proposed the

Feature Pyramid Network (FPN). This network skillfully integrates

high-resolution shallow features with deep features rich in semantic

information by introducing a top-down structure and lateral

connections, significantly enhancing feature utilization efficiency.

Consequently, FPN has become crucial in various visual tasks such

as object detection and instance segmentation. Building upon this,

numerous researchers have introduced improved feature fusion

methods based on FPN, aiming to enhance model performance

further (Liu et al., 2018). proposed the Path Aggregation Network

(PAN), which, particularly in image segmentation tasks, effectively

addresses the issue of low-level detail information loss during

feature transmission in FPN and insufficient detail refinement of

high-level features (Tan et al., 2020). proposed Bidirectional Feature

Pyramid Network (BiFPN) to solve the problems of unidirectional

information flow and unequal feature weight allocation at the

feature level in the feature fusion process of traditional FPN.

Nevertheless, these feature fusion networks effectively combine

high- and low-level semantic information by integrating feature

maps of different scales (Zhou et al., 2024). finally proposed MW-

YOLO network for small target detection through the proposed

multi-scale feature fusion module for neck network to enhance the

fusion effect of different scale features. However, feature fusion

solely in the dimensionality does not fully exploit contextual

semantic information. In response, this study introduces a novel

CAPAF module, which dynamically adjusts the distribution of

attention weights through learnable parameters during the feature

fusion process, thereby more effectively utilizing the contextual

semantic information within the features.
3 Methods

To address the challenges of coarse contour edges, high noise,

and insufficient utilization of contextual information in underwater

image instance segmentation, we propose the CSCA attention

mechanism and the CAPAF feature fusion module, designed to

capture the contour features of various organisms in aquaculture

accurately. Figure 1 illustrates the structure of CSCA, which
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primarily processes the spatial and channel information of feature

maps to obtain respective spatial and channel attention weights. By

employing a Transformer architecture, long-range dependencies

are established between the spatial and channel attention weights,

endowing the CSCA attention module with a global receptive field

while maintaining local perception. Figure 2 details the structure of

the CAPAF module, which significantly increases the importance of

key information in the feature fusion phase by introducing

learnable parameters to optimize the attention weights of the

input features. This mechanism ensures that the model uses

contextual information more effectively when integrating features,

enhancing the understanding and representation of scene details.
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3.1 CSCA attention

In order to solve the problem of low efficiency of instance

segmentation model in underwater image feature extraction, this

study proposes a CSCA attention mechanism, whose structure is

shown in Figure 1. The CSCA attention mechanism first performs

normalization on the input features X to enhance the robustness of

the model. Subsequently, the Spatial Attention Weighting (SAW)

and Channel Attention Weighting (CAW) modules are utilized to

extract the local receptive fields of the features, respectively.

Following this, a self-attention mechanism is applied to multiply

the obtained Q (query) and K (key) matrices point-wise, thereby
FIGURE 2

Structure of the attention fusion module for CAPAF dynamic focusing.
FIGURE 1

Structure of the CSCA attention module.
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constructing the global receptive field. Finally, after processing with

the Sigmoid activation function, the activation results are multiplied

by the normalized X and then subjected to convolution operations,

resulting in an enhanced feature map X0 that integrates both the

global receptive field with long-distance dependencies and the local

receptive fields within the channel space.

In the SAW module, the average values of the height and width

of the normalized feature mapX are first calculated to extract key

information from the feature map. Next, dilated convolution is used

to expand the receptive field, performing further feature extraction

on the height and width of the feature map. Subsequently, these

features are concatenated to integrate the common characteristics of

height and width. Finally, the attention weights are generated

through grouped convolution and activated using the Sigmoid

function, which are then multiplied by the input X to obtain the

attention weights Q, realizing the spatial attention operation. The

structure of this module is shown in Figure 3.

In the CSCA attention mechanism, Q and K feature maps are

mainly obtained by feature adjustment of the input feature map

X, respectively.

First, by adjusting the width (W) and height (H) of the input

feature map X, FW and FH are obtained as shown in Equation 1:

FH = Mean(X, dim = 2)

FW = Mean(X, dim = 3)
(1)

The obtained FW and FH feature maps are split by channel C 4= .

Convolution operations are performed on the four feature maps

obtained by inputting convolution kernels of (Li et al., 2017; Ma

et al., 2018; Kannan, 2020; Zheng et al., 2024) size, respectively. The

feature weight matrices under different perceptual fields on different

channels can be obtained, and then, the weight matrices are fused to

obtain FWM and FHM by features according to the channel C. After

group normalization of the FWM and FHM feature maps,

respectively, the feature maps are subjected to Sigmoid activation

to obtain the attention matrix, and then, the attention matrix is

multiplied by X and then convolved with a 3×3 convolution to

obtain the feature map K as shown in Equation 2.
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FHM = Sigmoid(GroupNorm(FH))

FWM = Sigmoid(GroupNorm(FW))

Q = Conv(X � (FHM + FWM)

(2)

Additionally, to obtain the local attention weights for the

channels, the input X is adjusted along the channel dimension to

derive the channel attention weights K. The schematic diagram of

this structure is shown in Figure 4.

First, global pooling is performed on the normalized feature

map X to obtain the C1 and C2 feature channels. The C1 and C2

matrices are then transposed to obtain the T1 and T2 matrices,

respectively. The obtained C1 and C2matrices and their transposed

matrices are cross-multiplied to obtain the CT1 and CT2 matrix

weights for channel information fusion. As shown in Equation 3,

C1 = Adaptive PoolingðXÞ
C2 = Adaptive PoolingðXÞ
CT1 = C1⊗C2T

CT2 = C2⊗C1T

(3)

The weights CT1 and CT2 rectangles after channel fusion are

obtained through Equation 3 and then activated by the Sigmoid

function. At this point, the matrix with blended attention weights is

obtained. However, there is channel redundancy information in the

reweight matrix. Therefore, the two weight matricesW1 andW2 are

fused after adjusting the valid and invalid features by the learnable

hyperparameter q. Finally, the Sigmoid function is activated again

to obtain the channel attention weights of the output XC feature

map, which is multiplied with the input feature X and then mixed

with the channel information after 3×3 convolution to the Kmatrix.

The formula is shown in Equation 4.

XC = (W1⊗s (q))⊕ (W2⊗ (1 − s (q)))

K = Conv(Sigmoid(XC))
(4)

Finally, the Q and K weight matrices obtained through spatial

and channel processing are multiplied with the output X, which is

theQ and Kmatrix in the self-attention mechanism that can be used
FIGURE 3

Structure diagram of the SAW module.
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to establish long textual dependencies. The matrix is then

multiplied with the input X matrix by the Sigmoid function

activation. The spatial channel coordinated attention weights X 0

after spatial and channel processing are obtained. as shown in

Equation 5.

X0 = X⊗ (Sigmoid(Q⊗K)) (5)
3.2 CAPAF feature fusion module

Concatenation (Concat) operation is used for feature fusionin

deep learning, but it increases the computational burden, raises the

risk of overfitting, and may introduce redundant information. In

addition, another Element-wise Addition (ADD) feature fusion

operation maintains feature dimensionality. However, it cannot

deal with features of different dimensions, may ignore the

importance of features, and cannot capture non-linear

relationships, which affects its effectiveness in complex feature

interaction processing. Therefore, this work proposes the

attention-fusion module CAPAF with dynamic focusing, the

structure of which is shown in Figure 2.

In Figure 2, the structure of CAPAF feature fusion module is

shown. First, the input X1 and X2 are fused to obtain the fused

baseline feature X. Second, the feature matrix X is subjected to

channel attention and spatial attention operations, respectively, to

obtain the feature map of the attentional weights of feature X in

channel and space as shown in Equation 6, and at the same time, the

learnable parameterW is activated and the value domain is adjusted

to be between [0,1] by using the Sigmoid function.

X = Concat(X1,X2)

Fc = Channela Attention(X)

Fs = Spatial Attention(X)

FA = Fc + Fs

(6)
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Subsequently, in order to further highlight the importance of

different informative features in the feature map, this work employs

the Unsqueezee function to insert an additional dimension to the

channel dimensions of Fx0 and FA, respectively. This is done to

learn the key features at the pixel locations and to perform the

fusion of the features after this step is completed. Next, through the

activation of the Sigmoid function, this work obtains the feature

weights reflecting the pixel’s attention Fp. On this basis, this work

uses the learnable parameter W to adjust the weights of X and Fp in

feature fusion to generate the final weighted feature map F. By

performing a convolution operation on the feature map F, this work

successfully constructs an attention fusion feature map with

dynamic focusing capability X0. The detailed process and

computation are described in Equation 7.

Fp = Pixel Atention(Fx0, FA)

F = ((W⊗X) + (1 −W)⊗ Fp)

X0 = Conv2D(F)

(7)
4 Experiments and discussion

4.1 Dataset

This work aims to verify the effectiveness of the proposed

attention and feature fusion modules in underwater scenes. For

this purpose, we used the publicly available Underwater Image

Instance Segmentation (UIIS) dataset (Lian et al., 2023), which

contains 4,628 images, each with pixel-level annotations for seven

underwater instance segmentation task categories. The dataset is

divided into 3,937 training images and 691 validation images. The

quality of the dataset images is shown in Figure 5A. Additionally, we

used the large dataset USIS10K (Lian et al., 2024) proposed by Lian

Shijie et al. for underwater prominent instance segmentation tasks.

This dataset contains 10,632 images, with 7,442 images for training,
FIGURE 4

Structure diagram of the CAW module.
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1,594 images for validation, and 1,596 images for testing. The

dataset provides pixel-level annotations for seven categories, with

specific examples shown in Figure 5B.
4.2 Experimental parameters and
performance assessment indicators

The GPU version required for the experiments is NVIDIA GTX

4080. The software environment was Pytorch 1.8.0 on Python 3.7,

Anaconda 3, CUDA 10.0, and CUDNN 7.3.0. A total of 200 training

epochs were employed to ensure the model training’s convergence.

Batch size was set to 12 based on the graphics card’s performance.

using the SGD optimizer. The learning rate was initially 0.01. The

point cloud measurement model was deployed on a homemade

aquatic animals’ measurement platform.

In this work, the average prediction accuracy mAP@0.5 and the

number of model parameters, the computational complexity of the

model, are used as evaluation metrics. This Mean Average Precision

(mAP) can be calculated based on the precision P and recall R, as

shown in Equations 8, 9.

P =
TP

TP + FP
� 100% (8)
Frontiers in Marine Science 07
R =
TP

TP + FN
� 100% (9)

where TP and FP are the predicted positive and negative

samples, respectively, and FN is the incorrectly predicted sample.

The mAP is a combination of recall and precision that effectively

evaluates model detection performance, as shown in Equation 10.

mAP =
1
no

n

i=1

Z 1

0
P(R)dR (10)

where n represents the number of detected categories.
4.3 Experimental results and analysis

To validation the effectiveness of the proposed CSCA attention

mechanism and CAPAF module in underwater scenarios, in this

work, we conduct ablation experiments in the UIIS underwater

scene dataset based on the YOLOv8 network. First, YOLOv8

network is used as the baseline model. Second, CSCA attention

and CAPAF feature fusion module are added, respectively. The

results are shown in Table 1.

From the ablation experiments in Table 1, it can be seen that

our proposed CSCA attention and CAPAF feature fusion modules

have an improved effect on the segmentation performance of
FIGURE 5

Display of the image section of the dataset. (A) Publicly available images of the UIIS dataset. (B) Publicly available images of the USIS10K dataset.
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underwater instances. Specifically, the mAP@0.5 reaches 40.7% and

39.5% after using the CSCA attention and CAPAF feature fusion

model in the baseline model, respectively. Compared with the

baseline model, mAP@0.5 is improved by 3.2% and 2%,

respectively. When the CSCA attention mechanism and the

CAPAF feature fusion module are simultaneously applied to the

baseline model, the number of parameters increases by 4.2M, and

the computational cost rises by 12.9 GFlops. However, the mAP@

0.5 improves to 41.2%, which is 3.7% higher than the baseline

model, demonstrating the significant advantage of these modules in

enhancing the accuracy of underwater instance segmentation.

In order to verify the superiority of the CSCA attention

proposed in this work, it is compared with the current

mainstream attention models. The results are shown in Table 2.

From the experimental results in Table 2, it is concluded that

the embedding of the CSCA attention module significantly

improves the performance of the YOLOv8 model. Compared to

the original model, the CSCA attention module not only

significantly increased precision (from 41.5% to 48.7%) but also

appropriately increased recall (from 41.5% to 43.2%), which is the

best performance among all compared attention modules. Despite

the increase in the number of parameters and GFLOPs, the

performance improvement brought by the CSCA attention

module proved its value in the target detection task, resulting in a

mAP@0.5 of 40.7%, outperforming the other attention modules.
Frontiers in Marine Science 08
In order to understand the region of attention of the network after

adding the attention mechanism, in this work, the GradCAM method

is used to map the last layer of gradient weights of the backbone

network to get the model heat map. Figure 2 shows the results of the

heat map of several attention mechanisms compared, and from the

demonstration in Figure 6, it can be understood that the CSCA

attention mechanism proposed in this work pays more attention to

the target region and is able to extract effective feature information.

Finally, in order to examine the performance of the CSCA

attention mechanism and the CAPAF function fusion module

proposed in this study in the current mainstream network

architectures, we embedded the CSCA attention mechanism into

the backbone networks of YOLOv5, YOLOv8, YOLOv9, and

YOLOv11, respectively, and applied the CAPAF module to the

Neck network. The corresponding experimental results are

displayed in Tables 3, 4, respectively.

In Tables 3, 4, attention is given to the significant enhancement

of the YOLOmodel performance by the introduction of both CSCA

and CAPAF modules. By integrating the CSCA attention and

CAPAF functional fusion modules, the detection accuracy of the

YOLOv8 and YOLOv11 models in several underwater scenarios is

significantly enhanced. For example, the addition of these two

modules improves the YOLOv8 model’s mAP@0.5 from 55.8% to

57.5% on the USIS10 dataset, and in particular, it performs more

accurately in detecting human divers and robots. Similarly, the
TABLE 2 Results of CSCA attention compared to other attention mechanisms.

Model Precision Recall Parameters/106 GFLOPs mAP@0.5/%

YOLOv8 41.5 41.5 3.5 12.0 37.5

+Coord Attention 45.3 41.8 3.2 12.0 39.8

+CPCA Attention 44.9 38.3 3.3 12.4 38.7

+SimAM Attention 40.0 45.2 3.2 12.0 40.1

+CBAM Attention 45.0 41.2 3.3 12.6 39.7

+SE Attention 45.0 38.9 3.2 12.0 39.2

+AFGCAttention (Han et al., 2025) 46.0 39.9 3.2 12.0 40.2

+FCAttention (Sun et al., 2024) 42.2 46.5 3.2 12.0 40.0

+CSCA Attention 48.7 43.2 4.5 14.8 40.7
TABLE 1 CSCA attention and CAPAF module in YOLOv8 model results.

NO CSCA CAPAF Parameters/106 GFLOPs mAP@0.5/%

1 3.5 12.0 37.5

2 ✓ 4.5 14.8 40.7

3 ✓ 5.3 18.7 39.5

4 ✓ ✓ 7.7 24.9 41.2
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TABLE 3 Experimental results in the UIIS dataset.

Model

AP@0.5/%
Parameters/

106 GFLOPs mAP@0.5/%
Fish Reefs

Aquatic
plants

Wrecks/
ruins

Human
divers

Robots
Sea-
floor

YOLOv11 63.7 44.1 12.6 25.8 79.1 1.7 17.0 2.8 10.2 34.9

YOLOv9 68.3 47.2 19.1 29.9 86.5 33.6 21.2 13.7 54.9 43.7

YOLOv8 66.6 43.9 15.0 22.9 83.2 19.4 18.3 3.2 12.0 37.5

YOLOv5 63.5 34.3 14.4 19.1 79.5 3.3 12.9 1.8 6.8 32.5

YOLOv11

+CSCA

63.6 43.2 16.2 29.1 83.8 6.8 14.1 4.2 13.4 36.7

YOLOv9 70.0 45.6 18.1 35.1 87.0 31.6 22.9 13.9 62.4 44.3

YOLOv8 66.6 43.8 17.0 27.0 88.0 24.0 16.6 4.5 14.8 40.7

YOLOv5 63.3 39.8 16.1 19.1 83.0 3.5 17.0 4.5 10.2 34.6

YOLOv11
+CAPAF

64.4 43.0 16.1 29.9 82.9 2.8 15.1 6.6 24.7 36.3

YOLOv9 70.8 48.7 20.5 34.4 89.3 23.4 20.8 14.7 70.0 44.0

(Continued)
F
rontiers in Marine Scien
ce 09
FIGURE 6

Comparison of GradCAM heat map results for several attentions.
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mAP@0.5 of the YOLOv11 model improved from 52.7% to 53.5%

after the introduction of the CSCA and CAPAF modules, which

indicates that these two modules effectively enhance the model’s

ability to perceive complex underwater environments, thus

verifying the important role of the CSCA and CAPAF modules in

enhancing the performance of existing YOLO models.
5 Conclusion

In this study, we innovatively propose a CSCA attention

mechanism and a CAPAF feature fusion module for underwater

instance segmentation, aiming at solving the problem of insufficient

segmentation accuracy of complex underwater scene images. Through

the visual analysis of feature mapping, we find that the proposed CSCA

attention module can focus more on the target region. During the

experimental process, we integrated the CSCA attention mechanism
Frontiers in Marine Science 10
with the CAPAF feature fusionmodule into the YOLOv8model, which

resulted in a 3.2% and 2% improvement in the mAP@0.5 metrics of the

model, respectively. In addition, we apply this method to multiple

networks for validation, and the experimental comparison results fully

demonstrate the significant effectiveness of themethod proposed in this

paper in terms of segmentation accuracy of underwater

image instances.

The current limitation of the CSCA attention and CAPAF

feature fusion modules lies in the need for further lightweight

optimization of the parameters and computational complexity.

Additionally, these modules have only been validated in YOLO-

based networks and not in other networks. However, experimental

results have demonstrated that our proposed CSCA attention and

CAPAF feature fusion modules can enhance model detection

accuracy and prevent issues with missing segmentation edges. In

the future, our work will continue to improve the CSCA attention

and CAPAF modules and validate them in other networks.
TABLE 3 Continued

Model

AP@0.5/%
Parameters/

106 GFLOPs mAP@0.5/%
Fish Reefs

Aquatic
plants

Wrecks/
ruins

Human
divers

Robots
Sea-
floor

YOLOv8 66.4 45.1 17.1 28.5 85.5 15.4 18.7 5.3 18.7 39.5

YOLOv5 63.2 37.9 14.0 20.2 80.8 1.7 13.9 4.5 10.2 33.1

YOLOv11

+CSCA
+CAPAF

65.4 44.0 15.4 28.8 83.6 3.5 19.8 8.0 27.7 37.2

YOLOv9 70.1 47.0 19.2 32.0 88.2 33.7 22.7 18.8 78.5 44.7

YOLOv8 67.5 44.8 15.5 24.7 86.8 29.8 19.0 7.7 24.9 41.2

YOLOv5 62.1 38.5 15.5 20.6 82.4 6.7 19.1 4.5 10.2 35.0
TABLE 4 Experimental results in the USIS10K dataset.

Model

AP@0.5/%
Parameters/

106 GFLOPs mAP@0.5/%
Fish Reefs

Aquatic
plants

Wrecks/
ruins

Human
divers

Robots
Sea-
floor

YOLOv11 68.0 85.9 49.3 11.5 81.1 51.6 21.5 2.8 10.2 52.7

YOLOv9 75.7 89.9 53.6 13.4 86.0 62.5 27.1 13.7 54.9 58.3

YOLOv8 69.9 87.0 51.3 13.0 82.5 60.0 26.9 3.2 12.0 55.8

YOLOv5 62.5 84.3 44.3 10.1 78.0 58.2 24.4 1.8 6.8 51.7

YOLOv11

+CSCA
+CAPAF

66.2 86.1 49.8 10.6 78.2 57.2 25.7 8.0 27.7 53.5

YOLOv9 76.1 91.4 56.1 14.2 87.9 60.7 31.2 18.8 78.5 59.7

YOLOv8 73.1 88.1 51.7 14.5 83.5 59.3 32.5 7.7 24.9 57.5

YOLOv5 63.5 86.0 48.4 11.0 82.0 64.6 29.7 4.5 10.2 55.0
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