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This study presents a regionally trained version of the “CArbonate system and

Nutrients concentration from hYdrological properties and Oxygen using a Neural

network” (CANYON) method, named CANYON-PU, for estimating primary

macronutrients (phosphates, silicates, and nitrates) in the Peruvian Upwelling

System (PUS). Using a neural network approach, the model was trained using

extensive biogeochemical data spanning between 2003 and 2021, collected by

the Peruvian Institute of Marine Research (IMARPE). Variables representing the

low-frequency variability related to ENSO were introduced in the training and

significantly improved the performance of the algorithm. The performance of

CANYON-PU was validated against independent datasets and demonstrated an

improvement in accuracy over the global CANYON model that struggled to

represent the nutrient distribution in the PUS mainly due to the lack of samples in

its training. Therefore, CANYON-PU successfully captured nutrient variability

across different spatial and temporal scales, showcasing its applicability to diverse

datasets, including high-frequency data such as profiling floats or gliders. This

work highlights the effectiveness of neural networks for representing the nutrient

distribution within highly variable ecosystems like the PUS.
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1 Introduction

The Eastern Boundary Upwelling Systems (EBUS) are regions of

major ecosystem and ocean biogeochemical importance located in the

western margin of the continents characterized by high biological

productivity and are important sources offish production (Fréon et al.,

2009). The Peruvian Upwelling System (PUS) is a subcomponent of

the Humboldt system that spans all along the eastern margin of South

America. The Humboldt system is one of the four major EBUS and it

is characterized by year-round strong alongshore winds which drive

intense coastal upwelling cells (Strub et al., 1998; Yari et al., 2023). This

process delivers cold and nutrient-rich subsurface waters to the surface

making it a highly productive and rich ecosystem (Chavez et al., 2008;

Pennington et al., 2006). Several studies have described the spatio-

temporal variability of the principal macronutrients in this ecosystem:

phosphates (PO3−
4 ), silicates (Si(OH)4) and nitrates (NO−

3 ). These

macronutrients are susceptible to high frequency spatial and temporal

variability, principally as a result of coastal trapped waves (Echevin

et al., 2014; Lüdke et al., 2019) and mesoscale eddies (Pietri et al.,

2013). Research has suggested that coastal trapped waves can have a

variety of effects on macronutrient distributions that are linked with

seasonal dynamics (Lüdke et al., 2019). However, these dynamics are

not well known due to the lack of high frequency observations needed

to resolve this phenomenon.More persistent, interannual variability in

macronutrient availability has been reported as a response to El Niño

Southern Oscillation (ENSO) and its warmer (El Niño, associated with

weaker upwelling) and colder (La Niña, associated with stronger

upwelling) phases (Espinoza-Morriberón et al., 2017; Graco et al.,

2017; Hormazábal et al., 2006; Mogollón and Calil, 2017). Therefore,

assessing the variability of the PUS remains challenging due to the lack

of continuous, high-resolution data needed to disentangle the

multiple forcings.

The Peruvian Institute of Marine Research (IMARPE) has

organized ship-based surveys along the Peruvian coast since the

early 1960s, however, sampling did not frequently include

measurements of PO3−
4 , Si(OH)4 and NO−

3 . One approach to

understand nutrient variability relies on the use of regional

models that can represent marine biological productivity and the

principal macronutrients (e.g. Echevin et al., 2014) but they do not

resolve variability from seasonal to higher frequencies well due to

the monthly climatological boundary conditions used for the

biogeochemical tracers. This limitation, particularly the inability

of traditional models to accurately represent these dynamic nutrient

fluctuations, highlights the need for alternative approaches.

Recently, the application of Artificial Neural Networks (ANN) for

estimating the principal macronutrients among other biochemical

parameters has been explored. For example, the ANN denominated

CANYON, trained and tested for the global oceans, stands for

“CArbonate system and Nutrients concentration from hYdrological

properties and Oxygen using a Neural network” (Sauzède et al.,

2017) and has been later refined and published as CANYON-B

(Bittig et al., 2018). Similarly, the Empirical Seawater Property

Estimation Routines (ESPER; Carter et al., 2021) uses a mix

(ESPER-Mix) of locally interpolate regression (ESPER-LIR) and a

feed forward NN (ESPER-NN) by averaging its outputs to estimate
Frontiers in Marine Science 02
PO3−
4 , Si(OH)4 andNO

−
3 on a global scale. Although the capability of

CANYON and ESPER to estimate the principal macronutrients

among other biogeochemical variables has been demonstrated, they

lack the ability to predict the nutrient dynamics in marginal or high

variability regions. Even though ESPER has demonstrated to

perform similarly or better under certain circumstances than

CANYON, it struggles when the magnitude of the testing

variables varies considerably from the training set even when they

are close in physical space making ESPER more sensitive to

variations. Additionally, similar to CANYON, ESPER is a globally

trained ANN which weakens its capability of predicting the

characteristics of the principal macronutrients in highly variable

regional environments such as the PUS.

Recently, it has been demonstrated that regionally trained ANNs

methods could reduce the errors in the predictions by incorporating

regional specific data that represents biogeochemical processes not

present in the global methods such as seasonal variability in

constrained areas. CANYON-MED, for example, is the regional

method retrained with local data for the Mediterranean Sea

(Fourrier et al., 2020). Similarly, the GOM-NNph method (Osborne

et al., 2024), developed for estimating pH in the Gulf of Mexico

emphasizes the usefulness of regionally trained ANN.

In this paper, a regionally trained version of the global

CANYON method is presented for the PUS. Taking advantage of

multiple oceanographic surveys led by IMARPE we trained an ANN

which we called CANYON-PU, with the primary objective of

estimating the principal macronutrients: PO3−
4 , Si(OH)4 and NO−

3 .

Additionally, we propose an ensemble model of CANYON-PU by

combining the 10 best-trained ANNs. This optimized CANYON-

PU is then validated with different independent datasets at different

spatio-temporal scales and compared against CANYON-B and

ESPER-NN. Finally we explore the usage of CANYON-PU in a

higher frequency dataset collected in two glider missions deployed

off the northern Peruvian coast.
2 Materials and methods

2.1 IMARPE biogeochemical dataset

IMARPE has carried out regular ship-based surveys along the

Peruvian coast since the early 1960s. In order to study major

upwelling cells and fishery areas, it has collected a large number

of discrete water column samples of ocean station data (OSD) such

as temperature, salinity, oxygen and the principal macronutrients

and, since the early 1990s, of Conductivity-Temperature-Depth

(CTD) profiles. In this work, we selected sampling stations that in

addition to core variables of temperature, salinity and oxygen, also

includes measurements of the principal macronutrients

concentration: PO3−
4 , Si(OH)4 and NO−

3 . The nutrient samples

were measured following the spectrophotometric method

described in Strickland and Parson (1972) using a Perkin–Elmer

Lambda 40 double-beam UV/Vis spectrophotometer. The standard

deviation (SD) computed for PO3−
4 , Si(OH)4 and NO−

3 was 0.74 μM,

8.70 μM and 6.92 μM respectively. Furthermore, an additional
frontiersin.org
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independent validation dataset using IMARPE’s regularly ship-

based measurements that met the same selection criteria located

in fixed stations offshore Paita (5 °S) and Callao (12 °S) was used to

test the performance of CANYON-PU outside the ANN framework

and assess the general applicability of other methods.

2.1.1 Ship-based surveys available dataset
From 2003 to 2021, a total of 76 cruises monitored an area

between 3 °S and 20 °S in cross-shore sections that extended as far

as 400 km off the coast. That represents an initial total of 29729

OSD samples. This dataset was divided into training datasets based

on the availability of each of the macronutrient data types. These

samples were split by nutrient in order to have three unique datasets

for PO3−
4 , Si(OH)4 and NO−

3 . For each of the three unique

macronutrient datasets, associated variables of latitude, longitude,

depth, temperature, salinity and oxygen had to be present for each

measurement. Furthermore, it was made sure that in the three

unique datasets the principal variables such as time, position, depth,

temperature, salinity and oxygen were also available. If that criteria

was not met, the sample at that specific depth was removed.

Additionally, each profile was quality-control following a similar

criteria proposed in Grados et al. (2018) by removing casts with

error in geographical position which made them appear on land or

with a maximum depth greater than the corresponding bathymetry

estimated from GEBCO_2023. Any duplicate sample was also

identified and removed. Finally, outliers of temperature, salinity

and oxygen values were also discarded using theWOD18 acceptable

ranges in the Equatorial and South Pacific (see Appendix 9 in

Garcia et al., 2018). The final data distribution shows a total number
Frontiers in Marine Science 03
of data that varied according to the nutrient considered (Figure 1a).

The quality-checked dataset contained 17067 samples for PO3−
4 ;

17269 for Si(OH)4 and 17255 for NO−
3 (Figure 1b) where ~70%

corresponded to surface stations and the remaining to profile

samples at standard depth levels with decreasing vertical

resolution as the profile reached the maximum depth of ~800 m

(Figure 1c). In general, observations span the entire PUS domain

with a great coverage. However, a slight bias in sampling across the

data distribution shows more samples in the northern and central

coast due to a relatively higher frequency of monitoring associated

with El Niño; however, intensely sampled cross-shore sections can

be seen along the coast (Figure 1a). Although the number of

samples between 2003 and 2019 is relatively similar, the barplot

shows a noticeable decrease from 2020 due the restrictions in the

ocean operations during the COVID-19 pandemic (Figure 1b). The

seasonal distribution evidences a balanced distribution throughout

the year. It is worth noting that most of the data (98%) is contained

within the first 300 m (Figure 1c).

2.1.2 Independent time series in Paita (5 °S) and
Callao (12 °S)

A set of measurements was set aside and not used during the

ANN training phase to serve as an independent validation of

CANYON-PU. Four areas were defined off the shore of Paita (5 °

S) and Callao (12 °S) where regular sampling is performed. This

dataset contains a total of ~722 measurements from surface down to

500 m for each macronutrient and spans from 2003 to 2019 with a

seasonal coverage that includes warm and cold conditions.

Following the same criteria, the eligible data contains the core
FIGURE 1

(a) Spatial distribution of NO−
3 profiles binned in a 30 km grid where the color represents total density of data (#Data/30km) in log scale,

(b) histogram of the total number of data available for PO3−
4 (blue), Si(OH)4 (orange), NO−

3 (yellow) binned by year and (c) monthly distribution of the
number of data binned in a 50 m vertical grid. The horizontal purple line in ~4.6 °S shows the path covered by the glider deployments.
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parameters as well as their corresponding nutrients. In order to test

the general applicability of the method and its performance in

coastal waters and in the open ocean, two zones along the cross-

shore sections in front of Paita and Callao were selected. The

available samples inside a 10 km radius at 81.45 °W, 5 °S and

82.5 °W, 5 °S corresponds to the independent dataset off Paita and,

inside a 10 km radius at 77.3 °W, 12.2 °S and 78 °W, 12.5 °S, to

Callao. The total dataset for Paita was 566 sampling points with a

maximum depth of 500 m whereas, for Callao, was 156 points with

profiles at standard levels that also reached 500 m at the most.
2.2 Artificial neural network architecture

Machine learning algorithms, such as ANN, have been widely

used within the marine science community (Rubbens et al., 2023) and

have shown promising results for classification and detection of

plankton (Irisson et al., 2022). In recent years, the applications of

ANN to estimate the nutrient concentration in the ocean have

appeared (Bittig et al., 2018; Carter et al., 2021; Contractor and

Roughan, 2021; Fourrier et al., 2020; Sauzède et al., 2017; Wang

et al., 2023). Compared to the core variables such as temperature,

salinity and oxygen and despite some development of ultraviolet

profiling sensors (Daniel et al., 2020) that allows the measurement

of NO−
3 , macronutrients concentrations are still largely undersampled

which makes it a challenge to characterize their variability at high

spatio-temporal scales. In this work, we propose a similar approach to

CANYON (Sauzède et al., 2017), CANYON-B (Bittig et al., 2018) and

CANYON-MED (Fourrier et al., 2020) by training an ANN with

IMARPE’s biogeochemical dataset for the PUS region in order to

estimate the concentration of PO3−
4 , Si(OH)4 and NO−

3 .

2.2.1 Multilayer perceptron
Following CANYON methodology, we used a Multilayer

Perceptron (MLP) to build the ANN. The MLP is a feed forward

ANN with multiple hidden layers which has been shown capable of

approximating a continuous function by connecting inputs and

outputs (Bishop, 1995). The ANN functions iteratively connecting

input data with values in the adjacent layer by weights that are

readjusted in every iteration in order to minimize the error by

decreasing the error function. Prior to the training phase, it is

usually suggested that the data used is normalized between the

range of -1 and 1 in order to improve the accuracy and efficiency of

the model. The input data was normalized by following the same

criteria as Fourrier et al. (2020) using the equation:

x 0 =  
2
3 *

(x − �x)
s

(1)

Where x’ is the normalized input, x, x and s represent the

input, its mean and the SD respectively. The factor ⅔ in Equation 1

allows that at least 80% of the data is restricted in the range [-1,1].

We used the Deep Learning Toolbox included in MATLAB to

develop the MLP. Within the toolbox framework, we chose to

randomly select 80% of the data to be used for the ANN training

and 20% of the data to be used as validation. Validation within the
Frontiers in Marine Science 04
training process ensures that there is iterative testing of the model

using data that is not directly used in the training. For efficient

computation, the ANN architecture was limited to two hidden

layers, where the number of neurons in each layer could vary. The

neuron count within each layer was randomized within the range of

1 to 50. Given the three distinct nutrients under investigation, we

trained an independent MLP for each. To balance computational

cost with a reasonable level of confidence in our final results, we

performed 100 training runs for each nutrient, leading to a total of

300 trained ANN. Following the same steps detailed by Fourrier

et al. (2020), we used a Bayesian Regularization Algorithm in order

to appropriately determine the weights and errors during the

training. After 100 training tests for each nutrient, we analyzed

the performance of each ANN. This was done by computing the

statistical metrics which evaluates the accuracy of the ANN on the

validation datasets (20%): the Mean Absolute Error (MAE), Root

Mean Squared Error (RMSE) and the Coefficient of determination

(R2). These values were computed by comparing the ANN-retrieved

nutrients and the corresponding in situ measurements and

identifying the optimum configuration by choosing the highest R2

and the lowest RMSE and MAE. Multiple single ANN can be

combined to generate an ensemble model in order to improve the

metrics of the estimated parameter (Linares-Rodriguez et al., 2013).

Effectively, the approach applied to the Mediterranean Sea (Fourrier

et al., 2020) combining the ten best nutrient outputs, based on R2,

showed higher correlation coefficients and lower errors in

comparison with the performance of the best single model. Based

on this evidence, the ensemble (ANN-E) shown in this paper

averages the 10 best single outputs (ANN-1/10, Table 1).

2.2.2 Regionally trained ANN in the Peruvian
upwelling system

Both CANYON and CANYON-B were trained using the Global

Ocean Data Analysis Project version 2 (GLODAPv2) (Olsen et al.,

2016), however, only CANYON-B is used in this study, as it

represents an improved version of the initial CANYON model.

The inputs CANYON-B uses to estimate the nutrients are latitude,

longitude, date, depth, temperature, salinity and oxygen. The

application of CANYON-B in the PUS showed poor performance

based on the measured IMARPE values (Table 2). We attribute the

poor performance of this model to the lack of observations available

for the PUS and more broadly for the South Eastern Pacific region

within the GLODAPv2 dataset. This motivated our work to train a

regional ANN for the PUS, which we have named CANYON-PU.

Our approach follows the regional adaptation of CANYON to the

Mediterranean Sea by Fourrier et al. (2020). In addition to the

potential temperature, salinity, oxygen, latitude, longitude, depth

and day of the year, we tested the addition of four regionally

relevant input parameters to train CANYON-PU: 1) The distance

to the coast, 2) the bathymetry, 3) the Oceanic Niño Index (ONI)

and 4) the Coastal El Niño Index (ICEN). The distance to the coast

and the bathymetry associated with each sample was added due to

the intense productivity gradient between the coast and the open

ocean (Espinoza-Morriberón et al., 2017) and the influence of

sediments from the continental platform in remineralization
frontiersin.org
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(Loginova et al., 2020). Also, ocean dynamics impacted by the

presence of the continental slopes are important for the propagation

of coastal trapped waves and potentially nutrient distribution (Pietri

et al., 2014). The distance to the coast was computed using the

minimum distance between the coastline and the sampling point.

The bathymetry used was GEBCO_2023: a global terrain model that

provides elevation data on a 15 arc-second interval grid (Tozer

et al., 2019). Furthermore, the PUS being highly susceptible to

interannual events such as El Niño Southern Oscillation (ENSO)
Frontiers in Marine Science 05
(Arntz et al., 2006; Espinoza-Morriberón et al., 2017; Peng et al.,

2024) led us to include two indices developed to characterize it. The

index built to characterize warmer or colder conditions in the

region El Niño 3.4 (5 °N-5 °S, 120 °W-170 °W) denominated the

ONI index was developed by NOAA. It is defined as a set of 3-

month running averages of sea surface temperature(SST) anomalies

in the region 5 °N-5 °S, 120 °W-170 °W (Huang et al., 2017) and

characterizes warm (El Niño) or cold (La Niña) conditions based on

a threshold of +/- 0.5 °C. While the ONI index is a helpful tool for
TABLE 1 10 best performance CANYON-PU in the validation dataset (20%) for estimate PO3
4, SiðOHÞ4 and NO3.

CANYON-PU N1 N2 R2 RMSE (µM) MAE (µM)

PO3−
4 38 20 0.671 0.429 0.311

38 42 0.670 0.428 0.313

2 34 0.668 0.426 0.319

2 42 0.666 0.426 0.317

2 20 0.662 0.429 0.316

32 35 0.662 0.428 0.317

31 35 0.661 0.438 0.317

31 16 0.660 0.432 0.318

44 20 0.659 0.442 0.326

32 20 0.659 0.428 0.318

Si(OH)4 7 40 0.809 3.828 2.685

43 8 0.808 3.776 2.716

50 37 0.807 3.799 2.686

30 40 0.807 3.851 2.671

43 40 0.806 3.812 2.714

41 40 0.804 3.887 2.775

50 40 0.804 3.879 2.750

5 8 0.803 3.848 2.736

50 48 0.800 3.880 2.740

13 8 0.799 3.953 2.815

NO−
3 50 34 0.792 3.159 2.340

30 43 0.791 3.198 2.358

50 37 0.789 3.219 2.356

30 40 0.789 3.218 2.392

7 8 0.789 3.204 2.394

24 37 0.788 3.163 2.339

43 37 0.788 3.244 2.425

50 23 0.788 3.208 2.370

50 43 0.786 3.206 2.382

13 48 0.786 3.267 2.387
N1, N2, Number of neurons in the first and second layer respectively.
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identifying typical ENSO events in the Central Pacific (Takahashi

et al., 2011), studies have also shown unusual instances of

significant warming along the Peruvian coast even when the

Central Pacific stayed cooler (Echevin et al., 2018; Peng et al.,

2024). Therefore, we included an additional index for the El Niño

1+2 region (0 -10 °S, 90 °W-80 °W) denominated ICEN. This index

developed by the Peruvian Commission for the Study of El Niño

(ENFEN) is a monthly index computed using a 3-month moving

average of SST anomalies from ERSSTv5 (Huang et al., 2017). It

distinguishes warm or cold conditions based on a threshold of +0.5 °C

and -1.2 °C respectively. Although both ONI and ICEN indices are

useful to characterize canonical ENSO events (Takahashi et al., 2011),

the ICEN has shown a better representation of less frequent and

peculiar events in the PUS such as the coastal El Niño in 2017 and

2023 (Echevin et al., 2018; Peng et al., 2024).
2.3 Other sources of hydrographic and
biogeochemical data: GLODAPv2.2023,
IMARPE climatology and BGC-Argo

In order to assess the reliability of the model’s estimation aside

from OSD samples, we used three different external data sources: i)

GLODAPv2.2023, ii) IMARPE monthly climatology and iii) BGC-

Argo floats.

Recently the GLODAPv2 (Olsen et al., 2016) used in the

training of the original CANYON-B has been updated and

distributed as GLODAPv2.2023 (Lauvset et al., 2024). The key

feature of this update is the availability of three cruises with samples

at maximum depths of 5500 m in the central and southern margin

of the PUS that were not included in GLODAPv2 (Figure 1a).

GLODAP employs rigorous quality control procedures, including

crossover analysis and bias adjustments, to achieve a target

consistency of 2% for PO3−
4 , Si(OH)4 and NO−

3 concentrations

across its global dataset (Lauvset et al., 2024). The resulting
Frontiers in Marine Science 06
statistical characteristics (in μM) for these nutrients in the

GLODAPv2.2023 dataset are summarized as follows: PO3−
4 (mean:

2.3, median: 2.5, SD: 0.59), Si(OH)4 (mean: 20.95, median: 24.93,

SD: 10.47), and NO−
3 (mean: 20.47, median: 20.87, SD: 8.67).

Additionally, a monthly T-S-O2 climatology (1981-2010)

developed by IMARPE (Grados et al., 2018) was used in order to

show the capability to reconstruct the seasonal variability of the

estimated nutrients and it was compared with IMARPE’s nutrient

climatology (Espinoza-Morriberón et al., 2017) displayed in a

gridded field of 0.25° x 0.25° and in 55 vertical levels between

surface and 1000 m the same spatial resolution as the T-S-O2

gridded field. The nutrient climatology provided the following key

metrics (in μM): PO3−
4 (mean: 2.31, median: 2.42, SD: 0.64), Si(OH)4

(mean: 28.76, median: 24.02, SD: 19.55), and NO−
3 (mean: 22.49,

median: 20.58, SD: 11.47). Another source of biogeochemical data

for further validation of CANYON-PU, available since the end of

2023, is the dataset from three Biogeochemical Argo floats (BGC-

Argo; Claustre et al., 2020; Wong et al., 2020) equipped with NO−
3

SUNA sensors drifting along the central-southern Peruvian coast.

Following quality control procedures, the estimated error found for

these nitrate measurements is typically ±0.5 μM (Claustre et al.,

2020). The float World Meteorological Numbers (WMO) 3902556

located in the central Peruvian coast and the floats WMO 2903858

and 1902644 located in the southern Peruvian coast (Figure 1a)

began their measurements on December of 2023 collecting profiles

at a 10 day frequency through March 2024 when the data was

accessed for this study. The vertical sampling of BGC-Argo profiles

reaches ~2000 m with a resolution of 2m enabling them to estimate

NO−
3 at fine scales. The analysis in this work focused on the delayed-

mode quality controlled profiles that were chosen with a flag of 1

(i.e. good data) and at a maximum depth of 500 m. The NO−
3 data

collected by BGC-Argo floats provided the following descriptive

statistics (mean, median, and SD in μM): WMO 3902556 (22.64,

22.16, 12.16), WMO 2903858 (17.28, 16.84, 13.95), and WMO

1902644 (19.66, 12.81, 14.38).
TABLE 2 Performance of CANYON-B, ESPER-NN and CANYON-PU in the validation dataset (20%) for estimate PO3
4, SiðOHÞ4 and NO3.

CANYON-B R2 RMSE (µM) MAE (µM)

PO3−
4 0.43 0.66 0.51

Si(OH)4 0.65 6.15 4.30

NO−
3 0.48 8.43 6.48
ESPER-NN R2 RMSE (µM) MAE (µM)

PO3−
4 0.43 0.66 0.50

Si(OH)4 0.64 5.81 3.86

NO−
3 0.49 7.66 5.81
CANYON-PU R2 RMSE (µM) MAE (µM)

PO3−
4 0.67 0.43 0.31

Si(OH)4 0.81 3.83 2.69

NO−
3 0.79 3.16 2.34
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2.4 Gliders dataset

This work also relies on a test application of CANYON-PU on

glider dataset. Over the past 15 years, several Slocum gliders were

deployed across-shore in the PUS (Pietri et al., 2014, 2013;

Thomsen et al., 2016) recording relatively high-resolution vertical

profiles of the water column down to a maximum depth of 1000 m

(Testor et al., 2018). All the vehicles were equipped with a CTD and

an optode for measuring oxygen, providing a finer spatio-temporal

resolution for the application of CANYON-PU. In this work, we

used data from two missions deployed in the northern Peruvian

coast (~4.6 °S, Figure 1a) during December of 2022 and March of

2023 with a maximum depth of 400 m in order to illustrate possible

application of CANYON-PU to high resolution glider data. Each T-

S-O2 profile collected by the glider was analyzed to remove

statistical outliers. These periods represented the conditions

before and during the peak of El Niño event 2023 (Peng et al., 2024).
3 Results

The capability of CANYON-PU to estimate PO3−
4 , Si(OH)4 and

NO−
3 concentrations in the PUS are tested using a validation dataset

corresponding to the 20% of all the samples available. Additionally,

when comparing the outputs against CANYON-B and ESPER-NN,

it shows a significant overall improvement as indicated by higher R2

values, and lower RMSE and MAE metrics (Table 2). The high R2

values represent a good fit between CANYON-PU and the

measurements, while the lower errors give information about the

accurate prediction of our model. Furthermore, CANYON-PU can

represent with better accuracy the nutrients in the upper 25 m due

to the large availability of surface data during its training.
3.1 CANYON-PU overall performance in
the Peruvian upwelling system

In general, CANYON-B and ESPER-NN have provide good

estimations for the principal macronutrients in the global oceans

(Bittig et al., 2018; Carter et al., 2021). For example, the RMSE for

CANYON-B reported by Bittig et al. (2018) is 0.051 μM (PO3−
4 ), 2.3

μM (Si(OH)4) and 0.68 μM (NO−
3 ). Carter et al. (2021) reported a

similar RMSE for ESPER-NN, specifically: 0.043 μM (PO3−
4 ), 2.0 μM

(Si(OH)4) and 0.56 μM (NO−
3 ). However, when it was tested in the

PUS, the RMSE increased to 0.66 μM (PO3−
4 ), 6.15 μM (Si(OH)4)

and 8.43 μM (NO−
3 ) (Table 2). This could be related to the scarcity of

the data in the region used for the training of CANYON-B and

ESPER-NN. and the large natural variability of nutrient

concentration in the PUS. Effectively, the R2 values varies for each

nutrient, with Si(OH)4 having the highest (0.65), while the values

for PO3−
4 and NO−

3 (0.43 and 0.48 respectively) were lower. In

contrast, the performance of CANYON-PU was better for all the

three nutrients (Table 2) when applied to the same validation

dataset. Moreover, the errors were, in general, 50% lower which
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evidenced the good performance due to the use of the regional

dataset during the training phase of the model. The variations in

performance for each nutrient predicted by the CANYON-PU

model (Table 2), as indicated by different R2 values, reflect the

diverse physical and biological processes that govern the variability

of each nutrient in the PUS (Pennington et al., 2006). For example,

PO3−
4 shows lower R2 coefficient (0.67) whereas Si(OH)4 and NO−

3

were considerably higher (0.81 and 0.79 respectively). Although the

latter reflects a good performance in the validation dataset above

300 m, in the layer between 400–500 m there was some bias between

the estimated value and the in situmeasurements, which reflects the

impact of the scarcity of samples below that level during the

training (Figure 2).

The relative and absolute differences between CANYON-PU and

validation in situ dataset are shown on Figure 3 along vertical profiles.

The relative variation is represented in percentage so that positive

(negative) values represent an overestimation (underestimation) of the

ANN. For all three nutrients it is noticeable that in the upper layers,

above 50 m, concentrations are overestimated which likely reflects the

highly variable nature of the system (Lüdke et al., 2019) and

CANYON-PU cannot account for factors such as nutrient

depletion, for example. The vertical differences (Figure 3) averaged

by depth shows slight variations in Si(OH)4 accordingly with the high

R2, whereas for PO3−
4 and NO−

3 are noticeably underestimated by

CANYON-PU below 200 m and 100 m respectively. Although the

differences increased with depth, the relative differences showed values

in the range +/- 10% confirming the robustness of CANYON-PU.

That being said, we observed some relative positive outliers probably

appeared due to sample contamination which causes nutrient

consumption especially at higher concentrations (Dore et al., 1996).
3.2 Performance of CANYON-PU with
independent datasets

3.2.1 Sampling stations in Paita and Callao
The independent datasets in Paita and Callao are used as a further

validation of CANYON-PU accuracy (Figure 4). Effectively, the best

performance ANN configuration from CANYON-PU (i.e. ANN-1)

was similar when it was applied to the 20% validation dataset used in

Section 3.1. Table 3 shows the R2 for the ANN-1, Si(OH)4 showed the

highest correlation coefficient (0.79), followed by NO−
3 (0.68) and P

O3−
4 (0.58). Although the performance from ANN-1 highlights the

robustness of our method, the ANN-E showed even higher

correlations. In general, the ANN-E improves the correlation

coefficient by 6% and lowered the errors (Table 3). This is

consistent with the results obtained by Fourrier et al. (2020) in a

similar study for the Mediterranean Sea. Additionally, the relative

differences seen in vertical profiles (Figure 5) were less than 10% in

general. For the upper 100 m layer, it was close to 8% for PO3−
4 and

Si(OH)4 and 11.9% for NO−
3 . Moreover, the deeper layers showed

even less differences near 3% (PO3−
4 ) with NO−

3 being the highest at

8%. The latter supports our premise that the ANN-E shows an

increased performance and could be used in the other datasets.
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3.2.2 GLODAPv2.2023
The performance achieved by CANYON-PU after applying it

on the GLODAPv2.2023 profiles that were inside the training area

(Figure 6) demonstrates better overall performance relative to the

independent validation dataset of Paita and Callao. Effectively, the

R2 coefficient for PO3−
4 (0.95) and Si(OH)4 (0.92) are higher,

whereas for NO−
3 is lower (0.64). The observed difference in R2 is

likely linked to the differing inherent variability of the validation

datasets. The longer time series from Paita and Callao (2003-2021,

all seasons) likely exhibits greater natural variability than the
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GLODAPv2.2023 data (austral spring/summer 2013, 2017). The

comparable RMSE and MAE values (Table 3) confirm the model’s

consistent absolute error magnitude, suggesting the variation in R2

is a consequence of evaluating against datasets with different total

variance. On the other hand, for the three estimated nutrients we

find a linear correlation in the first 100 m that slightly leans towards

an underestimation of 20% between 200–500 m and more evident

in NO−
3 which additionally shows higher errors. A further analysis

demonstrates that considering the GLODAPv2.2023 profiles

outside the training area 400 km offshore is slightly detrimental
frontiersin.or
FIGURE 2

Scatterplot of validation dataset (20%) between in situ values against estimated of (a) PO3−
4 , (b) Si(OH)4 and (c) NO−

3 from (a-c) CANYON-PU,
(d-f) CANYON-B and (g-i) ESPER-NN. The color represents the depth for each compared sample. The black markers show the averaged nutrient in
a layer of 0–100 m, 100–200 m, 200–300 m, 300–400 m and 400–500 m. The slope chosen as the reference line is 1 (red).
g

https://doi.org/10.3389/fmars.2025.1558747
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Asto et al. 10.3389/fmars.2025.1558747
to CANYON-PU in PO3−
4 and Si(OH)4 reliability lowering the R

2 to

0.93 and 0.89 respectively. However, for NO−
3 our analysis

demonstrates better performance highlighted by an R2 of 0.83.

This could be related to some processes near the coast that cannot
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be represented by the ANN. Overall, we have noticed that including

profiles below 500 m greatly increases the systematic bias, which

might suggest a limit for applicability of CANYON-PU below this

depth (coherent with sampling distribution of the training data set).
FIGURE 3

Validation dataset (20%)’s relative difference (%) between the output from CANYON-PU and in situ values for (a) PO3−
4 , (c) Si(OH)4 and (e) NO−

3 .
The corresponding averaged difference (µM) is shown in panels (b), (d, f).
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3.2.3 IMARPE climatology
The capability of CANYON-PU to represent nutrients at a

different time scale was tested using a T-S-O2 monthly gridded

climatology as input. Additionally, the outputs were compared

against IMARPE’s PO3−
4 , Si(OH)4 and NO−

3 climatology that is

gridded at the same spatial scale as the inputs. The outputs from

CANYON-PU for PO3−
4 and Si(OH)4 show a low bias when it was

compared against the climatology (Figures 7a, b). Effectively, the

previous statement was reflected in a high R2 of 0.9 for PO3−
4 and

0.79 for Si(OH)4. Although the correlations showed a good

performance in the deeper layers, the upper 100 m was

overestimated in CANYON-PU through all the months. Moreover,

the performance forNO−
3 was lower with a R

2 of 0.64 which was due to

a higher relative difference in the first 200 m. The climatology of NO−
3

also reveals that from austral spring to summer the underestimation

from CANYON-PU reached the layer over 400 m. In general, PO3−
4

and Si(OH)4were represented with more precision and confirmed the

conservative nature of Si(OH)4 whereas the processes of consumption

and depletion of nitrogen were difficult to capture by CANYON-PU

impacting on the robustness of NO−
3 estimation.

3.2.4 BGC-Argo floats
The three drifting BGC-Argo floats with NO−

3 measurements,

located 400 km offshore the central-south Peruvian coast

(Figure 1a) were used to test CANYON-PU and evaluate its

robustness using a dataset with a different spatio-temporal scale.

The difference between the estimated and measured NO−
3

(Figure 8) shows a similar pattern in the first 500 m for all the

BGC-Argo floats analyzed. Effectively, floats 3902556, 2903858 and

1902644 measured higher nutrients compared to CANYON-PU in

the first 50 m, this difference increased rapidly until 100 m,

especially for float 1902644. Below 100 m a decrease in the

difference can be noted, reaching its minimum value at 200 m,
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principally for float 3902556. The relatively low error remains until

325 m where an increment is again observed reaching a maximum

of -17 μM at 500 m. In general, CANYON-PU underestimates all

Argo float samples specially for float N° 1902644 which was located

at the southernmost domain of training dataset available. This

shows that, due to the lack of data in that area, CANYON-PU

cannot accurately represent the relatively high values observed

which led to an underestimation. On the other hand, float

3902556, although being outside of the available training domain,

was relatively closer to a dense area of training points that probably

affected positively the performance. Similarly float 29030858 was

located a few degrees west of the available training domain, close to

a sufficient amount of training points. In general, the comparison

showed a high R2 of 0.97 and an RMSE and MAE of 8.47 and

7.47 respectively.
3.3 Example application: gliders

A further application of CANYON-PU was tested using two

glider deployments in the northern Peruvian coast (Talara, ~4.6°S).

The periods covered by those missions were November 2022 and

March 2023 corresponding to the onset and progression of an El

Niño event (Figure 9).

The T-S-O2 fields show a noticeably heterogeneous distribution;

for temperature, there was a slight increase by the end of 2022 that

rose considerably by March 2023 and reached its peak of 30 °C in

April. Associated with this, an intrusion of Tropical and Equatorial

Surface Water (S<33.5 and S<34.8 respectively) was observed in the

salinity fields. The upper limit of the OMZ (O<22 μM, Espinoza-

Morriberón et al., 2021) deepened ~100 m while the El Niño event

was at its peak. Moreover, the upper layers were more oxygenated

than their counterparts in November-December 2022.
FIGURE 4

Scatterplot of independent validation dataset (Paita and Callao) between in situ values against CANYON-PU. (a) PO3−
4 , (b) Si(OH)4 and (c) NO−

3 . The
color represents the depth for each compared sample. The black markers show the averaged nutrient in a layer of 0–100 m, 100–200 m, 200–300
m, 300–400 m and 400–500 m. The slope chosen as the reference line is 1 (red).
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The estimated nutrients from CANYON-PU under these

settings are shown in Figures 9g–l revealing a general depletion of

nutrients, primarily in the upper 200 m, when the El Niño event was

active. It is also observed that the high stratification is closely related
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to the consumption of PO3−
4 and NO−

3 consistent with previous

studies in other regions (Tozawa et al., 2024), whereas Si(OH)4, was

depleted in the whole water column. The descriptive statistics

(mean, median, and SD in μM) for the estimated PO3−
4 , Si(OH)4,
FIGURE 5

Paita and Callao independent validation dataset’s relative difference (%) between the output from CANYON-PU and in situ values for (a) PO3−
4 ,

(c) Si(OH)4 and (e) NO−
3 . The corresponding averaged difference (µM) is shown in panels (b, d, f).
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and NO−
3 for the two periods were as follows: for 2022, values were

PO3−
4 (2.43, 2.47, 0.26), Si(OH)4 (21.13, 21.5, 4.85), and NO−

3 (20.69,

21.46, 2.7); while for 2023, the corresponding values were PO3−
4

(2.04, 2.16, 0.65), Si(OH)4 (20.15, 22.25, 8.5), and NO−
3 (22.55,

25.56, 6.81).

This demonstrates the ability of CANYON-PU to estimate and

represent reasonable features of nutrient distribution under

different climate forcings, confirming its potential applicability

to diverse datasets, including high resolution data collected

by gliders.
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4 Discussion

4.1 CANYON-PU performance under
different settings

The process of testing which parameter has the most impact in

the performance of CANYON-PU was achieved by zeroing one by

one each parameter used in the training step. We then applied our

ANN to predict the nutrient concentration under different

scenarios and compared the R2 in each case (Figure 10). First,
TABLE 3 Metrics for independent validation datasets.

Paita and Callao

ANN-1 ANN-E

R2 RMSE (µM) MAE (µM) R2 RMSE (µM) MAE (µM)

PO3−
4 0.58 0.41 0.31 0.61 0.39 0.30

Si(OH)4 0.79 3.53 2.68 0.84 3.10 2.33

NO−
3 0.68 3.63 2.78 0.70 3.46 2.66

GLODAPv2.2023

ANN-1 ANN-E

R2 RMSE (µM) MAE (µM) R2 RMSE (µM) MAE (µM)

PO3−
4 0.94 0.31 0.29 0.95 0.27 0.25

Si(OH)4 0.90 4.50 3.90 0.92 4.48 3.80

NO−
3 0.61 8.58 6.94 0.64 5.48 4.18

IMARPE Climatology

ANN-1 ANN-E

R2 RMSE (µM) MAE (µM) R2 RMSE (µM) MAE (µM)

PO3−
4 0.90 0.34 0.27 0.90 0.31 0.25

Si(OH)4 0.76 11.43 7.25 0.79 10.25 6.61

NO−
3 0.62 9.36 7.10 0.64 8.97 6.57

BGC-Argo 3902556

ANN-1 ANN-E

R2 RMSE (µM) MAE (µM) R2 RMSE (µM) MAE (µM)

NO−
3 0.95 10.22 8.17 0.97 8.47 7.47

BGC-Argo 2903858

ANN-1 ANN-E

R2 RMSE (µM) MAE (µM) R2 RMSE (µM) MAE (µM)

NO−
3 0.83 14.68 12.49 0.84 12.70 10.50

BGC-Argo 1902644

ANN-1 ANN-E

R2 RMSE (µM) MAE (µM) R2 RMSE (µM) MAE (µM)

NO−
3 0.76 14.66 13.23 0.78 12.68 10.47
Paita and Callao, GLODAPv2.2023, IMARPE climatology and BGC-Argo floats. ANN-1: Best performance NN; ANN-E: Ensemble of the 10 best performance NN.
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under the assumption that a correlation value over 0.4 for PO3−
4 is

considered an improvement over CANYON-B, parameters such as

pressure, bathymetry, distance to the coast and salinity had low

impact in the ANN accuracy whereas variables like day of the year,

latitude, longitude, potential temperature, El Niño 1+2 and El Niño

3.4 indices had the strongest impact on the R2 values, rendering

them as low as 0.1. The day of the year had the greatest impact over

all the 10 best model configurations, with latitude following closely.

These parameters were already included in the training of

CANYON-B and it was expected that the seasonality and the

position played a key role in the nutrient estimation. However,

both El Niño indices that were incorporated only in CANYON-

PUS, followed as important parameters having significant impact in

lowering the R2 to 0.15. The latter confirms our previous

assumptions that led us to include those indices in the training;
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the high susceptibility of the region to ENSO events (Arntz et al.,

2006; Espinoza-Morriberón et al., 2017; Peng et al., 2024).

Furthermore, the potential temperature generated a highly

variable correlation coefficient in the model which could reveal

that it might be particularly sensitive to thermal changes.
4.2 Capability of nutrient estimation at
different scales

The performance of CANYON-PU over different datasets has

generally shown better results than CANYON-B and could help to

represent the nutrient distribution in a highly variable environment

such as the PUS (Echevin et al., 2018, 2014; Lüdke et al., 2019).

Effectively, when the ensemble of CANYON-PU (ANN-E) was
FIGURE 6

Scatter plot of GLODAPv2.2023 against CANYON-PU. (a) PO3−
4 , (b) Si(OH)4 and (c) NO−

3 . The color represents the depth for each compared sample.
The black markers show the averaged nutrient in a layer of 0–100 m, 100–200 m, 200–300 m, 300–400 m, 400–500 m and the lines on top, the
SD. The slopes chosen as the reference lines are 1 (red line), 0.9/1.1 (black line) and 0.8/1.2 (blue dashed line). The Mean, Median and SD for
GLODAPv2.2023 are shown in the small boxes.
FIGURE 7

Relative difference (%) obtained from the output of CANYON-PU and nutrient monthly climatology for (a) PO3−
4 , (b) Si(OH)4 and (c) NO−

3 .
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applied to bottle samples mostly at standard depths, it increased the

R2 over 45% and lowered the RMSE (MAE) by 0.24 μM (0.2 μM),

2.18 μM (1.57 μM) and 5.25 μM (4.17 μM) for PO3−
4 , Si(OH)4 and

NO−
3 respectively. Moreover, these errors showed similar values

which confirms that CANYON-PU estimated nutrients with less

outliers than CANYON-B and also reinforce the premise that the

ensemble model was useful to improve the performance of the ANN

(Linares-Rodriguez et al., 2013) as it was reported in CANYON-

MED (Fourrier et al., 2020). Furthermore, when it was tested on a

different dataset such as NO−
3 collected by BGC-Argo floats with a

vertical resolution of 2 m, the R2 achieved its maximum value of

0.97, although the float 2903858 associated with this correlation

value was outside the area of available dataset used in the training.

However, it is important to note that in contrast with near-shore

processes, the NO−
3 in the open ocean is not significantly impacted

by it, resulting in a similar vertical pattern (Figure 8) especially in

the first 300 m (Thomsen et al., 2016). This is also noticed in the

open ocean NO−
3 samples from GLODAPv2.2023 where the R2 was

0.83 but decreased considerably to 0.56 with a bias of 15.9 μM when

samples below 500 m were included. Additionally, the outputs with

the climatology emphasizes two different patterns of differences;

first, PO3−
4 and Si(OH)4 generally showed a slight overestimation

below 100 m which differs from NO−
3 that mostly exhibit differences

associated with the underestimation of CANYON-PU principally in

the months corresponding to austral summer. On the other hand,

the surface layer was represented with a bias as high as 80% which

shows a larger overestimation in all nutrients. Finally, the potential

applicability of CANYON-PU was tested again in a high resolution

data collected by gliders deployed in Talara (~4.6 °S) during the end

of 2022 and the beginning of 2023 corresponding to the onset and

peak of an intense El Niño event (Peng et al., 2024). The outputs for

PO3−
4 , Si(OH)4 and NO−

3 (Figure 8) cannot be compared with an in

situ sampling, but showed patterns of similar vertical distribution
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when El Niño was at its most developed stage (end of March to

beginning of April 2023, Figure 9) as in the peak of El Niño event in

1997-98 (Graco et al., 2017). Effectively, during that period, the in

situ nutrient data show that the first 100 m diminished at its lowest

similarly to what CANYON-PU estimated March-April of 2023.

The patterns of variability shown in nutrients reinforce the potential

application of CANYON-PU over a new set of data with a different

spatial and temporal resolution than the original training dataset.
5 Conclusions and perspectives

The previous methods, CANYON, CANYON-B and ESPER-NN

(Bittig et al., 2018; Carter et al., 2021; Sauzède et al., 2017), were

developed for global scale and had R2 values greater than 0.9 while

their errors were significantly lower than 0.051 for PO3−
4 , 2.3 for Si(

OH)4 and 0.68 forNO
−
3 but when used in the PUS, their performance

decreased by 50% reaching values as low as 0.43 (PO3−
4 ) and errors

greater than 8.43 (NO−
3 ). Under the premise that a regionally focused

method could be developed to improve this performance, as shown in

previous works (e.g. CANYON-MED, Fourrier et al., 2020) we used

IMARPE’s temperature, salinity, oxygen and macronutrients to train

CANYON-PU for the PUS.

The performance of CANYON-PU was tested on multiple sets

of available data which demonstrated its capability to represent the

principal features of macronutrients at different spatio-temporal

scales with R2 of 0.84 (Si(OH)4) and errors as low as 0.39 (PO3−
4 ) for

independent datasets in Paita and Callao. For independent BGC-

Argo measures of NO−
3 a good correspondence as high as 0.97 was

observed albeit with errors that can reach 17 μM principally

below 400 m. Although the evidence confirms the improvement

over CANYON-B and ESPER-NN, at least for the PUS it is

important to mention that the additional parameters included in
FIGURE 8

(a) Vertical profile of NO−
3 for cycle 4 (thin lines) in BGC-Argo float 3902556 (yellow), 2903858 (blue) and 1902644 (red) and the corresponding

estimate (dashed lines) from CANYON-PU. (b) Vertical profiles of NO−
3 difference (µM) between CANYON-PU and BGC-Argo (color dots). The

shadings represent the ± 1 SD. The thick colored lines are the averaged difference for the corresponding BGC-Argo float. The grey shading below
350 m represents the layer with low accuracy.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1558747
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Asto et al. 10.3389/fmars.2025.1558747
FIGURE 9

Glider measurements before (left panel) and during (right panel) El Niño event in 2022-2023. Panels (a-f) represent the T-S-O2 fields and nutrients

in (g, h) PO3−
4 , (i, j) Si(OH)4 and (k, l) NO−

3 estimated with CANYON-PU. Contours between (g-l) are the density fields in (kg/m3). The thick black line
represents the upper limit of the OMZ (< 22 µM).
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the training step were key to reproduce the pattern of the

macronutrients distribution.

The feed forward ANN developed for the PUS, incorporating

regional specificities to estimate the principal macronutrients, has

shown an optimal performance compared to the global methods

CANYON-B and ESPER-NN with an increment between 27%-45%

in the R2. Additionally, whether it was used on bottle samples, BGC-

Argo floats or a regional monthly climatology, our method proved

reliable in representing nutrients. Further analysis showed that El Niño

indices have been a key training parameter which allowed CANYON-

PU to capture important features of the nutrients distribution.With the

evidence presented, it seems feasible to apply CANYON-PU on other

datasets such as IMARPE’s historical data that span since the early

1960s and might be useful to study the nutrient’s interannual

variability. Moreover, the historical glider deployments carried out by
Frontiers in Marine Science 16
IMARPE in collaboration with other institutions since 2008 provide a

promising opportunity to explore intraseasonal variability, particularly

understanding the role of meso and submesoscale processes such as

fronts and filaments in nutrient transport and biogeochemical cycles.

Finally, CANYON-PU can serve as a robust framework for quality

control in situ measurements, offering a systematic approach to

improve the reliability of oceanographic datasets.
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