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Teleosts are the most varied vertebrates. They inhabit various environments and

are crucial to global fisheries, making them a focus of research using advanced

omics approaches. These studies provide insights into the genetic factors,

environmental adaptability, disease resistance, and metabolic processes, aiding

aquaculture sustainability. Acclimation to salinity stress is complex, influenced by

genetics and the environment. Although some species tolerate varying salinity

levels, rapid shifts beyond their optimal tolerance cause stress. Euryhaline species

experience stress at extreme salinities, whereas stenohaline species are sensitive

to minor changes. Osmoregulation maintains homeostasis at varying salinities

through acclimation in the intestine, kidney, and gills, ensuring survival in

changing environments. Studies on gut microbiota and metabolomics have

revealed how teleosts cope with salinity stress. This review delves into the

acclimatization processes through transcriptomic, metabolomic, and gut

microbiome analyses, which have shed light on the complex mechanisms that

teleosts have evolved to cope with salinity stress. Transcriptomic analyses have

identified key ion transport, osmoregulation, and stress response genes essential

for adaptation, facilitating cellular adjustments and maintaining osmotic balance

across habitats. Studies have revealed significant metabolite changes in energy

production and osmolyte synthesis during stress, indicating metabolic

reorganization for osmoregulation. Gut microbiota analysis highlights microbial

diversity in regulating osmoregulatory functions, emphasizing microbiota’s role

in resilience. Although research on interactions between salinity, growth

conditions, and gut microbiota in teleosts is limited, findings suggest a vital

relationship that warrants further study. Understanding these mechanisms is

essential for improving fish health and enabling sustainable aquaculture

management under environmental fluctuations.
KEYWORDS

salinity adaptation, teleost fish, osmoregulation, gut microbiota, metabolomics
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fmars.2025.1559871/full
https://www.frontiersin.org/articles/10.3389/fmars.2025.1559871/full
https://www.frontiersin.org/articles/10.3389/fmars.2025.1559871/full
https://www.frontiersin.org/articles/10.3389/fmars.2025.1559871/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2025.1559871&domain=pdf&date_stamp=2025-05-20
mailto:wangzl@gdou.edu.cn
https://doi.org/10.3389/fmars.2025.1559871
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2025.1559871
https://www.frontiersin.org/journals/marine-science


Mkulo et al. 10.3389/fmars.2025.1559871
1 Introduction

The increasing global population has led to a higher demand for

aquatic products, particularly in terms of the daily consumption of

aquatic species (Cooney et al., 2021; Emerenciano et al., 2021;

McLean et al., 2020; Yohana et al., 2023; Zarzar et al., 2023). Fish

farming is the fastest-growing sector in the aquaculture industry,

playing a crucial role in boosting food production, fostering local

economic growth, and improving livelihoods (Chang et al., 2020;

Mkulo et al., 2024; Yohana et al., 2024). However, wild and cultured

aquatic species face stress from pollution, temperature, fluctuations

in salinity, and elevated ammonia levels (Zarantoniello et al., 2021).

Salinity fluctuations, often caused by extreme weather events, can

involve changes of 5–10 ppt or more and rise to be harmful to many

marine and freshwater species (Gonzalez, 2012b; Lee et al., 2022b;

Röthig et al., 2023). Similarly, sudden temperature shifts exceeding

2-3°C can induce stress, particularly in species with narrow thermal

tolerance ranges (Mugwanya et al., 2022). To exist in such

environments, fish must actively regulate the balance of ions and

water to maintain osmotic homeostasis, as their body fluids and

external environments have distinct ionic and osmotic pressures

(Ruiz-Jarabo et al., 2017; Soengas et al., 2019). Generally, to

maintain osmotic equilibrium, fish rely on both active ion

transport, which requires energy, and passive water movement

driven by osmotic gradients across epithelial tissues, such as the

gills, kidneys, and gut. Additionally, hormonal regulation and

physiological adaptations contribute to maintaining a proper

balance of salt and water in the body (Arjona et al., 2009; Evans,

2011; Gregório et al., 2013; Takei and Hwang, 2016). Therefore, fish

performance can be significantly affected if they cannot efficiently

acclimate to osmotic stress (Evans, 2010; Kültz, 2015; Tseng et al.,

2022a). Understanding osmoregulatory mechanisms is increasingly

essential in the context of the impact of changing climates and

increasing salinity variations in aquatic ecosystems (Fridman, 2020;

Tseng et al., 2022a; Tresguerres et al., 2023). Recent advances in

molecular biology, particularly transcriptomics, metabolomics, and

microbiota profiling, have greatly enhanced our knowledge of

osmoregulation in response to environmental changes (Kim and

Kültz, 2020; Mundy et al., 2020; Escobar-Sierra et al., 2024).

Molecular techniques have been widely used to investigate the

effects of how salinity changes have influenced fish physiology,

metabolic pathways, and gene expression (Houde et al., 2019;

Devlin et al., 2020; Rahi et al., 2021).

Teleosts are the most diverse vertebrates and serve as interesting

models for osmoregulatory plasticity studies because of their broad

tolerance to environmental changes (Takei et al., 2014; Perry et al.,

2020). These fish have developed various morphological and

physiological adaptations that allow them to thrive in changing

environments within their habitats (Harrison and Whitfield, 2006;

Christensen et al., 2019). The species that have been most extensively

studied in terms of salinity acclimation belong to several families.

These include the Cyprinodontidae, such as the sheepshead minnow

Cyprinodon variegatus, mummichog Fundulus heteroclitus, and

Arabian killifish Aphanius dispar; Cichlidae, such as black-chinned
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tilapia Sarotherodon melanotheron and Mozambique tilapia

Oreochromis mossambicus; and Poecilidae, such as the sailfin molly

Poecilia latipinna, on fish salinity adaptations (Gonzalez, 2012a). The

intestine is crucial for osmoregulation, as it modulates ion transport,

regulates gene expression, interacts with microbes, and facilitates

water absorption to assist in adapting to changes in salinity (Chen et

al., 2023b; Su et al., 2023a; Takei, 2021a). One crucial function of the

gut is to regulate the immune system and create a healthy

environment for fish by interacting with the gut microbiota. This

interaction is essential for maintaining the overall health and well-

being of fish (Diwan et al., 2023; Perry et al., 2020; Xia et al., 2022a;

Gyan et al., 2024). Meanwhile, metabolomics explores the complete

set of low molecular weight metabolites present in a cell or organism,

providing insights into physiological and biochemical responses to

stress (Nicholson et al., 1999; Cuykx et al., 2018). Transcriptomics,

gut microbiota analysis, and metabolomics have offered valuable

insights into the response of teleost fish species such as Danio rerio

(Guh et al., 2015), Salmo salar (Tipsmark et al., 2002), and

Oreochromis mossambicus (Richards et al., 2003) to salinity stress.

Most studies have primarily examined short-term fluctuations in

salinity, rather than long-term acclimation. The connection between

changes in the gut microbiota and osmoregulatory mechanisms

remains unclear, raising the question of whether microbial changes

are adaptive responses or play a direct role in osmoregulation. This

review explores the osmoregulatory responses of teleost fish to

salinity changes, as well as the roles of gut microbiota,

metabolomics, and transcriptomics in these responses. By

integrating various approaches, we sought to enhance our

understanding of how fish adapt to shifting aquatic environments.

This review identifies key gaps in the current knowledge and

proposes innovative research directions to advance scientific

understanding in this field.
2 Interactive effects of salinity,
temperature, pH, and oxygen on
fish physiology

The interactive effects of environmental stressors, such as

salinity, temperature, pH, and oxygen levels, significantly impact

fish physiology by disrupting ion regulation, acid-base balance,

hormone circulation, metabolic pathways, growth, and survival

(Kaushal et al., 2010; Franklin and Edward, 2019; Wang et al.,

2019; Mariu et al., 2023). Temperatures exceeding 30°C can impose

severe stress and potentially lead to mortality, particularly in cold-

water fish species (Jain et al., 2013; Mariu et al., 2023). Extremely

high salinity and temperatures, above 35°C, can be lethal to most

fish species within hours (He et al., 2017; Mariu et al., 2023;

Vadboncoeur et al., 2023; Yang et al., 2023). Temperatures below

5°C can cause a decrease in metabolic rates and activity. Subzero

temperatures can lead to bodily fluids freezing, which can result in

tissue damage and hinder growth and reproduction (Mariu et al.,

2023). In environments with low pH and salinity, aquatic organisms

tend to allocate less energy to primary physiological functions to
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focus on osmoregulation (Lin et al., 2013). A study was conducted

to analyze the effects of salinity and temperature on cortisol and

glucose concentrations in three different fish species: Cottus bairdii,

Catostomus platyrhynchus, and Oncorhynchus clarki pleuriticus.

The study findings indicated that temperature had the most

significant impact, with the influence of salinity being influenced

by temperature. Extended exposure to high salinity levels was seen

to lower the baseline cortisol and glucose levels in the fish, leading to

an increased stress response when exposed to high temperatures.

This ultimately resulted in physiological suppression in the fish.

These results highlighted the need for conservation strategies to

mitigate the effects of temperature-dependent salinity stress on

freshwater fish species, especially considering the expected

increase in freshwater salinization and temperature levels (Walker

et al., 2020).

The optimal pH range for most freshwater fish species falls

between 6.5 and 9.0, promoting maximum growth and

reproduction (McCormick and Bradshaw, 2006; Laycock and

Meeran, 2012; McCormick et al., 2020). For saltwater species, the

ideal pH range is 6.5–8.5, beyond which stress-related effects may

become apparent. Fluctuations in pH levels can disrupt ion

regulation, enzyme function, and metabolic processes, leading to

a disturbance in homeostasis and impairing oxygen transport and

enzyme activity. Deviations from optimal pH levels have the

potential to alter enzyme configuration and decrease catalytic

efficiency (Poff and Zimmerman, 2010; Mariu et al., 2023).

Oxygen levels are critical for adaptation to salinity. Research on

Perca fluviatilis shows oxygen uptake is minimized in brackish

water, where osmotic stress is reduced, compared to freshwater and

seawater (Ern et al., 2014). A study of six stenohaline Channel

catfish Ictalurus punctatus, and goldfish Carassius auratus and

euryhaline rainbow trout Oncorhynchus mykiss, brown trout

Salmo trutta, striped bass Morone saxatilis, and Gulf sturgeon

Acipenser oxyrinchus fish species examined variations in oxygen

consumption across low salinity, highlighting differences in

osmoregulatory strategies (Altinok and Grizzle, 2003). In

Oreochromis niloticus, it has been observed that as salinity levels

increase, there is a decrease in oxygen consumption and ammonia

excretion rates. This may reflect a reduction in the energy demand

for osmoregulation rather than a limitation in energy availability.

The highest survival rates were found at a salinity level of 12 g/L,

with the most optimal growth occurring between 6–12 g/L. Salinity

levels and duration significantly impact metabolic oxygen

consumption rates (MO2), total ammonia excretion (Tamm),

ammonia quotient (AQ), and oxygen-to-nitrogen ratio (O: N).

Protein metabolism was found to contribute less than 14.74% of

the total energy required for osmoregulation (Kombat et al., 2021).

A study conducted on Epinephelus malabaricus revealed that fish

exposed to a salinity level of 11 psu exhibited lower Na+/K+-ATPase

transcript levels, decreased oxygen consumption, and increased

growth rates. At 11 psu, the GH-IGF axis was upregulated,

leading to improved food conversion efficiency and growth (Zhu

et al., 2023b). These findings underscore the importance of taking a

comprehensive approach when evaluating fish acclimation,

highlighting the interconnected nature of these physiological
Frontiers in Marine Science 03
processes and the effects of salinity, temperature, pH, and oxygen

availability on the resilience of aquatic species.
3 Osmoregulation mechanisms in
teleost fish: the role of the gill, kidney,
and intestine.

3.1 Gill

The gill is a remarkable organ that plays a crucial role in fish life

and is a highly distinctive structure with multiple functions. Gills are

essential respiratory structures in fish, responsible for respiratory gas

exchange, ion and water transfer, filter feeding, ammonia nitrogen

excretion, and osmoregulation (Figure 1) (Chen et al., 2023a). Gills

have evolved complex morphological structures to perform their vital

physiological functions. These structures, which are part of the

branchial chamber to which the gills belong, include the gill

operculum, filaments, arch, and rakers. Each of these components

plays a crucial role in the respiratory process of aquatic organisms

(Fiedler et al., 2020; Alsafy et al., 2023). These structures, except gill

rakers, undergo morphological and functional modifications in

response to variations in water flow, temperature, ion

concentration, and salinity within the aquatic environment. One

way in which organisms adapt to environmental stressors is by

altering the length and surface area of their gill filaments. This

adjustment allows for optimal gas exchange and osmoregulatory

functions (Evans et al., 2005a; Foyle et al., 2020; Alsafy et al., 2023).

Fish have strong ionic/osmotic gradients in their aquatic

surroundings, and the methods by which they maintain internal

homeostasis are more demanding than those of terrestrial vertebrates

(Hwang et al., 2011; Tseng et al., 2022a). Ionocytes are specialized,

mitochondria-rich epithelial cells (MR cells) involved in ion

regulation and homeostasis in various tissues and organisms. They

are primarily responsible for maintaining ionic equilibrium and

regulating pH through active ion transport mechanisms. These cells

are found in diverse locations, such as the gills of fish, the airway

epithelium inmammals, and other organs like the kidney and salivary

glands (Griffith, 2017; Guh et al., 2015; Tseng et al., 2022a). A

substantial body of literature has proposed models for examining

iono-osmoregulatory mechanisms in fish gills. Nevertheless, these

models frequently present conflicting or unresolved issues due

to variations in species-specific metabolic pathways, differences

in experimental methodologies, and inherent limitations of current

analytical techniques (Hwang et al., 2011). Recent research has shed

light on the challenges of ion regulation and osmoregulation in teleost

fish by utilizing cutting-edge molecular and cellular physiological

techniques such as whole-body oxygen consumption measurements,

ion flux assays, electrophysiology, and immunohistochemistry, as

well as animal models like zebrafish (Danio rerio), rainbow trout

(Oncorhynchus mykiss), and tilapia (Oreochromis niloticus).

Freshwater Teleost gills contain a combination of ionocytes and

pavement cells (PNA−) (Shih et al., 2023). Pavement cells, which

make up approximately 90% of the gill surface, serve as the main
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connection between the gills and water (Kovac and Goss, 2024).

Ionocytes, primarily situated at the junction of gill filaments and

lamellae, play a vital role in regulating ion transport to uphold

osmotic balance. Their distribution is subject to alteration in

response to environmental conditions; for instance, in fish

inhabiting soft water environments, there may be an increase in the

density of ionocytes within the lamellae. The apical surfaces of

ionocytes vary among different species and environmental

conditions, displaying features such as microvilli, a smooth finish,

or a spongy texture (Masroor et al., 2019). In some species, ionocytes

are situated within the epithelium, with their apical surfaces being

partially obscured by pavement cells. The study conducted by (Shih

et al., 2022). focused on freshwater teleost fish, particularly medaka

(Oryzias latipes) and discovered and characterized the several types of

ionocytes and ion transporters involved in the mechanisms of NaCl

secretion, Na+ uptake/acid secretion/NH4
+ excretion, Ca2+ uptake,

and Cl− uptake/base secretion. Additionally, this study also identified

the key regulators involved in these processes, including Na+/K+-

ATPase (NKA) located in the basolateral membrane, which

establishes the primary electrochemical gradient by actively

transporting Na+ out of the cell and K+ into the cell. This gradient

drives the movement of other ions through various transporters and

co-transporters, the cystic fibrosis transmembrane conductance

regulator (CFTR), the Na+/K+/2Cl- cotransporter (NKCC1), tight

junction proteins such as claudins, and hormonal regulators like

cortisol and prolactin, which collectively facilitate ion transport and

osmoregulatory adaptations in teleost fish. Marine teleosts and
Frontiers in Marine Science 04
seawater-adapted euryhaline fish regulate ionic balance by actively

excreting Na+ and Cl-, along with other minerals, through their gills

(Figure 1). This process is facilitated by specialized mitochondrion-

rich (MR) cells, also known as chloride cells. Several studies

(Kolbadinezhad et al., 2018; Huang et al., 2020; Takvam et al.,

2021a) have demonstrated that active trans epithelial Cl- transport

drives this process. Active chloride transport is accompanied by the

passive flow of sodium ions across the paracellular space and tight

junctions (Laverty and Skadhauge, 2012; Saint-Criq and Gray, 2017).

The cellular process of chloride (Cl−) secretion is comparable to that

observed in several tissues, such as mammals’ intestinal and airway

epithelia (Rottgen et al., 2018; Shah et al., 2022; Becker and Seidler,

2024). Cl− ions are initially transported across the basolateral

membrane using the sodium-potassium-2 chloride (NKCC)

transporter. This transporter depends on the Na+/K+-ATPase to

maintain a beneficial inward gradient for Na+ ions. The overall

impact of these transporters is to increase the concentration of

intracellular Cl− above electrochemical equilibrium (Janos ̌ and
Magistrato, 2021; Yurinskaya and Vereninov, 2021; Tseng et al.,

2022a). Chloride ions are transported out of the cell by a specific

channel called the cystic fibrosis transmembrane conductance

regulator (CFTR) channel homolog. This process has been studied

and documented by (Ferreira-Martins et al., 2021; Hanssens et al.,

2021; Farinha et al., 2024). Several studies have explored the changes

in the expression and function of transport components in response

to osmoregulatory adaptations. In freshwater teleosts, water

absorption and ion leakage through diffusion occur in the gills
FIGURE 1

The acclimation process of teleost fishes to freshwater and seawater is crucial for regulating organ functions. This process involves the passage of
ions and water through epithelial cells of the gill, kidney, and gut in both freshwater and seawater teleosts, referred to as (A, B). Additionally, the
transport of ions and water in the nephrons of freshwater and marine teleosts is a significant aspect of acclimation (C, D). This process helps teleost
fishes adapt to their environment and maintain organ function in varying salinity levels.
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(Figure 1A). Nevertheless, occludin and claudin proteins restrict the

permeability of junctions between gill cells in these fish (Fridman,

2020). These junctions also contain negatively charged amino acid

residues that bind to Ca2+ ions. Furthermore, mucosal cells located in

the gills secrete mucus that contains charged glycoproteins and

mucins. These substances can attract ions to the surface of the gills,

aiding in the establishment of localized ionic gradients. This process

effectively reduces passive ion loss through diffusion (Wilson and

Laurent, 2002; Evans et al., 2005a).

In larval zebrafish, Na+ uptake is mediated by Na+/H+

exchanger 3b (Nhe3b), electro genic uptake driven by H+-ATPase

in H+-ATPase-rich (HR) cells, and Na+-Cl- cotransporter (Ncc).

However, when slc9a3.2 (encoding Nhe3b) was knocked out using

CRISPR/Cas9, Na+ uptake remained unaffected, even in low Na+

environments, indicating compensatory mechanisms. Neither H+-

ATPase knockdown nor chloride absence influenced Na+ uptake,

highlighting zebrafish’s adaptability and revealing gaps in

understanding these processes (Zimmer et al., 2020). Prolactin

(PRL), crucial for osmoregulation, was examined in zebrafish

mutants deficient in PRL due to TALEN-induced mutations.

These mutants couldn’t survive in freshwater due to Na+/K+/Cl-

uptake defects but thrived in brackish water, emphasizing PRL’s

vital role in ion balance (Shu et al., 2016). Investigation into

carbonic anhydrase (Ca17a) demonstrated its significance in ion

and acid-base equilibrium. CRISPR/Cas9 knockout of ca17a led to

death by 19 days post-fertilization, with mutants showing increased

Na+ uptake and decreased Cl- uptake, although overall ion content

remained stable. Morpholino knockdown and pharmacological

inhibition confirmed Ca17a’s involvement in Cl- uptake, yet the

exact cause of lethality remains unknown (Zimmer et al., 2021).

These findings highlight the complexity of ion transport

mechanisms in zebrafish, uncovering compensatory pathways and

regulatory networks crucial for osmoregulation. Future research

combining genetic and physiological methods will be essential to

unravel these complex processes in freshwater and seawater teleosts.

The zebrafish (Danio rerio) possesses five distinct ionocyte types:

HR, NaR, NCC, SLC26, and KS cells, each with specific roles in ion

transport. These regulatory mechanisms are governed by hormonal

signaling pathways, which are mediated by isotocin, prolactin,

cortisol, vitamin D, and calcitonin (Guh et al., 2015). These

ionocytes play a crucial role in maintaining the osmotic balance

within the fish. One key component of these ionocytes is the H+

ATPase (V-ATPase), located on the apical membrane (Davidson,

2024). This enzyme works to expel H+ ions, creating an electric

gradient that facilitates the entry of Na+ through apical Na+

channels (Davidson, 2024). This process is essential for regulating

the fish’s internal environment. Euryhaline teleosts have been

extensively studied for their remarkable ability to adapt their ion

and water regulation systems to withstand varying osmotic

pressures (Agarwal et al., 2024). One critical system involved in

these adaptations is the insulin-like growth factor (IGF) system.

IGF-1 in particular plays a significant role in regulating myogenic

cell proliferation and differentiation, as well as influencing

osmoregulatory functions in fish gills by modulating plasma

osmolality (Malone et al., 2015; McCormick and Regish, 2018).
Frontiers in Marine Science 05
Furthermore, Growth hormone (GH) has been found to

enhance salinity tolerance in species like rainbow trout, Atlantic

salmon, and killifish by stimulating gill Na+/K+-ATPase (NKA)

activity (Yada et al., 2012). This hormone plays a crucial role in

helping these fish adapt to changing environmental conditions.

Recent Genomic advances in salmonids have identified key

transporters in ion-coupled fluid regulation, including NKA, Na+/

H+ exchangers (NHEs), carbonic anhydrases, V-type H+-ATPase

(V-ATPase), Na+:HCO3
- co-transporters (NBCs), FXYDs,

claudins, aquaporins (AQPs), Na+:K+:2Cl- co-transporters

(NKCCs), Na+:Cl- co-transporters (NCCs), and Cl-/HCO-3

exchangers (SLC26A6) (Madsen, 2011). Among these

transporters, Claudins maintain epithelial barrier integrity. For

example, Zebrafish express claudin-15, while Atlantic salmon use

claudin-30 to reduce sodium permeability in gill epithelia (Bagnat

et al., 2007; Rosenthal et al., 2010; Amasheh et al., 2011; Engelund

and Madsen, 2011; Lingaraju et al., 2015). Identifying claudin-15

and claudin-25b in the salmon intestine has shed light on their

specific osmoregulatory functions (Tipsmark, 2008; Tipsmark et al.,

2010). Furthermore, in zebrafish, it has been studied that ion

homeostasis is maintained through gill ionocytes expressing Na+/

K+-ATPase (NKA) and Na+/Cl- cotransporters (NCC) (Hwang and

Chou, 2013). Under extreme ion deficiency, zebrafish increase

expression of an NKA a-subunit (zatp1a1a.5), altering ATP

hydrolysis efficiency (Esbaugh et al., 2019). Anadromous species

such as Atlantic salmon undergo significant physiological changes

during smoltification, enabling them to survive hypertonic seawater

(Christensen et al., 2018; Morera et al., 2021; Morales-Rivera et al.,

2022; Silva-Marrero et al., 2025). In freshwater environments,

salmon gills exhibit high levels of NCC to absorb Na+ and Cl-.

However, when transitioning to seawater, the expression of NCC

decreases, while CFTR chloride channels and NKCCs increase. This

shift promotes active salt excretion, which is essential for preventing

dehydration (Yada et al., 2012; Lema et al., 2019; Inokuchi et al.,

2022; Tümmler, 2023). These discoveries shed light on the intricate

molecular and physiological adaptations that contribute to salinity

tolerance in teleost fish. Understanding these mechanisms is crucial

for grasping their ecological resilience and potential applications

in aquaculture.
3.2 Kidney

Fish kidneys are essential for regulating ions and water balance in

freshwater (FW) (Figure 1A) and seawater (SW) (Figure 1B)

environments. Glomerular filtration rate (GFR) as a key indicator

of kidney function, representing the rate at which kidneys filter blood,

is crucial in determining urine flow (Beyenbach, 2004; Takvam et al.,

2023). However, the GFR of teleost fish exhibits considerable

variability and is affected by factors such as glomerular

intermittency, ambient salinity, renal perfusion pressure, and

certain hormones including prolactin, atrial natriuretic peptide

(ANP), cortisol, renin-angiotensin system (RAS) and arginine

vasotocin (AVT) (Brown et al., 1990; Greenwell et al., 2003;

McCormick, 2011). Hickman and Trump examined teleost kidneys’
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evolutionary and anatomical features through microscopic

observations and investigations of the isolated tubules, analyzing

nephron components in euryhaline fish, including the glomerulus,

aglomerular fish, proximal tubule, and collecting duct (Hickman and

Trump, 1969). The morphological and regulatory characteristics of

these kidney structures, such as the glomerulus, proximal tubule, and

collecting duct, may vary depending on the acclimation of the fish to

salinity or salinity fluctuations. Focusing on previous research

conducted on aglomerular fish, which lack glomeruli or the distal

tubule, resulting in limited urine dilution, researchers have studied

aglomerular toadfish, a species with a lifespan of only three weeks in

laboratory freshwater but can survive for months in 10% seawater.

Toadfish experience increased metabolic activity when transitioning

from seawater to a 10% solution, leading to a double increase in urine

flow rate and a decrease in osmotic pressure. The kidneys excrete

sodium, chloride, and sulfur at a ratio of 5:1:3, causing a decrease in

plasma osmotic pressure (Lahlou et al., 1969; Baustian et al., 1997).

To thrive in hypotonic environments, aglomerular toadfish must

precisely regulate solute uptake through their branchial and intestinal

cells while minimizing solute loss through their kidneys, as they are

unable to produce dilute urine (Figures 1C, D) (Baustian et al., 1997).

The concentration of ions was notably low in the (FW)

glomerulus of zebra fish and Nile tilapia. The glomerulus has

evolved as an expression of the requirement for water excretion

in freshwater animals. Dilute urine is regularly released because of

the non-permeability of the distal tubule and downstream tissues,

such as the collecting tubule/duct and bladder (Takvam et al.,

2021a, 2023). The findings indicate that significant ions such as

Na+, Mg2+, SO4
2-, Ca2+, Cl-, K+,and HCO3

- undergo reabsorption,

whereas the osmotic reabsorption of water, which is present in

combination with these ions, is restricted (Bates et al., 2018). Other

reviews have provided evidence of this (Evans et al., 2005a; Hwang

and Lee, 2007; Takvam et al., 2021a; Huang et al., 2023).

Consequently, stenohaline (FW) and euryhaline (when in FW)

fish continuously absorb water via their gills and skin while

simultaneously losing significant ions through diffusion. To

alleviate this phenomenon, the kidneys filter blood within the

glomeruli (Loretz et al., 2009). The glomerular filtration rate

(GFR) and urine flow rate (UFR) are consistently high, ranging

from 4 to 16 ml/kg/h and 1 to 6 ml/kg/h, typically ranging from 20

to 50 mOsm/L (Hickman and Trump, 1969). Consequently, the

organism displayed a significant release of diluted urine. This

demonstrates the effectiveness of glomerular filtration and

epithelial reabsorption of salt in maintaining osmotic balance in

freshwater fish (Foskett et al., 1983). Generally, in (SW) conditions,

where water conservation is of utmost importance, the renal system

has a lower glomerular filtration rate (GFR) than the kidneys in

freshwater (FW) environments (Nishimura and Imai, 1982; Ortiz

et al., 2002). A low GFR causes the kidneys to filter blood at a lower

rate, which preserves water and avoids excessive loss of vital ions.

This adaptation facilitates the ability of organisms inhabiting salty

habitats to acclimate to their surroundings and uphold internal

homeostasis in the face of the difficulties presented by elevated salt

concentration in the water. The greater part of sodium (99%),

potassium (98%), and chloride (93%) obtained from ingesting
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seawater are excreted through extrarenal pathways (mainly the

gills, but also rectal fluid). The kidney has little or no role in

osmoregulation (Evans, 2023).
3.3 Intestine

The intestine serves crucial roles in both digestion and

osmoregulatory functions (Grosell, 2011; Rønnestad et al., 2017;

de Oliveira et al., 2022) (Figure 1B). Specifically, the intestine plays a

vital role in regulating the acid-base balance in marine and

euryhaline teleosts, essential for maintaining osmoregulation.

Efficient fluid absorption in the intestine is crucial for

counteracting water loss in hypertonic environments (Carvalho

et al., 2012; Whittamore, 2012). This absorption process is heavily

influenced by osmotic gradients, particularly for sodium chloride

(NaCl) absorption. The Na+/K+ pump, also known as NKA, plays a

crucial role in the absorption of salts and water (Barany et al., 2021).

Vertebrates, including fish, possess an impressive ability to absorb

water through their digestive systems, effectively reclaiming fluids

secreted by the stomach, small intestine, pancreas, and gall bladder.

In fish, fluid absorption primarily takes place across the intestinal

epithelium, aiding in osmoregulation and the regulation of internal

water balance, particularly in hyperosmotic environments.

Conversely, in freshwater environments, hydration primarily

occurs through the gills (MacKay and Janicki, 1979; Ando, 1980;

Ciccotti et al., 1993; Evans et al., 2005a; Takei, 2021a; Ciavoni et al.,

2024). The intestine is integral to maintaining osmotic homeostasis

in fish, particularly under conditions of salinity stress. This study

examines the intricate mechanisms of osmoregulation in teleost

fish, with a specific focus on the vital functions of the gill, kidney,

and intestine. By analyzing the roles of these essential organs, we

aim to advance our understanding of how teleost fish sustain their

internal equilibrium of water and salts.
4 Effects of salinity stress on the gut
microbiota of teleost fish

The fish intestine is a complex organ crucial for nutrient

absorption, immune defense, and osmotic balance (Ciavoni et al.,

2024). Along with the gills and kidneys, the gastrointestinal tract is

vital for osmoregulation in teleost fish, managing water and

electrolyte balance as they transition between FW and SW

(Kolbadinezhad et al., 2018; Takvam et al., 2021a). Under

hyperosmotic conditions, fish increase their water intake to

counteract water loss, causing physiological changes in the

intestine, including alterations in stomach acidity, digestive

enzymes, and bile salts (Hieu et al., 2022). Environmental factors

such as salinity and pollution significantly impact the

gastrointestinal microbiota (GM), with salinity changes driving

shifts in microbial community structure (Tolas et al., 2025).

Microbial species adapted to low-salinity freshwater environments

dominate the gut microbiota. Under hypersaline conditions,

freshwater microbes with low salinity tolerance are eliminated,
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whereas marine microbes with higher salinity tolerance thrive

(Wang et al., 2018, 2021). The microbial community may also be

affected by habitat-generalist bacteria, which possess the ability to

thrive across a range of salinities and often become dominant in

environments characterized by fluctuations. This phenomenon

presents a compelling and significant area of investigation for

researchers (Kivistik et al., 2020).Research on anadromous and

euryhaline fish has shown that salinity changes shift gut microbiota,

impacting microbial diversity (Lai et al., 2020). The properties of

water influence the microbiota of tilapia larvae and are correlated

with the microbiota present in water (Giatsis et al., 2015). Studies on

stenohaline species gut microbiota, such as silver carp

(Hypophthalmichthys molitrix), grass carp (Ctenopharyngodon

idella), bighead carp (Hypophthalmichthys nobilis), and goldfish

(Carassius auratus), which thrive in narrow salinity ranges, show

restricted microbial changes under salinity stress. In contrast,

euryhaline fish, such as Oncorhynchus mykiss (rainbow trout) and

Asian sea bass, showed a strong correlation between gut and water

microbiota when compared to the water microbiota of their natural

habitats (Dehler et al., 2017; Zeng et al., 2020; Iehata et al., 2021;

Lorgen-Ritchie et al., 2021; Morshed et al., 2023), suggesting that

waterborne microbes may directly affect the gut microbiota.

Researchers have hypothesized that hypotonic stress leads to

changes in the gill and gut microbiota of marine medaka (Oryzias

melastigma), aiding salinity acclimation (Lai et al., 2022b) and

decreasing bacterial diversity and increasing pathogenic bacteria

in the yellowfin seabream (Acanthopagrus latus) (Lin et al., 2020).

On the other hand, salinity stress in Nile tilapia (Oreochromis

niloticus) increased opportunistic bacteria and decreased

beneficial bacteria (Zhang et al., 2016). However, a study on

Poecilia mexicana (Mexican mollies) found no such interaction,

as key operational taxonomic units (OTUs) in the fish gut were

absent in water, indicating that microbial colonization might be

influenced by other factors such as host-specific mechanisms

(Schmidt et al., 2015; Morshed et al., 2023). While many studies

have shown that salinity changes influence the abundance and

composition of gut microbiota in teleosts (Sullam et al., 2012;

Lorgen-Ritchie et al., 2021; Morales-Rivera et al., 2022), others

have reported minimal or no microbial shifts across salinity

gradients (Schmidt et al. , 2015; Sylvain et al. , 2016).

Understanding how teleost fish acclimate to extreme salinity is

crucial for maintaining physiological homeostasis and ensuring

successful osmoregulation. This insight is particularly crucial for

enhancing the resilience of aquaculture and facilitating

ecological adaptation.

Gut microbiota composition contributes to osmoregulation,

affecting host metabolism and ion transport (Minich et al., 2020;

Engevik and Engevik, 2021). In freshwater-adapted zebrafish, the

microbiota primarily consists of Aeromonas, Pseudomonas, and

Vibrio, which are members of the Proteobacteria phylum that

contribute to development, immune responses, nutrient

absorption, and ion homeostasis (Table 1) (Semova et al., 2012;

Flores et al., 2020; Xia et al., 2022a). The gut microbiota of salmon

undergoes significant changes during the transition to seawater,

characterized by an increase in bacterial load and an increase in
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Firmicutes, whereas Actinobacteria and Proteobacteria decrease.

Research has shown that fluctuations in salinity have a profound

effect on the richness, diversity, and taxonomic composition of

salmon gut microbiota. Specifically, the study revealed that GSC

and FD treatments led to an increase in microbiota diversity in

salmon smolts. This suggests a potential correlation between the

intestinal microbial community and the overall health of the fish

during seawater transfer. These findings have important

implications for monitoring the microbiome in smolt fish

production, which could ultimately lead to improvements in

salmon performance during transfer. By better understanding the

relationship between intestinal microbiota and fish health,

researchers and fish farmers can optimize the conditions for

salmon production (Morales-Rivera et al., 2022). Additionally,

core microbiota like Lactobacillus and Clostridium persist across

salinity gradients, potentially aiding in osmoregulatory stability

(Dehler et al., 2017; Bowman, 2024). Changes in microbial

composition play a crucial role in enhancing ion transport

mechanisms across the intestinal epithelia, highlighting their

significance in maintaining homeostasis during salinity stress.

These findings emphasize the complex interplay between

the expression of ion transporters, the gut microbiota, and

osmoregulatory functions in teleost fish.

As climate change continues to alter salinity gradients, it is

essential to further investigate the adaptive mechanisms in these

species using genomics, metabolomics, and microbiome profiling.

Recent advancements in deep sequencing technology have

revolutionized our understanding of the fish microbiota, enabling

the study of microbial communities without the need for culturing.

Overall, the relationship between microbial composition and ion

transport mechanisms in teleosts is a critical area of research that

can provide valuable insights into how these species adapt to

changing environmental conditions (Tian et al., 2020).

Quantitative real-time PCR (qPCR), denaturing gradient gel

electrophoresis (DGGE), fluorescence in situ hybridization

(FISH), temporal temperature gradient electrophoresis (TTGE),

marker gene amplification and sequencing (e.g. ITS for fungi, 16S

rRNA for bacteria and archaea), and metagenomics have improved

our knowledge of fish gut microbiota composition, structure, and

diversity (Ou et al., 2021). A metagenomic study of Nile tilapia

exposed to acute high-salinity stress revealed significant changes in

microbial communities, notably a shift from Actinobacteria to

Proteobacteria, while fungal and phage communities remained

stable. Functionally, intestinal bacteria show reduced activity in

digestion and the nervous system, with increased energy

metabolism. Key microbial genes, such as glutathione S-

transferase, myo-inositol-1-monophosphatase, and glycine

betaine/proline transporters, as well as specific carbohydrate-

active enzyme families (GT4, GT2), were upregulated, whereas

others (GH15, GH23) were downregulated (Gong et al., 2024).

Studies using gnotobiotic fish models suggest that microbiota-

derived short-chain fatty acids (SCFAs) influence ion transporter

gene expression, affecting epithelial permeability and ion absorption

(Lee et al., 2021; Xia et al., 2022a). These findings highlight the

complex interactions between the host and the microbiota in
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osmoregulation. Future research using gene knockout models and

microbial colonization assays could provide deeper insights into the

role of the microbiota in teleost salinity adaptation (Quan

et al., 2021).

These advancements highlight the importance of the gut

microbiota in the osmoregulation of euryhaline fish, where

microbial changes are linked to osmoregulatory and energy

metabolism alterations (Hu et al., 2017; Tseng et al., 2022a).

However, much remains to be learned about microbial

interactions and physiological changes that occur during salinity

acclimation. The interaction between salinity stress and the gut

microbiota in teleost fish is intricate and varies by species.

Stenohaline species frequently encounter microbial instability

when exposed to changes in salinity because their microbiota may

experience significant fluctuations or a loss of stability. Conversely,

euryhaline fish demonstrate more gradual and adaptive shifts in

their microbiota, with alterations in the microbial community

composition that facilitate osmoregulation. Gut microbiota

responses to salinity stress highlight the balance between the host

physiology and environmental factors. Future studies should use

multi-omics approaches to clarify the role of gut microbes in

salinity adaptation. Comparative research across teleost species
Frontiers in Marine Science 08
will reveal broader microbial patterns under stress, which is

crucial for optimizing aquaculture, fish health, and microbiota

stability under changing salinity.
5 Influence of salinity stress on
metabolomics in teleost fish

Metabolomics, which involves studying all the low-molecular-

weight metabolites present in a cell or organism, is known as

metabolomics (Nicholson et al., 1999; Cuykx et al., 2018). By

integrating metabolomics and transcriptomics, valuable insights

can be gained into the effects of various stressors on fish, such as

stickleback (Figure 2) (Divino, 2016; Abid et al., 2018; Meador et al.,

2020; Iehata et al., 2021; Santos et al., 2023). Understanding the

impact of environmental stress on fish can be achieved through

comprehensive metabolomic analyses. Investigating the molecular

mechanisms controlling teleost fish exposed to high salinity can

greatly benefit metabolic analysis (Qin et al., 2022). The gills of

euryhaline fish, which are highly oxidative tissues, regulate a variety

of ion transporters and enzymes in response to changing salinities

in an efficient and timely manner, requiring significant energy
TABLE 1 The biological role of zebrafish and salmon fish gut microbiota.

Intestinal Bacteria Function The biological function Mechanism at themolecular
level

References

Aeromonas, Pseudomonas, Firmicutes,
Actinobacteria, Proteobacteria,
Clostridia and lactobacillus

Osmoregulation Aeromonas and Pseudomonas in the gut
microbiota of freshwater zebrafish may
be associated with osmoregulation,
assisting the fish in maintaining
appropriate ion balance in their bodily
fluids may also be associated with
osmoregulation affecting the survival
and growth of fish in the
Atlantic salmon

(Flores et al., 2020; Xia et al., 2022a;
Tolas et al., 2025)

Pseudomonas fluorescens, Aeromonas
veroniibiovar sobria

Development Using specific host recognition
mechanisms to promote intestinal
epithelial maturation

(Bates et al., 2007; Butt and
Volkoff, 2019)

Vibrio
Monospora and Enterobacteriaceae,
Firmicutes, Actinobacteria
and Proteobacteria

In larval zebrafish, excessive Vibrio
species proliferation prevents the
establishment of adaptive immunity and
affects the survival and growth of
Atlantic salmon fish under
salinity fluctuation

(Brugman et al., 2014; Tolas
et al., 2025)

Vibrio cholerae: GFP ZWU0020,
Aeromonas veronii: dTomato HM21

Essential for typical neurobehavioral
development throughout the early life
stages of zebrafish

(Cheesman et al., 2011; Phelps
et al., 2017)

Chryseobacterium sp. ZOR0023,
Pseudomonas sp. ZWU0006,
Exiguobacterium sp. ZWU0009,

Metabolic Activity Enhancing fatty acid absorption and
lipid droplet deposition in intestinal
epithelium and hepatic tissue

(Semova et al., 2012)

Pseudomonas aeruginosa strain PAK Immunity The regulation of the dynamic temporal
and spatial activation of NF-кB
transcription and subsequent up-
regulation of target genes within the
gastrointestinal tract.

(Kanther et al., 2011)

Aeromonas veronii biovar sobria,
Pseudomonas fluorescens, Streptococcus,
Staphylococcus, and Vibrio

Regulating host immunity via the
control of Myd88 and TNF receptor

(Cheesman et al., 2011; Brugman
et al., 2014)
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(Liu et al., 2023). Since fish ions and osmoregulation processes

depend on energy availability for proper operation, this suggests

that most metabolic and energy-related genes are expressed more

when salinity is higher (Djiba et al., 2021). Hence, the study of Li

et al. demonstrated how varying salinity concentrations affect gene

expression and energy metabolism. Glycolysis and gluconeogenesis

are crucial for generating energy and regulating glucose levels (Li

et al., 2023). Glyceraldehyde-3-phosphate dehydrogenase

(GAPDH) is a glycolytic enzyme that plays a crucial role in

carbon and energy metabolisms. Notably, studies have indicated

that a decrease in GAPDH protein levels may facilitate the

preservation of other glycolytic enzymes and redirect glucose flux

through alternative metabolic pathways. This redirection

potentially enhances glucose utilization under specific

physiological conditions (Baumgarner et al., 2012; Lazarev et al.,

2020). Upon the transfer of fish to seawater, the increased energy

requirements in the gills may lead to enhanced reliance on

anaerobic metabolism, specifically the conversion of pyruvate to

lactate. Lactate dehydrogenase A (LDHA) plays a pivotal role in
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facilitating this metabolic pathway (Vijayan et al., 1996).

Advancements in metabolomics have opened new opportunities

for understanding the complex physiological responses of teleost

fish to changes in salinity (Ganguly et al., 2020). This emerging

discipline focuses on the comprehensive characterization of

metabolites, offering detailed insights into the biochemical

changes and regulatory processes that enable teleost fish to thrive

in variable environments (Alfaro and Young, 2018; Goode et al.,

2020). Enhancing genetic traits or regulating nutrition through

osmoregulation can significantly improve the ability of fish to adapt

to different salinity levels. Metabolomic research on salinity

adaptation in teleost fish is needed; however only a limited

number of studies have been conducted on various species. Most

fish species do not possess a strong ability to adjust to changes in

salinity. Exposure to high salinity in their habitat has negative

consequences such as stunted growth, susceptibility to diseases, and

even mortality (Yamaguchi et al., 2018; Kujawa and Piech, 2022).

This has impeded progress in aquaculture and poses a threat to fish

biodiversity conservation. This offers a notable opportunity for
FIGURE 2

Displays salinity adaptation in teleost fish, covering environmental stressors, physiological osmoregulatory responses, and omics insights. The upper
panel shows aquatic ecosystems and stressors, the central panel illustrates cellular osmoregulatory mechanisms in key organs, and the lower panel
consolidates omics data, highlighting transcriptomic, metabolomic, and microbiome changes under different salinity conditions. The right panel
summarizes the physiological adaptations, offering insights into the salinity management of teleost fish and its implications for aquaculture
and conservation.
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scientists to further investigate metabolic pathways and identify

crucial biomarkers associated with osmoregulation (Liu et al., 2023).

Using metabolomics, researchers have been able to identify

metabolites from the intestine, hepatopancreas, and muscle of

Gymnocypris przewalskii using LC-MS/MS, revealing 5,745

differentially expressed genes. Processes such as gluconeogenesis

and long-chain fatty acid metabolism play crucial roles in

maintaining glucose homeostasis and providing energy in cold-

stressed fishes. Therefore, through the application of metabolomics,

scientists can gain a comprehensive understanding of the molecular

mechanisms by which teleost fish regulate ion balance, generate

energy, and respond to stress (Liu et al., 2023).

Acquiring knowledge about the metabolites linked to optimal

salinity adaptation is crucial for enhancing resilience and growth of

fish in aquaculture settings (Figure 2). By identifying these key

metabolites, specialized feeds and breeding programs can be

developed to cultivate more resilient fish breeds (Raposo de

Magalhães et al., 2022). In a recent study, researchers examined

the stress proteome and metabolome of Sparus aurata, a fish

species, in response to aquaculture challenges, including factors

such as overcrowding, repetitive net handling, air exposure, and

hypoxia. Their analysis revealed disrupted pathways in the fish liver,

revealing a complex network of regulatory elements that impact

cellular stress pathways. This study provides valuable insights into

fish welfare (Raposo de Magalhães et al., 2022). Recent research has

enhanced our understanding of teleost responses to saline-alkaline

stress. Ding et al. examined the physiological and metabolic changes

in Crucian carp (Carassius auratus) subjected to varying NaHCO3

concentrations, identifying significant renal impairments such as

glomerular atrophy, tubular degranulation, and renal cell

proliferation (Ding et al., 2023). Furthermore, the study

underscored disruptions in antioxidant systems, energy

metabolism, and protein catabolism, indicating that C. auratus

exhibits notable sensitivity to saline-alkali exposure. Conversely,

comprehensive analyses of the annexin (GpANN) family in naked

carp (Gymnocypris przewalskii), a species well-adapted to high-

salinity and alkaline environments, revealed critical molecular

adaptations. GpANNs displayed diverse functional motifs and

tissue-specific expression profiles, with GpANN2 and GpANN3

demonstrating significant transcriptional and translational

responses in kidney tissues under stress (Linlin et al., 2024).

These findings suggest that, while C. auratus experiences stress-

induced damage, G. przewalskii possesses evolved molecular

mechanisms that enhance its resilience, offering a comparative

model for understanding salinity adaptation in freshwater teleosts.

Metabolomics plays a vital role in promptly identifying stress

and diseases in fish, allowing timely interventions to enhance their

welfare (Low et al., 2017). By integrating metabolomic data with

other omics approaches, we can gain a comprehensive

understanding of adaptation mechanisms in fish (Jendoubi, 2021).

Given the growing global demand for sustainable fish farming

practices, it is essential to prioritize metabolomic research on

teleosts fish is essential. Studying their adaptive abilities in

response to salinity variations will not only deepen our

knowledge, but also inspire innovative solutions for sustainable
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aquaculture techniques. This will ultimately help the aquaculture

business grow and become more resilient in the face of

environmental challenges.
6 Influence of salinity stress on
transcriptomics in teleost fish

Living species require adequate sensations, reactions, and

adaptation to varying salinity conditions for development,

reproduction, and survival. In recent decades, aquatic ecosystems

have been facing elevated salinity stress due to road de-icing salts,

rising sea levels, saltwater intrusion in coastal areas, and increased

global temperature changes, affecting their biodiversity directly and

indirectly (Cunillera-Montcusı ́ et al., 2022). Salinization has been

shown to affect ecological processes, trophic networks, functional trait

variety, and community composition in several habitats (Cañedo-

Argüelles et al., 2013; Hintz and Relyea, 2019; Tweedley et al., 2019;

Röthig et al., 2023). The energy expenses associated with

osmoregulation in fish, particularly the transfer of ions across cell

membranes against a concentration gradient, can range from a few

(‰) to up to 30 (‰) in salinities that differ from their body fluids

(Figure 1) (Bœuf and Payan, 2001; Urbina and Glover, 2015). While

teleost fish can temporarily adjust to changes in salinity

circumstances (Jiang et al., 2019), it has been observed that

excessive salinity levels hinder their growth (Zhao et al., 2022) and

disrupt their regular metabolism (Jiang et al., 2019). Several

physiological studies have been conducted on the osmoregulatory

systems involved in the adaptation of fish to different salinity levels,

such as freshwater or seawater, which can range from 0 to 38 ‰

(Evans et al., 2005a; Hwang and Lee, 2007; Lee et al., 2022a). The

primary focus of their description was on osmoregulatory capabilities

within this range of salinity. They provide information on various

changes, such as alterations in electrolyte concentration in bodily

fluids, remodeling of the epithelium, standard metabolic rates,

hormonal regulation, expression patterns of specific genes involved

in ion transport and osmoregulation, such as Na+/K+-ATPase

[NKA], Na+/K+/2Cl− cotransporter [NKCC], cystic fibrosis

transmembrane conductance regulator [CFTR], aquaporins, and

the use of high-throughput methods, such as RNA sequencing, to

study osmoregulatory tissues (Figure 2). Studies that provide results

for more than 40‰ salinity in fish are still uncommon (Lam et al.,

2014; Su et al., 2022). The function of ion-transporters has been

extensively studied in fish exposed to seawater challenges. The

transfer of salmon, specifically Onchorhynchus kisutch or Salmo

salar, and brown trout, known as Salmo trutta, in seawater led to a

gradual acclimation of Na+/K+-ATPase and Na+/K+/2Cl− co-

transporter expression in the cells that make up the gills (Tipsmark

et al., 2002). The mRNA levels of certain subunits of Na+/K+-ATPase

increased in response to changes in ambient salinity in the tissues of

the tilapia Oreochromis mossambicus and rainbow trout

Onchorhynchus mykiss. However, the mRNA levels of the other

subunits decreased (Richards et al., 2003). In addition, studies have

has investigated the responses of fish to the challenges of freshwater

environments by assessing and analyzing the expression of prolactin,
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a hormone that plays a role in osmoregulation and adaptation to

freshwater conditions. Prolactin is a key factor in the process of

osmoregulation in freshwater fishes. It controls the movement of

water and salt through the gills and kidneys by influencing changes in

membrane permeability and creation of chloride cells (Forsyth and

Wallis, 2002).

Previous studies have attempted to identify molecular

processes, such as transcriptome analysis, to provide scientists

with a useful set of data for developing specific interventions and

management strategies that promote the survival and adaptation of

fish populations in environments with different salinity levels

(Table 2). Transcriptomics, which involves studying the

expression of all genes at a specific time, has been utilized for

more than ten years to understand the connections between the

environment, genotype, and phenotype in natural populations (Li

et al., 2024a). Transcriptomic profiling in animals lacking whole-
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genome sequencing data is a powerful approach for investigating

genomes and discovering functional genes (Escobar-Sierra et al.,

2024). Transcriptomic analysis is a widely used technique to gain

insights into the functional genomic components and reveal

molecular mechanisms in cells and tissues of teleost fish

(Figure 2). The transcriptome, consisting of both protein-coding

messenger RNA (mRNA) and non-coding RNA (ncRNA),

demonstrates heterogeneity in its response to developmental

stage, physiological conditions, and external environment (Sun

et al., 2020; Yi et al., 2021; Harshini et al., 2022; Ru et al., 2023).

High-throughput sequencing technologies offer an opportunity to

study changes in gene expression in organisms exposed to various

environmental conditions. Transcriptome sequencing allows for

comprehensive analysis of several physiological systems, such as

metabolism, proteostasis, and osmoregulation (Vij et al., 2020;

Escobar-Sierra et al., 2024; Li et al., 2024a).
TABLE 2 Provides an overview of studies that have conducted transcriptome analyses on teleost fish under salinity stress conditions.

Teleosts Species Salinity environments Discoveries from
Transcriptome Analysis

References

Fundulus heteroclitus
(killifish)

Freshwater to Saltwater Ion transporters and osmosensory
signaling genes are differentially
expressed in osmoregulation.

(Scott et al., 2004; Whitehead
et al., 2012)

Lates calcarifer
(Asian seabass)

Freshwater to Seawater An increase in the expression of genes
associated with energy production,
metabolism, osmoregulation, and the
response to oxidative stress
was observed.

(Xia et al., 2013; Vij et al., 2020)

Oreochromis niloticus
(Nile tilapia)

Freshwater to hypersaline (above 35ppt) The genes responsible for ion transport,
osmotic regulation, and stress response
are being upregulated.

(Ronkin et al., 2015; Liu et al., 2018;
Zhao et al., 2020)

Oncorhynchus mykiss (Rainbow trout) Freshwater to Seawater transition Alterations in the transcriptome
underscore the importance of ion
channels and transporters in
osmoregulatory adaptation.

(Leguen et al., 2010; Xiong et al., 2020;
Liu et al., 2024; Pino-Martinez et al.,
2024; Zuloaga et al., 2024)

Chinese Sea Bass
(Lateolabrax maculatus)

freshwater (FW) to seawater (SW) but
moderately adapt to highly alkaline
water (AW)

Transcriptomic analysis reveals the
unique cellular response in the gills
when exposed to fluctuations in salinity
and alkalinity.

(Zhang et al., 2017; Li et al., 2022a; Zhu
et al., 2023a)

Oreochromis mossambicus
(Mozambique tilapia)

Variable salinity (freshwater
to seawater)

Various genes related to
osmoregulation, stress response,
prolactin receptors, and ion transport
exhibit differential expression.

(Seale et al., 2014; Ronkin et al., 2015;
Su et al., 2020; Inokuchi et al., 2021)

Acanthopagrus schlegelii (Black
Sea bream)

Hypo- and hyper-saline conditions Significant changes have been observed
in the expression of genes related to
metabolism, cellular stress, and
ion transport.

(Chang et al., 2007; Li et al., 2022b;
Nagarajan et al., 2023)

Cyprinodon variegatus
(Sheepshead minnow)

freshwater to seawater) Research has identified genes associated
with immune response, stress response,
and osmotic balance that exhibit
changes in their transcriptomes.

(Simning et al., 2019)

Dicentrarchus labrax (European
sea bass)

Euryhaline species with a Salinity
gradient tolerating from FW up to
70 ppt

Differences were observed in the
expression of genes associated with
immune response, energy metabolism,
and ion transport. These variances were
crucial for maintaining distinct ecotypes
during the early stages of
reproductive isolation.

(Boutet et al., 2006; Masroor
et al., 2019)

(Continued)
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In the past years, there has been notable progress in

understanding the transcript expression profile during salinity

adaptation of various euryhaline teleost species using RNA-Seq,

such as Nile tilapia (Oreochromis niloticus), Mozambique tilapia

(Oreochromis mossambicus) (Table 2) (Ronkin et al., 2015),

medaka (Oryzias melastigma) (Lai et al., 2015), striped catfish

(Pangasianodon hypophthalmus) (Thanh et al., 2015; Pasquier

et al., 2016), and Asian seabass (Lates carifer) (Xia et al., 2013).

Multiple studies have demonstrated alterations in ion transporters,

channels, and stress-related proteins, elucidating the physiological

mechanisms by which fish can maintain a consistent internal

environment under varying salinities. Transcriptomic analyses have

recognized many genes involved in ion transport, water channels

(aquaporins) (Riera Romo et al., 2016), and stress response pathways

(Table 2) (Cutler et al., 2007). Tenualosa ilisha (Hilsa shad), an

anadromous fish, was examined in fresh, brackish, and marine water.

The analysis revealed 3277 genes that were expressed differently

(DEGs), with 232 being shared between marine and freshwater

environments. Out of the 54 KEGG Pathways, the focal adhesion,

adherens junction, tight junction, and PI3K-Akt signaling pathways

were identified as the most significant. Various settings exhibited

distinct expression patterns for 24 osmoregulatory genes that were

differentially expressed in diverse habitats (Mohindra et al., 2023).

The gill transcriptome of Odontesthes bonariensis, a stenohaline

freshwater species, demonstrates distinct gene expression patterns

when exposed to high salinity, in contrast to Odontesthes

argentinensis, a closely related euryhaline species capable of

tolerating a broad range of salinities. This disparity underscores the

unique molecular mechanisms that underpin salinity adaptation in

species with differing osmoregulatory capacities (Hughes et al., 2017).

An analysis was conducted on the transcriptomic data of the livers of

juvenile Scatophagus argus following a sudden shift in salinity. The

results revealed that this alteration led to the generation of 474

differentially expressed genes. The pathways associated with

immune defense showed enrichment, including ‘Antigen processing

and presentation’ and ‘Phagosome’, suggesting that S. argus may

strengthen the immunological defense system. Low-salinity-induced

oxidative stress led to the upregulation of several genes that encode

antioxidant enzymes, such asHAO, Trx, and PHGPx. Downregulation
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of Cul3 could potentially enhance the activation ofNrf2, leading to the

upregulation of antioxidant enzyme genes. The results suggested that

S. argus could be used to confirm the effectiveness of the transcriptome

as a molecular mechanism for resisting low salt stress (Sun et al.,

2022). Furthermore, Lai et al. study investigates genetic responses to

hypotonic conditions and gill microbiota dynamics in marine medaka

following freshwater transfer. Using transcriptome and 16S rRNA

sequencing, the study reveals 1,034 genes with altered expression and

documents a microbial shift from Vibrio to Pseudomonas and

Cetobacterium. The identification of overlapping pathways

associated with glycosaminoglycan and chitin suggests significant

host-microbiota interaction in gill adaptation, offering novel insights

into osmoregulation during osmotic stress (Lai et al., 2022b).
7 Strengthening cross-omics
correlation study

Variations in salinity levels stress aquatic organisms, disrupting

homeostasis, metabolism, reproduction, and immune function

(Leprêtre et al., 2025). Investigating teleost fish adaptation using

high-throughput cross-optimal correlation analysis, including gut

microbiota composition, metabolomics, and transcriptomics,

elucidated salinity adaptation mechanisms (Figure 2). A challenge

in gut microbiota studies is the contamination of metagenomic and

metatranscriptomic data by host material and the overlap between

host and microbial metabolites (Ou et al., 2021). Despite this,

integrative omics approaches have advanced our understanding of

host-microbiota interactions under stress. This review compiled

research on microbial taxa, metabolic pathways, and gene

expression interactions in response to salinity stress, offering

insights into the adaptive strategies of teleost fish.
7.1 Gut microbiota and metabolomic
interactions

Recent advancements in high-throughput chemical

fingerprinting methods, such as metabolomics based on nuclear
TABLE 2 Continued

Teleosts Species Salinity environments Discoveries from
Transcriptome Analysis

References

Danio rerio (Zebrafish) Freshwater fish The stress response triggers alterations
in gene expression, particularly in genes
that contribute to developmental
abnormalities in zebrafish. Furthermore,
the research also pinpointed changes in
gene expression associated with the
regulation of post-embryonic
development in response to
salinity stress.

(Breves et al., 2013; Thompson et al.,
2022; Seli et al., 2024)

Gasterosteus aculeatus (Three-
spined stickleback)

Has a wide salinity tolerance from
seawater to freshwater environments

Genes associated with energy
metabolism, oxidative stress, and ion
transport exhibit varying
expression patterns.

(Jones et al., 2012; Taugbøl et al., 2022)
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magnetic resonance (NMR), have provided scientists with tools to

delve deeper into the intricate interactions between the gut

microbiota and host metabolism (van Ravenzwaay et al., 2007;

Wei et al., 2018). Gut microbiota is a dynamic entity that evolves

alongside the host and is influenced by many factors, including

genetics, diet, and environment (Nicholson et al., 2012).

Environmental fluctuations, particularly salinity variations, can

profoundly affect the gut microbiome, which contains trillions of

microorganisms and is considered to play a critical role in host

digestion and metabolic homeostasis (Budd et al., 2020; Lai et al.,

2022a; Liu et al., 2022). For example, a study on the wild yellowfin

goby (Acanthogobius flavimanus) revealed seasonal and latitudinal

changes in the metabolome, ionome, and microbiome, with salinity

acting as a key regulator of gut microbial communities and

homeostasis (Wei et al., 2018). Similarly, research on wild black

Amur bream (Megalobrama terminalis) in China’s drainage areas

found higher alpha diversity in mainland populations than in those

on Hainan Island. Geographic isolation and seasonal variations

were found to have a significant effect on the gut microbiome, with

distinct regulatory patterns observed in each population. This

suggests that environmental factors and genotypes play a crucial

role in shaping microbiome diversity in wild M. terminalis (Liu

et al., 2022). In juvenile M. salmoides, exposure to 5‰ salinity

increased superoxide dismutase activity, while 15‰ salinity

elevated levels of aspartate aminotransferase, ALT, acid

phosphatase, AKP activity, and total antioxidant capacity.

Interestingly, the control group exhibited the highest levels of

catalase and glutathione peroxidase activity, suggesting that a

salinity of 5‰ enhances immune function. Analysis of paraffin

sections revealed a decrease in villus length and an increase in

epithelial cell expansion with increasing salinity levels.

Furthermore, microbiota analysis showed shifts in dominant taxa,

with an increase in Bacillus abundance at a salinity of 10‰. Salinity

stress was found to affect lipid and amino acid metabolism, with the

15‰ salinity group showing enriched replication, recombination,

and repair processes, as well as salinity stress response mechanisms

(Sun et al., 2023). Additionally, different salinity levels were

observed to affect the gut microbiota of Atlantic salmon, leading

to alterations in microbial communities and an increase in specific

taxa, such as Vibrio, Pseudomonas, Acinetobacter, Corynebacterium,

Alteromonas, Flavobacterium, and Micrococcus (Ou et al., 2021).

Furthermore, metabolomic profiling has demonstrated changes in

key metabolites, particularly osmolytes such as taurine and betaine,

as well as lipid derivatives (Tian et al., 2022; Li et al., 2024b).

Metabolites are linked to osmoregulation and stress adaptation

because taurine and betaine serve as compatible solutes that

contribute to the stabilization of intracellular osmotic pressure,

protection of cellular structures, and maintenance of enzyme

activity under hyperosmotic conditions. Concurrently, alterations

in lipid metabolism indicate the necessity for membrane

remodeling and energy reallocation during salinity stress, both of

which are crucial for sustaining homeostasis and physiological

functions in dynamic environments. Restructuring of gut

microbiota has also been observed in other teleost species,

including golden pompano (Trachinotus ovatus) and wild Arctic
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charr (Salvelinus alpinus), where salinity-induced changes affect

amino acid, lipid, and carbohydrate metabolism, influencing host

adaptation (Hamilton et al., 2019; Liu et al., 2019). This suggests

that the gut microbiota plays a crucial role in maintaining the

metabolic equilibrium of the host organism. Overall, these findings

highlight the importance of the gut microbiota in maintaining

metabolic equilibrium in the host organisms.
7.2 Metabolomics and transcriptomic
integration

Through metabolomic and transcriptomic analyses, researchers

have linked differentially expressed genes (DEGs) related to lipid

metabolism, energy balance, and osmoregulation to metabolic

alterations in response to salinity stress (Figure 2) (Kanika et al.,

2025). A study of genetically improved farmed tilapia (GIFT)

Oreochromis niloticus, identified osmoregulatory genes, such as

aquaporin 3, Na+/K+-ATPase, Potassium channel subfamily K

member, chloride channel 2, and solute carrier (SLC) transporters,

showing differential expression across salinity conditions. The

coordinated response between gene regulation and metabolic

adaptation is demonstrated by the alignment of over-represented

pathways, including UDP-N-acetyl-glucosamine synthesis, N-glycan

biosynthesis, and lipid metabolism, all of which play a role in

supporting osmoregulatory function. This coordinated response is

further underscored by the metabolomic changes observed in

osmolytes, such as 12-hydroxyeicosatetraenoic acid, choline, and

adenine. These shifts in pathways and metabolites suggest a close

connection between the activation of osmoregulatory genes and the

metabolic adjustments required to maintain osmotic balance under

salinity stress (Qin et al., 2022). This intricate relationship highlights

the complex mechanisms at play in the cellular response to

environmental challenges, shedding light on the adaptive strategies

employed by organisms to survive and thrive in changing conditions.

Transcriptomic analyses across various fish species have elucidated

critical molecular adaptations to salinity stress, demonstrating how

environmental changes influence gene expression and metabolic

processes. In Tenualosa ilisha, key pathways related to cell

adhesion, ion transport, and osmoregulation have been identified

with KEGG pathways such as focal adhesion, tight junctions, and

PI3K-Akt signaling being significantly enriched. Notably, the habitat-

specific expression patterns of genes from the slc16 and slc2 families,

as well as claudin genes (cldn11, cldn10), suggest that these genes play

pivotal roles in acclimating to varying salinity conditions.

Furthermore, protein-protein interaction (PPI) network analysis

revealed that fn1 interacts with genes involved in muscle structure

development, underscoring the cellular and structural adjustments

necessary for osmoregulation under stress (Mohindra et al., 2023).

Similarly, in Lates calcarifer, the differential expression of

osmoregulatory genes involved in tissue remodeling, circadian

rhythms, and growth regulation indicates that salinity fluctuations

not only drive acclimation to freshwater and seawater but also

influence physiological behaviors such as migration (Vij et al.,

2020). Additionally, in Scatophagus argus, transcriptome profiling
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of brain tissue under high- and low-salinity conditions revealed

metabolic reprogramming, with genes (lipa, sqle, acc, fas, bhmt,

mpst, dnmt3a, mtr, hao2, LOC111225351, hmgcs1, hmgcr, and

soat1) related to lipid metabolism, steroid biosynthesis, and

methylation pathways being significantly altered. These findings

suggest that salinity stress affects both metabolic reprogramming

and gene expression in the brain, particularly in processes that are

vital for osmoregulation and stress adaptation (Lin et al., 2024).

Collectively, these studies highlight the complex molecular responses

to salinity stress, revealing how different fish species utilize distinct,

yet interconnected, gene networks and metabolic pathways to adapt

to their respective saline environments.

Alternative splicing (AS) has emerged as a critical post-

transcriptional regulatory mechanism for salinity acclimation in

teleosts. RNA-Seq analyses of Mozambique tilapia (Oreochromis

mossambicus) and rainbow trout revealed significant results. In

Mozambique tilapia, the process of differential alternative splicing

(DAS) of genes associated with spliceosome assembly, RNA

binding, and post-transcriptional processing reveals a highly

regulated mechanism of gene expression in response to high-

salinity conditions. This intricate regulation suggests that fish

have evolved precise mechanisms to acclimate to environmental

changes. The enrichment of DAS genes in mitochondrial energy

metabolism, ribosomal protein synthesis, and cytoplasmic signal

transduction indicates that fish may require rapid and energy-

efficient cellular responses to cope with salinity stress, particularly

in osmoregulatory tissues such as the gills (Huang et al., 2025).

These acclimations likely help fish maintain ionic and osmotic

balance when faced with fluctuations in salinity levels. Similarly, in

rainbow trout, changes in gene expression related to taurine and

glutamine metabolism have been observed, with shifts in metabolite

concentrations confirmed using LC-MS/MS analysis. This

highlights the importance of organic osmolytes in fish

osmoregulatory processes, allowing them to stabilize cellular

osmotic pressure without compromising essential cellular

functions (Tian et al., 2022). Overall, these findings underscore

the critical role of post-transcriptional regulation and compatible

solute metabolism in the response of teleosts to salinity stress. By

understanding these molecular mechanisms, we can gain insight

into how these fish maintain their physiological resilience in

challenging environments. Research on Nile tilapia and tongue

sole has highlighted the role of amino acid accumulation in

salinity adaptation (Jiang et al., 2019; Su et al., 2023b; Wang

et a l . , 2024) . KEGG pathway enr ichment ident ified

glycerophospholipid metabolism, bile acid biosynthesis, and

amino acid metabolism as crucial for salinity adaptation,

providing insights into fish osmoregulation. Integrating gut

microbiota profiling, metabolomics, and transcriptomics enhances

our understanding of salinity stress acclimation in teleosts. Salinity-

induced gut microbial changes contribute to metabolic

reprogramming, affecting the energy balance, osmoregulation, and

immune responses. Transcriptomic analyses have highlighted

differentially expressed genes, alternative splicing, and regulatory

pathways involved in physiological adaptations. Future research
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should validate omics predictions, characterize candidate genes, and

elucidate host-microbiota interactions to improve the prediction

and mitigation of environmental stress effects on aquatic organisms,

thereby supporting sustainable fisheries and aquaculture.

We acknowledge the limitations of current research on salinity

acclimation in teleost fish. The focus on short-term salinity stress

studies has constrained our understanding of long-term acclimation

and progressive physiological and microbiota changes. The causal

relationship between gut microbiota alterations and osmoregulatory

mechanisms remains ambiguous, requiring further functional

validation to determine whether these changes are adaptive

responses or active regulators. Multi-omics data integration

presents technical challenges that affect functional interpretation.

Many studies generalize findings across teleost species, overlooking

the species-specific osmoregulatory strategies. Although

transcriptomics and metabolomics provide valuable insights,

experimental validation through in vivo functional studies is

limited. Addressing these gaps will enhance our mechanistic

understanding and broaden the applicability of our findings in

aquaculture and ecological conservation.
8 Conclusion

Teleost fish are known for their ability to thrive in

environments with varying salinity levels, requiring them to make

precise physiological and molecular adjustments to maintain

homeostasis. This review delves into the key osmoregulatory

mechanisms found in the gills, kidneys, and intestinal tissues of

these fish, highlighting the importance of transcriptomics,

metabolomics, and gut microbiota in their ability to acclimate to

changes in salinity. Transcriptomic analyses have revealed changes

in gene expression related to ion transport, energy metabolism, and

signaling pathways, providing insights into how teleost fish respond

to salinity stress. Metabolomic studies have identified osmolytes

and metabolites that play roles in maintaining cellular stability

under these conditions. Furthermore, the gut microbiota of these

fish affects their metabolic function and ability to acclimate to

salinity fluctuations. By utilizing a combination of these multi-

omics approaches, researchers have gained a comprehensive

understanding of how teleost fish respond to changes in salinity

levels. While these findings have the potential to improve

aquaculture practices by enhancing stress resilience and health

management, they also contribute to our broader understanding

of fish physiology and environmental acclimatization.
Future perspectives

Future research should integrate transcriptomics, gut

microbiota, and metabolomics to gain insights into the

acclimatization of teleost fish to changes in salinity. Long-term

studies will reveal the lasting effects and adaptations to fluctuating
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salinities. Understanding these mechanisms can improve fisheries,

enhance fish health, and optimize species-specific management

strategies for aquaculture.
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Quan, F. B., Gaillard, A. L., Alejevski, F., Pézeron, G., and Tostivint, H. (2021). Urotensin
II-related peptide (Urp) is expressed in motoneurons in zebrafish, but is dispensable for
locomotion in larva. Peptides 146, 170675. doi: 10.1016/j.peptides.2021.170675

Rahi, M. L., Azad, K. N., Tabassum, M., Irin, H. H., Hossain, K. S., Aziz, D., et al.
(2021). Effects of salinity on physiological, biochemical and gene expression parameters
of black tiger shrimp (Penaeus monodon): potential for farming in low-salinity
environments. Biol. (Basel). 10, 1220. doi: 10.3390/biology10121220

Raposo de Magalhães, C., Farinha, A. P., Blackburn, G., Whitfield, P. D., Carrilho, R.,
Schrama, D., et al. (2022). Gilthead seabream liver integrative proteomics and
Frontiers in Marine Science 19
metabolomics analysis reveals regulation by different prosurvival pathways in the
metabolic adaptation to stress. Int. J. Mol. Sci. 23, 15395. doi: 10.3390/ijms232315395

Richards, J. G., Semple, J. W., Bystriansky, J. S., and Schulte, P. M. (2003). Na+/K
+-ATPase a-isoform switching in gills of rainbow trout (Oncorhynchus mykiss) during
salinity transfer. J. Exp. Biol. 206 (24), 4475–4486. doi: 10.1242/jeb.00701
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