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The design of multiple
orthogonal signals
based on auto-encoder
optimization network

Binkai Liang, Mingzhi Wang and Sen Zhang*

Naval University of Engineering, Wuhan, China

As an important part of active sonar, transmitted signals have a great influence on
the performance of ocean exploration, however, in the actual environment, due
to the existence of the Doppler frequency shift, the traditional transmitted signals
may have a relatively bad performance. Therefore, in a bid to improve the
adaptability of the transmitted signals in the actual environment, a signal
design method has been proposed in this paper. In this method, a neural
network based on auto-encoder has been presented and a randomly
normalized phase sequence is sent into the network and then it is optimized
by minimizing the ambiguity function peak side-lobe level of the phase
sequence. Compared with the existing methods, the network structure is
adjusted to further consider the transmitted signal optimization under the
Doppler frequency shift. Simulation results show that the optimized signals
perform superior than the existing method under Doppler frequency shift,
which may improve the performance of ocean exploration to some extent.
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1 Introduction

Active sonar provides an important method for ocean exploration. It can be applied in
seabed topography mapping, wreck detection and marine biological monitoring. Signals
with good correlation performance are usually beneficial for ocean exploration. Therefore,
designing a group of multi-orthogonal signals with better correlation performance is
crucial. However, ideal orthogonal signals do not exist. Consequently, the orthogonal
signals must be designed according to a minimization criterion. Common optimization
criteria (Pu, 2020) include peak side-lobe level, integral side-lobe energy, auto-correlation
side-lobe level and their variants.

Many methods have been proposed in signal design. A hybrid genetic algorithm (GA)
is presented to design orthogonal polyphase code and orthogonal frequency code signals
(Liu et al., 2006). However, its performance is still not good enough. Chin-Wei Huang et al.
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have proposed an approach (Huang et al., 2023) based on
alternating minimization (AM) to design waveforms with optimal
peak side-lobe level (PSL), where a lower bound for the PSL was
derived. A waveform is designed by minimizing a weighted
summation of the beampattern integrated sidelobe-to-mainlobe
ratio and waveform energy over the space-frequency bands in
literature (Cheng et al., 2018). Two algorithms named consensus-
ADMM and consensus-PDMM have been proposed in literature
(Wang and Wang, 2021), where sequences with relatively good
correlation properties are constructed. In literature (Liu et al., 2023),
A method named P-MM algorithm based on majorization-
minimization (MM) framework have been proposed. Deep
learning has recently made significant breakthroughs in many
fields such as computer vision and natural language processing
(Zhou et al,, 2018), which is usually implemented by using neural
network (JayaSree and Rao, 2022). For nonlinear optimization
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problems, the neural network composed of fully connected layers
can solve the problem well. However, the problems such as gradient
disappearance and gradient explosion will occur when the number
of fully connected layers increases (Minsky and Papert, 2017). In
2015, Kaiming He et al. proposed a deep residual network and
applied it to image classification (He et al., 2016). The network
structure effectively improved the problems of gradient
disappearance and gradient explosion, and further deepened the
number of network layers. In addition, convolutional neural
network (CNN) is used to extract features and accelerate network
training, which is widely used in computer vision and natural
language (Krizhevsky et al.,, 2017) processing. In 2017, Kingma D
et al. proposed the Adam algorithm to optimize the parameters of
the neural network (Kingma and Ba, 2015) to better avoid falling
into the local optimum in the optimization process. In the literature
(Hu et al.,, 2021; Zhang et al., 2020; Wei, 2022), a comprehensive
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optimization network (CON) is constructed based on the deep
residual network, which can optimize the phase-coded signal
unsupervised without sample training. However, the designed
signal does not consider the signal optimization under Doppler
frequency shift. Hence, Concerning the importance of transmitted
signals in active sonar, the issue of signals optimization under

10.3389/fmars.2025.1560958

Doppler frequency shift is investigated to design signals with better
correlation performance in this article.

The auto-encoder, as an unsupervised learning algorithm, is
primarily employed for data dimensionality reduction and feature
extraction. This approach effectively preserves the essential
characteristics of phase vectors while simultaneously improving
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Convolution computation process considering Doppler shift condition.

the network’s optimization performance. Hence, inspired by the
advantages of the auto-encoder, a deep learning model named auto-
encoder optimization network (AON) is proposed in this article.
The network structure has been refined to better design the signal
under Doppler frequency shift. In this article, a set of randomly
normalized phase vectors are put into the forward propagation
module of the network, and then the Loss function (Loss) formed by
auto-correlation peak side-lobe level (APSL), auto-ambiguity
function peak side-lobe level (AFPSL) and cross-ambiguity
function peak side-lobe level (CFPSL) is calculated in the
backpropagation module. Several techniques have been used in
the study. Firstly, the learning rate is adjusted by using the
CosineAnnealingLR method. Secondly, dimensionality reduction
techniques are used to better extract signal features. The main
contributions of the study can be concluded as follows.

Firstly, this method contributes to improve the correlation
performance of transmitted signals under Doppler frequency
shift. Secondly, the network structure has been adjusted while
concerning the frequency shift. Finally, Simulation results
demonstrate that the proposed algorithm performs better than
the existing methods under Doppler frequency shift,

The rest of this article is organized as follows. The signal design
method and the proposed optimization network based on the auto-
encoder is introduced in Section 2. Numerical results are presented
in Section 3. Finally, this article is concluded in Section 4.

2 Signal optimization design method

As illustrated in Figure 1, AON is an unsupervised optimization
network based on the auto-encoder structure, which includes a
forward propagation module and a backpropagation module. The
input of the forward propagation module is a randomly normalized
phase sequence, and its output is the optimized signal phase
sequence. In the backpropagation module, the loss function is
calculated based on the APSL, AFPSL and CFPSL of the designed
signals. Subsequently, the parameters of the neural network are
updated by the Adam optimizer to generate the required signals.

Frontiers in Marine Science

2.1 Input and output design

The input is the normalized phase sequence s% = [s)(1),...s)
(N), .. s2(1), .oy SY(N)] € RN - syhere s9(N) is the Nth
phase of the Lth transmitted signal. The output of the forward
propagation module is the phase sequence S = [gl(l), ooy EI(N), ey
sp(1),..., s (N)] € RN The designed normalized phase vector
is reshaped into a phase matrix in the backpropagation module and
then the phase matrix is converted into an ambiguity function matrix
through convolution.

2.2 Forward propagation module

In the forward propagation module, the auto-encoder network
is used to extract the features of the input, and the main features of
the phase vector are retained in the process. Meanwhile, a certain
number of hidden layers are designed in the auto-encoder network.
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FIGURE 6
Comparison of loss values of different layers.
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Comparison of loss values of different sequence lengths.

The auto-encoder network has n fully connected layers with
different numbers of neurons in each layer, and the Sigmoid
function is used as the activation function.

As shown in Figure 2, the module can be divided into three parts:
encoder, hidden layer, and decoder. The encoder consists of three
layers and the number of neurons in each layer is specified as
follows: Dim1 neurons in layer 1, Dim2 neurons in layer 2, and
Dim3 neurons in layer 3, where Dim1=L x N, Dim2 = 0.5 x Dim1 + 2,
Dim3 = 0.5 x Dim2. Similarly, the decoder also has three layers as
illustrated in Figure 2, and the hidden layer has n-6 layers with Dim3
neurons in each layer. The signal features are better extracted through
dimensionality reduction and expansion techniques.

2.3 Backpropagation module

In order to improve the adaptability of the signal in the actual
channel, the influence of Doppler frequency shift should be
considered in signal design (Li, 2007, 2009; Tian, 2013).
Therefore, the ambiguity function is used to evaluate the signal,
which can be expanded to the auto-ambiguity function(AAF)
and the cross-ambiguity function (CAF) (Yang et al., 2024), The
peak side-lobe level of the auto-ambiguity function at frequency
shift f;= 0 is denoted by APSL, and the peak side-lobe level of the
auto-ambiguity function is denoted by AFPSL at non-zero Doppler
frequency shift, and CFPSL denotes the peak side-lobe level of the
cross-ambiguity function at non-zero Doppler frequency shift.
Therefore, the evaluation criterion for the signal performance is
as follows:

Frontiers in Marine Science
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mdi>nE1 = mdi)n max (APSL, A, - AFPSL, A, - CFPSL))

Where A,, 4, is the weight and the value range is [0,1].

The algorithm flowchart of the backpropagation module is
shown in Figure 3, which consists of three parts: convolution
computation, loss function calculation and backpropagation
update. Firstly, the loss function is constructed with the
ambiguity function matrix 1" obtained by convolution
computation. Subsequently, the Adam algorithm is used to
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FIGURE 8
Relationships of layers humber and sequence length under optimal
optimizing performance.
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minimize the loss function, and then the weights and offsets of the
network in the forward propagation module are updated. Finally, a
phase vector with low AFPSL and low CFPSL is generated when
iteration stops.

Before the convolution computation, the convolution kernel
and convolution matrix are constructed, the convolution kernel is
formed by concatenating the column phase vectors of L signals
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~I
transversely and the convolution matrix H is the expansion of

the convolution kernel under different Doppler frequency shifts,
taking signal 1 as an example. The expansion method is shown
in Figure 4. The convolution kernel is padded with zero and
expanded to different Doppler frequencies. Then, the extended
matrix H' of a single signal is obtained, and the frequency shift

range is [-5fy, 53]
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~I

When there are four signals, the convolution matrix H is
formed by merging four extended matrices, and the dimension of
each extended matrix H' is (BN — 2) x 11, therefore, the dimension
of the convolution matrix is (3N — 2) x 44.

As shown in Figure 5. Each signal is convolved with other
signals at different Doppler shifts, including zero Doppler, to
generate the matrix Y’, which represents the co’\n/yolution results
between each signal and the convolution matrix H . Moreover, the
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ambiguity function matrix ¥ with a size of @N-1)x1761is 3 Opt|m|zat|on performance analysis
obtained by concatenating all the matrix Y’ transversely. Due to

the convolution computation process, the 6th, 61st, 116th, and The CPU in the running environment is i9-8400, the GPU is
171st columns of Y are the auto-ambiguity function matrix at GTX3080, and the RAM is 32G. The algorithm is processed with

frequency shift f; = 0, and the APSL is obtained by calculating the Python3.9.12 and Pytorch and runs on GPU.In this article, the

maximum value of the auto-ambiguity function matrix after  ;qyence of different network layers and the ambiguity function of

removing the Nth row, as the APSL is the maximum value after . optimized signal are mainly analyzed.
removing the main-lobe. The auto-ambiguity function matrix and

the cross-ambiguity function matrix are formed by removing the

above four columns of the matrix ¥’ ,and AFPSL and CFPSLare 3.1 Compa rison under different numbers of
obtained by calculating their maximum values, respectively. network [aye rs

Subsequently, the Loss is calculated as follows:

Loss APSL, A, - AEPSL, 2, - CEPSL) In this section, the influence of different network layer numbers
oss = max{ e 2 } on the optimization is analyzed. The parameters are set as follows:

Finally, the loss function is minimized with the Adam optimizer  the weight is A, = 4, = 1, the initial learning rate is y = 0.0005, the

and the network parameters are updated. number of iterations is E=30000, the number of signals is L=4, and
APSL AFPSL CFPSL
0 0 0
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FIGURE 11
Comparison of APSL,AFPSL and CFPSL of different algorithms.

TABLE 1 Comparison of APSL, AFPSL and CFPSL of different algorithms.

Algorithms Sleq“ence 2047
ength N

APSL -17.9 -19.8 -23.0 -26.5 -28.6 -31.9
M sequence AFPSL -14.1 -16.8 -20.2 -23.2 -25.3 -29.0
CFPSL -10.5 -12.5 -14.5 -17.7 -19.7 -22.6
APSL -13.1 -16.2 -17.1 -18.5 -20.0 -21.0
GA AFPSL -10.2 -12.8 -16.5 -18.8 -20.2 -20.3
CFPSL -10.9 -13.4 -14.9 -18.6 -19.9 -19.8
APSL -20.6 -22.7 -254 -28.3 -31.2 -33.0
CON AFPSL -9.3 -12.1 -15.9 -18.1 -20.1 -22.9
CFPSL -11.2 -13.0 -15.8 -18.4 -21.4 -24.4
APSL -15.1 -18.1 -21.0 -23.9 -26.6 -29.1
AON AFPSL -15.1 -18.1 -21.0 -23.9 -26.6 -29.1
CFPSL -15.1 -18.1 -21.0 -23.9 -26.6 -29.1
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the length of signal sequence is N=63. The number of network
layers is [10,16,20,30,31,40,44,50,60], respectively, and the results
shown in Figure 6 are obtained. Subsequently, the above experiment
is repeated with the sequence length changed. Finally, the results
shown in Figure 7 are obtained.

As illustrated in Figure 6 and Figure 7, For signals of a given
sequence length, altering the number of network layers has little
influence on the optimization performance. However, there is a
layers number with optimal performance for each sequence length,
and as the sequence length varies, the number of network layers
with the best optimization performance also changes significantly,
as shown in Figure 8.

3.2 Ambiguity function analysis under the
same sequence length

The signal length is set to N=63 and the number of signals is
L=4, the number of iterations is E=100000, the initial learning rate is
¥ = 0.0005, and the weight is A; = A, = 1, the ambiguity function of
m-sequence, GA algorithm, CON algorithm, and AON algorithm
are compared and shown in Figure 9.

frontiersin.org
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Figure 9 shows the auto-ambiguity and cross-ambiguity
function diagram of the four algorithms, respectively.

The ambiguity function graph sections of signals generated by
the four algorithms are analyzed to provide a clearer comparison of
the four algorithms, which means the range ambiguity of signals
are compared.

Figure 10 depicts the sections of the auto-ambiguity function
and the cross-ambiguity function for the four algorithms,
respectively. The APSL, AFPSL and CFPSL of the m-sequence are
-17.9dB, -14.1dB and -10.5dB, respectively. The APSL, AFPSL and
CFPSL for GA are -13.1dB, -10.2dB and -10.9dB, respectively. The
APSL, AFPSL and CFPSL for CON are -20.6dB, -9.3dB and
-11.2dB, respectively. Subsequently, It can be seen that the APSL,
AFPSL and CFPSL of the proposed algorithm are all -15.1dB.
Therefore, as the sequence length is set to N=63, the AFPSL of
AON is 1 dB lower than that of the m-sequence, 4.9dB lower than
that of GA and 5.8 dB lower than that of CON, additionally, the
CFPSL of AON is 4.6 dB lower than that of the m-sequence, 4.2dB
lower than that of GA and 3.9 dB lower than that of CON.

3.3 Ambiguity function analysis under
different sequence lengths

The ambiguity functions of the proposed algorithm, GA algorithm,
CON algorithm and M-sequence are compared under different
sequence lengths. Signal number are set to L=4 and the sequence
lengths are set to [63,127,255,511,1023,2047], the initial learning rate
and iteration number are y = 0.0005 and E=100,000, respectively, the
weights are A, = A, = 1. The comparison of APSL, AFPSL and CFPSL
of each algorithm is shown in Figure 11, and the specific values are
shown in Table 1 in dB.

As shown in Figure 11, the AFPSL and CFPSL of AON are
lower than those of M-sequence and CON under Doppler
frequency shift, while the APSL is higher than that of M-sequence
and CON and lower than that of GA algorithm. According to

10.3389/fmars.2025.1560958

Table 1, under different sequence lengths, The AFPSL of AON is
0.1dB to 1.3dB lower than that of M-sequence, 4.5 dB to 8.8 dB
lower than that of GA algorithm and 5.1 dB to 6.5 dB lower than
that of CON. Additionally, the CFPSL of AON is 4.6 dB to 6.9 dB
lower than that of M-sequence, 4.2dB to 9.3dB lower than that of
GA algorithm and 3.9 dB to 5.5dB lower than that of CON.
Therefore, the performance of existing methods will be
significantly reduced under Doppler frequency shift, which will
probably lead to weak targets being masked by the side-lobes.
Nevertheless, AON is capable of remaining a constant low side-
lobe level under Doppler frequency shift.

3.4 Ambiguity function analysis under
different sequence lengths

In this section, the optimization performance of AON, CON,
GA algorithm and M-sequence is compared while L signals are
transmitted simultaneously. Set the number of signals to L=4,
the length of sequence to N=63, the learning rate of Adam to
¥=0.0005, the number of iterations to E=100000, and the weight
tod =4, =1.

It can be seen from Figure 12 that the AFPSL of AON is -5.6dB,
the AFPSL of CON is -4.1dB, the AFPSL of GA is -5.4dB and the
AFPSL of M sequence is -5.1dB. The AFPSL of AON is 0.5dB lower
than that of M-sequence, 0.2dB lower than that of GA algorithm
and 1.5dB lower than that of CON. This is because the cross-
correlation performance will play a more critical role while L signals
are transmitted at the same time.

When the sequence lengths are N=[63, 127, 255, 511,
1023,2047], the AFPSL of the above four algorithms is shown in
Figure 13, and the specific values are shown in Table 2 in dB.

According to Figure 13, the AFPSL of AON is 0.4-3.6dB lower
than that of M-sequence under different sequence lengths, 0.2-
3.1dB lower than that of GA algorithm and 1.4-4.4dB lower than

TABLE 2 Comparison of AFPSL of different algorithms in the case of mixed signals.

Comparison
P Sequence length N 1023 2047
object
M-sequence -5.1 -9.1 -10.1 -11.5 -15.8 -18.0
GA 5.4 -8.1 -10.4 -12.0 -145 -17.3
AFPSL
CON -4.1 -7.9 -9.1 -10.7 -154 -17.6
AON 5.6 9.5 -10.8 -15.1 -16.8 -19.5
TABLE 3 Time(s) complexity analysis.
Sequence length N 63 127 255 511 1023
GA ‘ 783.5286 891.7917 1164.0774 ‘ 1692.1679 2629.3918
CON ‘ 507.6142 404.7745 4304368 ‘ 523.0525 569.0296
AON ‘ 401.0573 410.1158 588.8023 ‘ 1027.3534 2511.2986
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that of CON, which means that AON also has good performance
under mixed signals.

3.5 Time complexity analysis

In this section, the time complexity of different algorithms is
compared, the sequence lengths are set to [63,127,255,511,1023],
the iterations of CON and AON are all 30000, the iteration of GA is
6000, the results are shown in Table 3.

From Table 3, while the runtime of AON is lower than that of
GA, it can produce signals with lower side-lobe level under Doppler
frequency shift. Besides, the optimization time of AON and CON
are similar when the sequence length is low, but as the sequence
length increases, the optimization time of AON is relatively long.
This is because the network dimension of AON changes with the
input size to better adapt to different signal lengths while the
network dimension of CON remains unchanged.

4 Summary

An orthogonal transmitted signal design method named AON
is proposed in this paper, and the neuron numbers in different
layers of AON are adjusted according to different sequence lengths.
The signal design under Doppler frequency shift is mainly
considered in this paper. This method can better extract the
signal features based on auto-encoder, which leads to superior
performance, and the weights and offsets of the forward
propagation module are updated in the process by using the
Adam optimizer, the learning rate of the Adam optimizer is
dynamically adjusted through the CosineAnnealingLR method.
Numerical results show that the proposed method can reduce
both the AFPSL and CFPSL of signals, which means that signals
generated by AON have better performance under Doppler
frequency shift compared to existing methods.
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