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The design of multiple
orthogonal signals
based on auto-encoder
optimization network
Binkai Liang, Mingzhi Wang and Sen Zhang*

Naval University of Engineering, Wuhan, China
As an important part of active sonar, transmitted signals have a great influence on

the performance of ocean exploration, however, in the actual environment, due

to the existence of the Doppler frequency shift, the traditional transmitted signals

may have a relatively bad performance. Therefore, in a bid to improve the

adaptability of the transmitted signals in the actual environment, a signal

design method has been proposed in this paper. In this method, a neural

network based on auto-encoder has been presented and a randomly

normalized phase sequence is sent into the network and then it is optimized

by minimizing the ambiguity function peak side-lobe level of the phase

sequence. Compared with the existing methods, the network structure is

adjusted to further consider the transmitted signal optimization under the

Doppler frequency shift. Simulation results show that the optimized signals

perform superior than the existing method under Doppler frequency shift,

which may improve the performance of ocean exploration to some extent.
KEYWORDS

signal design, doppler frequency shift, auto-encoder, auto-ambiguity function, cross-
ambiguity function
1 Introduction

Active sonar provides an important method for ocean exploration. It can be applied in

seabed topography mapping, wreck detection and marine biological monitoring. Signals

with good correlation performance are usually beneficial for ocean exploration. Therefore,

designing a group of multi-orthogonal signals with better correlation performance is

crucial. However, ideal orthogonal signals do not exist. Consequently, the orthogonal

signals must be designed according to a minimization criterion. Common optimization

criteria (Pu, 2020) include peak side-lobe level, integral side-lobe energy, auto-correlation

side-lobe level and their variants.

Many methods have been proposed in signal design. A hybrid genetic algorithm (GA)

is presented to design orthogonal polyphase code and orthogonal frequency code signals

(Liu et al., 2006). However, its performance is still not good enough. Chin-Wei Huang et al.
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have proposed an approach (Huang et al., 2023) based on

alternating minimization (AM) to design waveforms with optimal

peak side-lobe level (PSL), where a lower bound for the PSL was

derived. A waveform is designed by minimizing a weighted

summation of the beampattern integrated sidelobe-to-mainlobe

ratio and waveform energy over the space-frequency bands in

literature (Cheng et al., 2018). Two algorithms named consensus-

ADMM and consensus-PDMM have been proposed in literature

(Wang and Wang, 2021), where sequences with relatively good

correlation properties are constructed. In literature (Liu et al., 2023),

A method named P-MM algorithm based on majorization-

minimization (MM) framework have been proposed. Deep

learning has recently made significant breakthroughs in many

fields such as computer vision and natural language processing

(Zhou et al., 2018), which is usually implemented by using neural

network (JayaSree and Rao, 2022). For nonlinear optimization
Frontiers in Marine Science 02
problems, the neural network composed of fully connected layers

can solve the problem well. However, the problems such as gradient

disappearance and gradient explosion will occur when the number

of fully connected layers increases (Minsky and Papert, 2017). In

2015, Kaiming He et al. proposed a deep residual network and

applied it to image classification (He et al., 2016). The network

structure effectively improved the problems of gradient

disappearance and gradient explosion, and further deepened the

number of network layers. In addition, convolutional neural

network (CNN) is used to extract features and accelerate network

training, which is widely used in computer vision and natural

language (Krizhevsky et al., 2017) processing. In 2017, Kingma D

et al. proposed the Adam algorithm to optimize the parameters of

the neural network (Kingma and Ba, 2015) to better avoid falling

into the local optimum in the optimization process. In the literature

(Hu et al., 2021; Zhang et al., 2020; Wei, 2022), a comprehensive
FIGURE 1

Optimization network structure diagram.
FIGURE 2

Network structure diagram of the forward propagation module.
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optimization network (CON) is constructed based on the deep

residual network, which can optimize the phase-coded signal

unsupervised without sample training. However, the designed

signal does not consider the signal optimization under Doppler

frequency shift. Hence, Concerning the importance of transmitted

signals in active sonar, the issue of signals optimization under
Frontiers in Marine Science 03
Doppler frequency shift is investigated to design signals with better

correlation performance in this article.

The auto-encoder, as an unsupervised learning algorithm, is

primarily employed for data dimensionality reduction and feature

extraction. This approach effectively preserves the essential

characteristics of phase vectors while simultaneously improving
FIGURE 4

Schematic diagram of dimensional change of expansion matrix for single signal (eg:signal 1).
FIGURE 3

Algorithms flowchart of backpropagation module.
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the network’s optimization performance. Hence, inspired by the

advantages of the auto-encoder, a deep learning model named auto-

encoder optimization network (AON) is proposed in this article.

The network structure has been refined to better design the signal

under Doppler frequency shift. In this article, a set of randomly

normalized phase vectors are put into the forward propagation

module of the network, and then the Loss function (Loss) formed by

auto-correlation peak side-lobe level (APSL), auto-ambiguity

function peak side-lobe level (AFPSL) and cross-ambiguity

function peak side-lobe level (CFPSL) is calculated in the

backpropagation module. Several techniques have been used in

the study. Firstly, the learning rate is adjusted by using the

CosineAnnealingLR method. Secondly, dimensionality reduction

techniques are used to better extract signal features. The main

contributions of the study can be concluded as follows.

Firstly, this method contributes to improve the correlation

performance of transmitted signals under Doppler frequency

shift. Secondly, the network structure has been adjusted while

concerning the frequency shift. Finally, Simulation results

demonstrate that the proposed algorithm performs better than

the existing methods under Doppler frequency shift,

The rest of this article is organized as follows. The signal design

method and the proposed optimization network based on the auto-

encoder is introduced in Section 2. Numerical results are presented

in Section 3. Finally, this article is concluded in Section 4.
2 Signal optimization design method

As illustrated in Figure 1, AON is an unsupervised optimization

network based on the auto-encoder structure, which includes a

forward propagation module and a backpropagation module. The

input of the forward propagation module is a randomly normalized

phase sequence, and its output is the optimized signal phase

sequence. In the backpropagation module, the loss function is

calculated based on the APSL, AFPSL and CFPSL of the designed

signals. Subsequently, the parameters of the neural network are

updated by the Adam optimizer to generate the required signals.
Frontiers in Marine Science 04
2.1 Input and output design

The input is the normalized phase sequence s01 = ½s01(1),…s01
(N),…, s0L(1),…, s0L(N)� ∈ R1�(L�N), where s0L(N) is the Nth

phase of the Lth transmitted signal. The output of the forward

propagation module is the phase sequence s
⌢
= ½s⌢1(1),…, s

⌢
1(N),…,

s
⌢
L(1),…, s

⌢
L(N)� ∈ R1�(L�N). The designed normalized phase vector

is reshaped into a phase matrix in the backpropagation module and

then the phase matrix is converted into an ambiguity function matrix

through convolution.
2.2 Forward propagation module

In the forward propagation module, the auto-encoder network

is used to extract the features of the input, and the main features of

the phase vector are retained in the process. Meanwhile, a certain

number of hidden layers are designed in the auto-encoder network.
FIGURE 6

Comparison of loss values of different layers.
FIGURE 5

Convolution computation process considering Doppler shift condition.
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The auto-encoder network has n fully connected layers with

different numbers of neurons in each layer, and the Sigmoid

function is used as the activation function.

As shown in Figure 2, the module can be divided into three parts:

encoder, hidden layer, and decoder. The encoder consists of three

layers and the number of neurons in each layer is specified as

follows: Dim1 neurons in layer 1, Dim2 neurons in layer 2, and

Dim3 neurons in layer 3, where Dim1=L ×N, Dim2 = 0.5 × Dim1 + 2,

Dim3 = 0.5 × Dim2. Similarly, the decoder also has three layers as

illustrated in Figure 2, and the hidden layer has n-6 layers with Dim3

neurons in each layer. The signal features are better extracted through

dimensionality reduction and expansion techniques.
2.3 Backpropagation module

In order to improve the adaptability of the signal in the actual

channel, the influence of Doppler frequency shift should be

considered in signal design (Li, 2007, 2009; Tian, 2013).

Therefore, the ambiguity function is used to evaluate the signal,

which can be expanded to the auto-ambiguity function(AAF)

and the cross-ambiguity function (CAF) (Yang et al., 2024), The

peak side-lobe level of the auto-ambiguity function at frequency

shift fd¼ 0 is denoted by APSL, and the peak side-lobe level of the

auto-ambiguity function is denoted by AFPSL at non-zero Doppler

frequency shift, and CFPSL denotes the peak side-lobe level of the

cross-ambiguity function at non-zero Doppler frequency shift.

Therefore, the evaluation criterion for the signal performance is

as follows:
Frontiers in Marine Science 05
min
F

E1 = min
F

max (APSL, l1 · AFPSL, l2 · CFPSL))

Where l1, l2 is the weight and the value range is [0,1].

The algorithm flowchart of the backpropagation module is

shown in Figure 3, which consists of three parts: convolution

computation, loss function calculation and backpropagation

update. Firstly, the loss function is constructed with the

ambiguity function matrix Ŷ
0 0

obtained by convolution

computation. Subsequently, the Adam algorithm is used to
FIGURE 7

Comparison of loss values of different sequence lengths.
FIGURE 8

Relationships of layers number and sequence length under optimal
optimizing performance.
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minimize the loss function, and then the weights and offsets of the

network in the forward propagation module are updated. Finally, a

phase vector with low AFPSL and low CFPSL is generated when

iteration stops.

Before the convolution computation, the convolution kernel

and convolution matrix are constructed, the convolution kernel is

formed by concatenating the column phase vectors of L signals
Frontiers in Marine Science 06
transversely and the convolution matrix H
⌢00

is the expansion of

the convolution kernel under different Doppler frequency shifts,

taking signal 1 as an example. The expansion method is shown

in Figure 4. The convolution kernel is padded with zero and

expanded to different Doppler frequencies. Then, the extended

matrix H
⌢
′ of a single signal is obtained, and the frequency shift

range is ½−5fd , 5fd�.
FIGURE 9

Auto-ambiguity function plots of different algorithms.
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When there are four signals, the convolution matrix H
⌢00

is

formed by merging four extended matrices, and the dimension of

each extended matrix H
⌢
′ is (3N − 2)� 11, therefore, the dimension

of the convolution matrix is (3N − 2)� 44.
Frontiers in Marine Science 07
As shown in Figure 5. Each signal is convolved with other

signals at different Doppler shifts, including zero Doppler, to

generate the matrix Y0, which represents the convolution results

between each signal and the convolution matrixH
⌢00

. Moreover, the
FIGURE 10

Ambiguty function diagram graph sections of different algorithms.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1560958
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Liang et al. 10.3389/fmars.2025.1560958
ambiguity function matrix Ŷ
0 0
with a size of (2N − 1)� 176 is

obtained by concatenating all the matrix Y0 transversely. Due to

the convolution computation process, the 6th, 61st, 116th, and

171st columns of Ŷ
0 0
are the auto-ambiguity function matrix at

frequency shift fd = 0, and the APSL is obtained by calculating the

maximum value of the auto-ambiguity function matrix after

removing the Nth row, as the APSL is the maximum value after

removing the main-lobe. The auto-ambiguity function matrix and

the cross-ambiguity function matrix are formed by removing the

above four columns of the matrix Ŷ
0 0
, and AFPSL and CFPSL are

obtained by calculating their maximum values, respectively.

Subsequently, the Loss is calculated as follows:

Loss = max APSL, l1 · AFPSL, l2 · CFPSL)f g
Finally, the loss function is minimized with the Adam optimizer

and the network parameters are updated.
Frontiers in Marine Science 08
3 Optimization performance analysis

The CPU in the running environment is i9-8400, the GPU is

GTX3080, and the RAM is 32G. The algorithm is processed with

Python3.9.12 and Pytorch and runs on GPU.In this article, the

influence of different network layers and the ambiguity function of

the optimized signal are mainly analyzed.
3.1 Comparison under different numbers of
network layers

In this section, the influence of different network layer numbers

on the optimization is analyzed. The parameters are set as follows:

the weight is l1 = l2 = 1, the initial learning rate is g = 0:0005, the

number of iterations is E=30000, the number of signals is L=4, and
FIGURE 11

Comparison of APSL,AFPSL and CFPSL of different algorithms.
TABLE 1 Comparison of APSL, AFPSL and CFPSL of different algorithms.

Algorithms
Sequence
length N

63 127 255 511 1023 2047

M sequence

APSL -17.9 -19.8 -23.0 -26.5 -28.6 -31.9

AFPSL -14.1 -16.8 -20.2 -23.2 -25.3 -29.0

CFPSL -10.5 -12.5 -14.5 -17.7 -19.7 -22.6

GA

APSL -13.1 -16.2 -17.1 -18.5 -20.0 -21.0

AFPSL -10.2 -12.8 -16.5 -18.8 -20.2 -20.3

CFPSL -10.9 -13.4 -14.9 -18.6 -19.9 -19.8

CON

APSL -20.6 -22.7 -25.4 -28.3 -31.2 -33.0

AFPSL -9.3 -12.1 -15.9 -18.1 -20.1 -22.9

CFPSL -11.2 -13.0 -15.8 -18.4 -21.4 -24.4

AON

APSL -15.1 -18.1 -21.0 -23.9 -26.6 -29.1

AFPSL -15.1 -18.1 -21.0 -23.9 -26.6 -29.1

CFPSL -15.1 -18.1 -21.0 -23.9 -26.6 -29.1
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the length of signal sequence is N=63. The number of network

layers is [10,16,20,30,31,40,44,50,60], respectively, and the results

shown in Figure 6 are obtained. Subsequently, the above experiment

is repeated with the sequence length changed. Finally, the results

shown in Figure 7 are obtained.

As illustrated in Figure 6 and Figure 7, For signals of a given

sequence length, altering the number of network layers has little

influence on the optimization performance. However, there is a

layers number with optimal performance for each sequence length,

and as the sequence length varies, the number of network layers

with the best optimization performance also changes significantly,

as shown in Figure 8.
3.2 Ambiguity function analysis under the
same sequence length

The signal length is set to N=63 and the number of signals is

L=4, the number of iterations is E=100000, the initial learning rate is

g = 0:0005, and the weight is l1 = l2 = 1, the ambiguity function of

m-sequence, GA algorithm, CON algorithm, and AON algorithm

are compared and shown in Figure 9.
FIGURE 12

Auto-ambiguty function diagram graph cut for different algorithms in mixed signals.
FIGURE 13

Comparison of AFPSL of different algorithms in the case of mixed
signals.
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Figure 9 shows the auto-ambiguity and cross-ambiguity

function diagram of the four algorithms, respectively.

The ambiguity function graph sections of signals generated by

the four algorithms are analyzed to provide a clearer comparison of

the four algorithms, which means the range ambiguity of signals

are compared.

Figure 10 depicts the sections of the auto-ambiguity function

and the cross-ambiguity function for the four algorithms,

respectively. The APSL, AFPSL and CFPSL of the m-sequence are

-17.9dB, -14.1dB and -10.5dB, respectively. The APSL, AFPSL and

CFPSL for GA are -13.1dB, -10.2dB and -10.9dB, respectively. The

APSL, AFPSL and CFPSL for CON are -20.6dB, -9.3dB and

-11.2dB, respectively. Subsequently, It can be seen that the APSL,

AFPSL and CFPSL of the proposed algorithm are all -15.1dB.

Therefore, as the sequence length is set to N=63, the AFPSL of

AON is 1 dB lower than that of the m-sequence, 4.9dB lower than

that of GA and 5.8 dB lower than that of CON, additionally, the

CFPSL of AON is 4.6 dB lower than that of the m-sequence, 4.2dB

lower than that of GA and 3.9 dB lower than that of CON.
3.3 Ambiguity function analysis under
different sequence lengths

The ambiguity functions of the proposed algorithm, GA algorithm,

CON algorithm and M-sequence are compared under different

sequence lengths. Signal number are set to L=4 and the sequence

lengths are set to [63,127,255,511,1023,2047], the initial learning rate

and iteration number are g = 0:0005 and E=100,000, respectively, the

weights are l1 = l2 = 1. The comparison of APSL, AFPSL and CFPSL

of each algorithm is shown in Figure 11, and the specific values are

shown in Table 1 in dB.

As shown in Figure 11, the AFPSL and CFPSL of AON are

lower than those of M-sequence and CON under Doppler

frequency shift, while the APSL is higher than that of M-sequence

and CON and lower than that of GA algorithm. According to
Frontiers in Marine Science 10
Table 1, under different sequence lengths, The AFPSL of AON is

0.1dB to 1.3dB lower than that of M-sequence, 4.5 dB to 8.8 dB

lower than that of GA algorithm and 5.1 dB to 6.5 dB lower than

that of CON. Additionally, the CFPSL of AON is 4.6 dB to 6.9 dB

lower than that of M-sequence, 4.2dB to 9.3dB lower than that of

GA algorithm and 3.9 dB to 5.5dB lower than that of CON.

Therefore, the performance of existing methods will be

significantly reduced under Doppler frequency shift, which will

probably lead to weak targets being masked by the side-lobes.

Nevertheless, AON is capable of remaining a constant low side-

lobe level under Doppler frequency shift.
3.4 Ambiguity function analysis under
different sequence lengths

In this section, the optimization performance of AON, CON,

GA algorithm and M-sequence is compared while L signals are

transmitted simultaneously. Set the number of signals to L=4,

the length of sequence to N=63, the learning rate of Adam to

g =0.0005, the number of iterations to E=100000, and the weight

to l1 = l2 = 1.

It can be seen from Figure 12 that the AFPSL of AON is -5.6dB,

the AFPSL of CON is -4.1dB, the AFPSL of GA is -5.4dB and the

AFPSL of M sequence is -5.1dB. The AFPSL of AON is 0.5dB lower

than that of M-sequence, 0.2dB lower than that of GA algorithm

and 1.5dB lower than that of CON. This is because the cross-

correlation performance will play a more critical role while L signals

are transmitted at the same time.

When the sequence lengths are N=[63, 127, 255, 511,

1023,2047], the AFPSL of the above four algorithms is shown in

Figure 13, and the specific values are shown in Table 2 in dB.

According to Figure 13, the AFPSL of AON is 0.4-3.6dB lower

than that of M-sequence under different sequence lengths, 0.2-

3.1dB lower than that of GA algorithm and 1.4-4.4dB lower than
TABLE 2 Comparison of AFPSL of different algorithms in the case of mixed signals.

Comparison
object

Sequence length N 63 127 255 511 1023 2047

AFPSL

M-sequence -5.1 -9.1 -10.1 -11.5 -15.8 -18.0

GA -5.4 -8.1 -10.4 -12.0 -14.5 -17.3

CON -4.1 -7.9 -9.1 -10.7 -15.4 -17.6

AON -5.6 -9.5 -10.8 -15.1 -16.8 -19.5
TABLE 3 Time(s) complexity analysis.

Sequence length N 63 127 255 511 1023

GA 783.5286 891.7917 1164.0774 1692.1679 2629.3918

CON 507.6142 404.7745 430.4368 523.0525 569.0296

AON 401.0573 410.1158 588.8023 1027.3534 2511.2986
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that of CON, which means that AON also has good performance

under mixed signals.
3.5 Time complexity analysis

In this section, the time complexity of different algorithms is

compared, the sequence lengths are set to [63,127,255,511,1023],

the iterations of CON and AON are all 30000, the iteration of GA is

6000, the results are shown in Table 3.

From Table 3, while the runtime of AON is lower than that of

GA, it can produce signals with lower side-lobe level under Doppler

frequency shift. Besides, the optimization time of AON and CON

are similar when the sequence length is low, but as the sequence

length increases, the optimization time of AON is relatively long.

This is because the network dimension of AON changes with the

input size to better adapt to different signal lengths while the

network dimension of CON remains unchanged.
4 Summary

An orthogonal transmitted signal design method named AON

is proposed in this paper, and the neuron numbers in different

layers of AON are adjusted according to different sequence lengths.

The signal design under Doppler frequency shift is mainly

considered in this paper. This method can better extract the

signal features based on auto-encoder, which leads to superior

performance, and the weights and offsets of the forward

propagation module are updated in the process by using the

Adam optimizer, the learning rate of the Adam optimizer is

dynamically adjusted through the CosineAnnealingLR method.

Numerical results show that the proposed method can reduce

both the AFPSL and CFPSL of signals, which means that signals

generated by AON have better performance under Doppler

frequency shift compared to existing methods.
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