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Recent advances in satellite remote sensing technology for detecting harmful

algal blooms (HABs) make it possible to combine numerical modeling

approaches and satellite imagery to track and predict HABs in estuarine and

coastal waters. We employed a particle-tracking model using a high-resolution

hydrodynamic model capable of simulating algal mixotrophic growth,

respiration, and vertical diurnal migration to predict the spatial distribution and

temporal evolution of a Margalefidinium polykrikoides (M. polykrikoides) bloom

in the lower York River, VA USA, where HABs have occurred nearly annually over

the past decade. Particle release location and density were determined by

chlorophyll-a concentrations obtained from Ocean Land Colour Imager (OLCI)

satellite imagery collected during August-September 2022. Numerous high-

quality satellite images (n=34) available in the two-month bloom period allow for

a comprehensive examination of the model framework. Here, we demonstrate

the potential of the coupled satellite-model framework to predict short-term

bloommovement by comparing model predictions and satellite observations 1-5

days after the particle release date. We also carried out sensitivity tests and found

that setting a maximum swimming depth and including sub-surface aggregation

depth for phytoplankton vertical migration substantially improved and advanced

the model performance. True positive prediction (TPP; an index used to quantify

model performance) for bloom 3 days after particle release increases from 50% in

base setup to ~70% when including sub-surface aggregation at 2 m and

maximum swimming depth of 5 m. Overall, model evaluation results show that

a combined numerical modeling and satellite remote sensing approach is an

effective way to track HABs in the York River estuary and provides a framework to

forecast HAB location and intensity for coastal managers in the lower

Chesapeake Bay and other coastal and estuarine waters.
KEYWORDS
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Introduction

Harmful algal blooms (HABs) pose significant hazards in lakes

and coastal waters worldwide due to their harmful effects on the

ecosystem, including to aquatic animals, plants, the microbial

community and in some cases human health (Stumpf et al., 2009;

Gobler, 2020; Anderson et al., 2021). Specific negative impacts

include human illness that can result from intake of HAB toxins in

seafood, drinking contaminated water or inhalation of harmful

aerosols, fish and other aquatic animal death, and environmental

degradation due to high phytoplankton biomass (Erdner et al.,

2008; Kalson et al., 2021). In addition, the occurrence, distribution,

and frequency of HABs are expected to worsen under a warming

climate and excessive nutrient input in the future (Gobler, 2020).

Thus, there is an increasing need to predict the timing and spatial

distribution of HABs in coastal and lake waters to provide an early

warning of the impacts of HABs and aid in water quality

management and preparation.

Predicting when and where HABs will occur through numerical

modeling approaches is challenging, due to the variety of

environmental factors which often work in tandem to trigger the

initiation of a HAB and to promote continued HAB growth and

expansion (Hoffman et al., 2021). These environmental

factors include temperature, salinity, solar radiation, nutrient

concentrations, and hydrodynamic transport processes (Kim et

al., 2004; Gobler et al., 2012; Qin and Shen, 2019), all of which

have significant inter- and intra-annual variations, making it

difficult to identify the precise combination of key environmental

factors that lead to HAB initiation and growth. Uncertainties in

monitoring data, largely due to the limited temporal and spatial

extent of sampling, and parameterization of the biogeochemical

processes leading to or sustaining HABs add additional challenges

to accurately model and predict HABs (Ralston and Moore, 2020).

Instead of directly modeling the entire life cycle of a HAB (i.e.,

initiation, growth, and decay), which is important to provide

insights into bloom dynamics, an alternative and potentially more

sustainable approach for real-time forecasting is to predict the

spatial distribution and intensity of HABs by coupling high-

spatial resolution satellite remote sensing data and advanced

coupled bio-physical numerical models to simulate the HAB

transports and intensity. Such a strategy has been applied for

HAB forecasts in freshwater systems, such as Lake Erie (e.g.,

Wynne et al., 2013; Rowe et al., 2016; Zhou et al., 2023). These

predictive models, however, do not include the biogeochemical

processes related to algal growth and decay as a function of

surrounding nutrient, salinity, temperature, and light conditions.

In coastal waters, studies have incorporated biological behavior and

life stages into a particle tracking model of oyster larvae (Narváez

et al., 2012). Xue et al. (2018) used a property-carrying particle

model and showed consistent results between tracer-based and

particle-based simulations, highlighting the advantage of the

particle model in computational efficiency. By including biological

components in a particle tracking model, however, recent studies by

Xiong et al. (2022, 2023) demonstrated the potential of using a

coupled satellite imagery-particle tracking model framework with
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incorporated phytoplankton growth and decay functions in

capturing the spatial evolution of HABs in the James River and

lower Chesapeake Bay. In this type of model framework, remote

sensing data depicting the initial HAB is used to specify the location

of particles (representing algae) that are released and simulated with

a particle tracking model coupled with a hydrodynamic model. This

model framework bypasses the large uncertainty in predicting

bloom initiation.

Following Xiong et al. (2023), this current study applies and

modifies this coupled satellite remote sensing-model framework

and tests the approach in another HAB-prone area, the lower York

River, VA USA, to assess the applicability of this coupled approach

to another tributary of the Chesapeake Bay with different

hydrodynamic and bloom conditions. Blooms of M. polykrikoides

have occurred nearly annually in the lower York River since the

1960’s (Marshall, 1996; Marshall and Egerton, 2009; Mulholland

et al., 2009, 2018). While few studies have been published on M.

polykrikoides blooms in the York River, several studies have been

conducted in the James River (another tributary in lower

Chesapeake Bay) and Lafayette River (a sub-tributary of James

River; Mulholland et al., 2009; Hofmann et al., 2021), which were

used to form the basis of modeling efforts in this study. For example,

Mulholland et al. (2009) observed that bloom onset in the summer

of 2007 coincided with a period of intense rainfall during the

drought summer, suggesting that the timing and magnitude of

precipitation and freshwater river flow may help to trigger M.

polykrikoides blooms. In addition, Hofmann et al. (2021) suggested

the blooms in the Lafayette River are maintained by substantial

heterotrophic growth, while the timing of blooms is controlled by

water temperature, with 23-28°C being the optimal temperature for

the growth of M. polykrikoides. In one of the few published York

River studies with nutrient analyses, Fortin et al. (2022) observed

increased dissolved organic carbon and a shift in the estuarine

microbiome composition including a decrease in prokaryotic

primary producers, notably cyanobacteria, during an M.

polykrikoides bloom, which likely altered nutrient cycling.

In this current study, we used a particle-tracking model coupled

with an existing high-resolution hydrodynamic model for the

Chesapeake Bay that could simulate algal growth and respiration,

to predict the spatial distribution and temporal evolution of an M.

polykrikoides bloom in the lower York River (Figure 1), following a

similar approach to that used by Xiong et al. (2023) in the James

River, VA USA. Particle release location and density were

determined by chlorophyll-a concentrations obtained from near-

daily satellite imagery collected during the study period (August-

September, 2022). The existing hydrodynamic model was adapted

to the York River by refining the model grid and adapting M.

polykrikoides growth and decay functions to better represent HABs

in the lower York River. In addition, we used the model framework

to conduct sensitivity tests to further parameterize the swimming

behavior of M. polykrikoides in this estuarine environment,

including optimizing maximum swimming depth and subsurface

aggregation depth. Swimming behavior, particularly diel vertical

migration, is a widely recognized behavior forM. polykrikoides, and

was estimated based on field and lab experiments (Sohn et al., 2011;
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Lim et al., 2022). Here, we discuss the validity and use of this

combined model framework to predict the temporal and spatial

distribution of M. polyrikoides in the York River 1-5 days in the

future by comparing model results to satellite imagery for the 2022

bloom season. We also discuss the limitations of the current model

framework as well as future directions for applying this approach to

coastal water quality and resource management. We show that this

coupled framework could prove to be a valuable tool for forecasting

HABs, includingM. polykrikoides in the York River and throughout

the lower Chesapeake Bay, thus providing advanced warning of the

potential negative impacts of HABs to shellfish hatcheries and

aquaculture facilities for use by shellfish growers, public health

officials, and resource managers.
Methods

Satellite imagery for particle initiation

Near-daily satellite imagery was used to identify the location

and intensity of blooms for model initiation during August-

September of 2022. Satellite imagery at 300m resolution, was

derived from the Ocean Land Colour Instrument (OLCI) aboard

the Copernicus Sentinel-3 satellite obtained from the European

Organization for the Exploitation of Meteorological Satellites

(EUMETSAT) and processed by NOAA’s National Centers for

Coastal Ocean Science (Wolny et al., 2020). The Sentinel-3

satellite reaches the Chesapeake Bay region around 15:00 (GMT)
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each day, i.e., 10:00 local time. The Red Band Difference (RBD),

which is a proxy of relative Chlorophyll-a (Chl-a) fluorescence and

commonly used to identify areas with high bloom biomass, was

used to identify the locations of bloom pixels to initiate the model

(Amin et al., 2009; Freitas and Dierrsen, 2019; Wolny et al., 2020;

Jordan et al., 2021). From these pixels, a two-band coastal

chlorophyll algorithm, using the red and near-infrared bands also

referred as the red edge (RE10) was used to establish the

concentration of the bloom and determine the number of

particles (proportional to the Chl-a concentration) that were

initiated at each corresponding pixel location (Gilerson et al.,

2010; Wynne et al., 2021).

Images with extensive cloud cover were discarded. Of the

available 61 images, 34 had at least 500 pixels (equivalent to 63%

of satellite pixels in open water) with valid data in the lower York

River (region marked in Figure 1). The 34 images were used to

initialize the bloom in the particle tracking model over the entire

bloom progression and to examine model performance over the

period of 1-5 days after bloom initiation.
In situ water quality data

Monthly water quality data including salinity, water

temperature, dissolved inorganic nitrogen (DIN), and total

suspended solids (TSS) were obtained from Chesapeake Bay

Program (CBP; http://data.chesapeakebay.net/WaterQuality).

Salinity data were used to validate the hydrodynamic model,
FIGURE 1

A regional map of Chesapeake Bay and the lower York River estuary. (a) A high-resolution false color composite generated from the Multispectral
Instrument (MSI) onboard Sentinel-2 satellite image acquired on 23 August 2022. Red color indicates high M. polykrikoides biomass (Sentinel 2
image extracted from https://apps.sentinel-hub.com/eo-browser/). (b) A zoomed-in view of the false color composite satellite image in the lower York
River on 23 August 2022. Also marked in (b) are region of lower York River (enclosed by two black dash lines) and monitoring stations (white dots): LE4.2
(maintained by Chesapeake Bay Program), NOAA-8637689, and VECOS station YRK004.50.
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while the DIN and TSS data were interpolated bay-wide and used

for the biological components of the particle tracking model. For

each grid node in the hydrodynamic model, data at three nearest

monitoring stations were used and interpolated based on the

inverse distance weighted interpolation. In addition, continuous

hourly monitoring data of salinity, temperature, and fluorescence-

based Chl-a (Figure 2b) in the lower York River was obtained from

the Virginia Estuarine and Coastal Observing System (VECOS;

http://vecos.vims.edu) and used to compare with satellite-based

Chl-a data and the hydrodynamic model during the 2022

bloom season.

In situ cell concentrations for satellite image verification (M.

polykrikoides) were obtained from the Marine and Aquaculture

Genetics lab at the Virginia Institute of Marine Science (VIMS)

annually during the bloom season (August-October) from 2007-

2022. Cell concentrations were estimated using both microscopic

identification and quantitative PCR as previously described
Frontiers in Marine Science 04
(Vandersea et al., 2017; Wolny et al., 2020). The water samples

were collected at locations where the bloom was observed (Figure 2a).

For the York River, these bloom samples were collected mostly in the

lower York River region, similar to the area shown in Figure 1b.
Hydrodynamic model

We used a hydrodynamic model based on SCHISM (Semi-

implicit Cross-scale Hydroscience Integrated System Model) to

drive the particle tracking model. SCHISM (Zhang et al., 2016) is

an open-source community-supported modeling system, based on

mixed triangular-quadrangular unstructured horizontal grids and a

flexible vertical coordinate system (Localized Sigma coordinates

with Shaved Cell, or LSC2; Zhang et al., 2015), which was designed

for the effective simulation of 3D baroclinic circulation across

creek-to-ocean scales.
FIGURE 2

(a) Measured M. polykrikoides concentrations in the lower York River, with sampling locations shown in red circles in the map subset. (b) Measured
Chl-a from a fluorometric sensor at VECOS station YRK005.40 (location marked in the subset). (c) Time series of Chl-a concentration averaged over
a region of interest (marked with thick black polygon in the subset) from satellite imagery (OLCI, RE10). X and Y axes in the subsets represent
longitude (deg) and latitude (deg), respectively.
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The hydrodynamic model was initially configured and validated

for the mainstem of Chesapeake Bay (see the model domain in

Figure 3a) and yielded good performance in reproducing the water

level, temperature, and salinity in the bay’s mainstem (Ye et al.,

2018). To simulate the hydrodynamics in the York River estuary, we

refined the model grid to better represent the bathymetric features

of the river (see refined mesh in Figure 3b). The deep channel (up to

15m deep) was better resolved by aligning the grid nodes along the

10m isobath. With the upgraded grid, model performance

regarding salinity intrusion into the York River was greatly

improved especially in the upper portion of the river (see

Results Section).

For this study, a one-year model run (January 01, 2022 to

December 31, 2022) was conducted and the hydrodynamic fields

including salinity, temperature, surface elevation, eddy diffusivity,

and velocities were saved at hourly timesteps. We chose 2022

because there were numerous high-quality satellite images during

the late summer bloom season, which lasted for 2 months (August-

September). The multiple available satellite images allow for a more

comprehensive evaluation of the particle-tracking model

performance. Even though the focus is on the summer

hydrodynamic conditions, we set the model to start on 01

January 2022 to account for model spin-up. Model results during

the spin-up period are typically erroneous and not reliable. The

error is primarily introduced by the uncertainty of the initial

condition for the 3D salinity and temperature fields. The spin-up

period is related to the residence time of the Chesapeake Bay, which

is about 180 days (Du and Shen, 2016).
Frontiers in Marine Science 05
Particle tracking model

A Lagrangian particle tracking and biological (LPT-Bio)

model originally developed for M. polykrikoides by Xiong et al.

(2023) for the James River was modified for the York River. We

modified the model to adjust for phytoplankton (M. polykrikoides)

subsurface aggregation (now as an option in the model setting).

We also tested the behavior of the coupled model approach and its

potential use in a HAB early warning and forecasting framework

by using satellite imagery collected throughout the bloom season

(n=34 days) to release particles near-daily and assess how the

model performed.

In the LPT-Bio model, output from the hydrodynamic model is

saved and passed to a particle tracking model, making the HAB

simulation highly efficient. In the particle tracking model, particle

movement is governed by horizontal (Equations 1, 2) and vertical

advection (Equation 3), swimming behavior, and diffusion through

a random walk following (Chiu et al., 2018):

Xn+1 = Xn + U +
∂Kx

∂ x

� �
Dt + R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6Kx D t

p
(1)

Yn+1 = Yn + V +
∂Ky

∂ y

� �
D t + R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6Ky D t

q
(2)

Zn+1 = Zn + W +
∂Kz

∂ z
+Wswim

� �
D t + R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6Kz D t

p
(3)
FIGURE 3

(a) Hydrodynamic model domain and bathymetry. (b) Zoomed-in view of the bathymetry and grid for the study area, including the York River and
adjacent Mobjack Bay.
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where U, V and W are particle velocities in Cartesian

coordinates x, y, and z; n is the time step index; R is a real

random number with a mean of zero and a uniform distribution

between -1 and 1; and Kx, and Ky are the eddy diffusivity (from the

hydrodynamic model outputs), used to parameterize the random

walk in the horizontal directions. A constant of 3×10-4 m2 s-1 was

used for Kz to parameterize the vertical random walk; this value was

used by default in the original SCHISM particle tracking model.

Wswim was the daytime (06:00-19:00) ascent and nighttime (19:00-

06:00) descent velocities for M. polykrikoides. The timing was

chosen according to the sun-rise, -set during the summer in the

Chesapeake Bay region. For simplicity, we used the same value for

both ascent and descent velocities. Algal bloom dynamics (i.e.,

mixotrophic growth, respiration, temperature-modulated mortality,

and density-related aggregation settling; Equation 4) were

included in the model to simulate variations in cell density, which

are dynamically driven by environmental parameters (i.e.,

temperature, salinity, irradiance, and nutrients) and calibrated

with observed M. polykrikoides distributions in the York River.

Briefly, the cell density (C) recorded by particle i is controlled by:

dCt
i

dt
= (G − R −MT )C

t
i −Magg (4)

where R, MT and Magg are the respiration induced loss term,

temperature-modulated mortality (Hofmann et al., 2021), and

density-related aggregation settling loss term (Lima and Doney,

2004), respectively. G is the mixotrophic growth rate (Equations 5-

1, 5-2), controlled by the optimal phototrophic growth (GP,

Equation 6), maximum heterotrophic growth (GHo, Equation 7),

as well as salinity and temperature limitation functions (Qin et al.,

2021).

G = min½GH
o + GP

o ,G
H
optf (T)f (S)�  ,  Daytime       (5� 1)

G = GH
o ,    Nighttime (5� 2)

GP
o = GP

optf (T)f (S)min½f (I), f (DIN)� (6)

GH
o = GH

optf (T)f (S)f (OM12) (7)

where f(T), f(S), f(I), f(DIN) and f(OM) are temperature-,

salinity- irradiance-, DIN-, and organic matter-limited functions,

respectively. A full set of the governing and limitations functions, as

well as the value of related parameters, can be found in

Supplementary Tables S1, S2.
Particle release, biomass calculation, and
model validation

For each of the 34 satellite-images available during the study

period, we conducted a particle tracking simulation, tracking the

time-varying biomass and location of each particle for 15 days

following release. Particles were only released in the York River and

at locations where satellite pixels had an RBD value >2×10-4
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(dimensionless), indicating high bloom concentrations. Each

particle carries 1×107 cells initially, following the same strategy in

Xiong et al. (2023). Therefore, the number of particles (npar)

released at each satellite pixel was given as npar = c � 10−7, where

c is the M. polykrikoides cell count calculated from the RE10

estimated Chl-a concentration using a conversion factor of

1.69×10-8 mg Chl-a cell-1 (Hofmann et al., 2021). Depending on

the Chl-a value as well as the cloud cover, the number of particles

varied between 112 and 184,388, with a median value of ~90,000

over the 34 releases.

To compare the modeled particle distribution with satellite

measurements, we back-calculated the biomass in a meshed grid

(300m × 300m, same spatial resolution as the satellite image) using

the same cell to Chl-a conversion from Hofmann et al. (2021). The

calculated biomass sums the number of particles within a given grid

and the biomass represented by each of the particles.

Due to the availability of near-daily satellite images, we were

able to examine the performance of each particle tracking

simulation 1-5 days into the future. For instance, for simulation

with particles released on 09 August 2022, its performance on days

1, 4, and 5 could be assessed by comparing the model predictions

and the satellite image on 10 August, 13 August, and 14 August,

respectively (Figure 4). To quantitatively assess the model

performance, we calculated two indices: true positive prediction

(TPP) and true negative prediction (TNP). TPP was calculated as

the ratio of the number of pixels with Chl-a > 10 ug L-1 (~6·105 cells

L-1) in both the satellite image and model to the total number of

pixels with Chl-a > 10 ug L-1 in satellite image. Similarly, TNP was

calculated as the ratio of pixels with Chl-a< 10 ug L-1 in both the

satellite image and model to the total number of pixels with Chl-

a<10 ug L-1 in the satellite image. The criteria of 10 ug L-1 was

selected to highlight the intense bloom area and also because of the

relatively high background Chl-a concentration (e.g., during the

non-bloom period) based on the satellite images in this tributary. A

large TPP value (e.g., >0.5) indicates good model performance in

capturing the high Chl-a distribution. Because the majority of the

lower York River in 2022 had no bloom condition, TNP is typically

large (>0.9). For model performance assessment, we also calculated

the RMSE (Equation 8).

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oN

i
(xi − yi)

2

N

s
(8)

where xi is the modeled result at a given sampling location (i.e.,

the pixel location in satellite image) and yi is the observed value

from remote sensing data.
Results

Satellite observations of the 2022 M.
polykrikoides bloom

In 2022, the M. polykrikoides bloom lasted for ~ 2 months

(August-September, 2022), while in previous years, the bloom
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typically lasted for about one month (mostly in August). The

evolution of the two-month M. polykrikoides bloom was well

captured by satellite imagery (Figure 4). Elevated surface Chl-a

concentrations first appeared in the York River on 03 August. The

bloom’s intensity increased for about two weeks until August 16

when the surface bloom was no longer visible by satellite. The

reduced surface bloom concentration was likely due to windy

induced mixing which drove the bloom subsurface making it

unobservable by satellite. After 17 August, the bloom continued

for another two weeks, with extremely high surface Chl-a

concentrations (>50 ug L-1) throughout the lower York River.

The surface bloom moved back and forth within the lower York
Frontiers in Marine Science 07
River during this period under the influence of tidal and wind-

driven currents. Because of the dominant semi-diurnal tide (M2,

tidal period of 12.42 hr), the tidal phase differs between days when

the satellite image was captured.

The bloom disappeared around 10 September when the satellite

imagery no longer observed a surface bloom (Figure 4). Between 11

and 15 September, there were no high-quality satellite images. The

bloom reappeared after 16 September. The underlying reason for

the bloom’s temporal disappearance is yet to be understood, but it

was likely related to temperature and salinity variations. Specifically,

around 10 September, salinity was steady (~22) while temperature

dropped slightly but was still above 25°C (Figures 5a, b). However,
FIGURE 4

Available satellite imagery (OLCI, RE10 algorithm) for Chl-a concentrations in the lower York River from August-September 2022. Land is white. No
satellite data was available for the black regions (e.g., obscured by clouds).
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vertical mixing induced by strong winds likely decreased surface

concentrations of algal biomass, similar to what happended in mid-

August (Figure 5c). There was also a precipitation event on 11

September, followed by a slight increase in freshwater inflow

(Figure 5d). The increased freshwater input may have also flushed

out many of the phytoplankton cells (e.g., M. polykrikoides) in the

lower York River, leading to lower Chl-a concentrations.
Frontiers in Marine Science 08
When averaged over the lower York River, the mean Chl-a

concentration based on the satellite imagery shows consistent

results with the hourly fluorescence-based Chl-a measured at a

VECOS monitoring station (Figures 2b, c). The VECOS station is

located on the northern side of the river and, due to the patchiness

of bloom population, did not reflect the intensity of the entire lower

York River bloom. Due to the narrowing of the river channel near
FIGURE 5

Physical conditions in the summer of 2022, including: (a) salinity and (b) temperature at VECOS station YRK005.40. (c) Wind speed measured at
NOAA gauging station 8637689, with red dots indicating easterly wind, blue dots indicating westerly wind, and white dots indicating wind from the
north or south. (d) River flow from the Mattaponi and Pamunkey Rivers. (e) Daily precipitation and (f) total photosynthetically active radiation (PAR)
measured at station CBVTCMET maintained by the Chesapeake Bay-Virginia National Estuarine Research Reserve (data from https://
cdmo.baruch.sc.edu/dges/).
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the VECOS station (see Figure 1b), the highest concentrations of the

bloom tended to aggregate on the southern side of the river

(Figure 4) during the bloom period. When the bloom was most

intense in the middle or southern side of the York River, the high

biomass was likely diffused or advected to the north, leading to a

higher concentration of Chl-a at the VECOS station. In summary,

both datasets confirmed the peak bloom period in late August and

the bloom reappearance in mid-September after ~ 10 days with low

Chl-a in early September.

Over the two-month period, environmental conditions were

also examined in the York River to reveal possible physical

mechanisms that led to the long-lasting bloom. Overall, the

physical conditions during August and September (low river flow,

high temperature, and prevalent easterly winds; Figure 5), likely

favored HAB growth in the lower York River. Salinity and water

temperature were relatively stable, with salinity ranging between 21-

23 and temperature maintaining relatively high values above 25 °C

for most of the time period (Figures 5a, b), conditions that were

especially favorable for M. polykrikoides. The temperature dropped

dramatically to less than 25°C after September 20th. The

temperature drop, along with strong westerly winds that favor

seaward movement of algae in lower York (Figures 5b, c), likely

explains the end of the bloom in late September. In addition, during

the bloom period, the river flow rate was<5 m3/s on average (~10%

of the mean river flow in 2022; Figure 5d). The low river flow led to

a steady but gradual increase in salinity during the study period.

The low freshwater input would also lead to longer retention time

for blooms in the lower York and less flushing of the algae out of the

estuary into the Chesapeake Bay proper. The retention of algae

could be also enhanced by the prevalent easterly wind (blowing

from the east toward the upstream). The upstream wind tends to

weaken the estuarine circulation (Chen and Sanford, 2009), leading

to smaller down-estuary surface current.
Hydrodynamic model performance

The hydrodynamic model accurately reproduced the observed

salinity, temperature, and water level in the lower York River for

summer 2022 (Figure 6). The goodmatch between the hydrodynamic

model results and water level and salinity observations suggests the

model is reliable in representing York River hydrodynamic transport

and mixing processes. There are, however, notable discrepancies in

modeled temperature in the first four months (i.e., during the model

spin-up period). The error is introduced by inaccurate initialization

of the temperature and salinity fields from themonthly field data. The

magnitude of the error diminishes over time during model spin-up.

We also note discrepancies in measured and modeled salinity in late

September. These discrepancies could be induced by a variety of

factors including uncertainty in freshwater input, atmospheric

forcings (e.g., wind), and errors originating from the hydrodynamic

model in the main stem of Chesapeake Bay. The root mean square

errors (RMSEs) between model and observation are 0.76 (salinity),

1.52°C (temperature), and 6.83cm (water level) over the entire year.

For estuarine modeling, RMSE below 2 (salinity), 2°C (temperature),
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and 10 cm (water level) typically indicates the model is reliable. For

instance, the SCHISM model for the mainstem of Chesapeake Bay

(Ye et al., 2018) has RMSE of 1.5 for surface salinity, 1.6°C for surface

temperature, and 11 cm for water level. For the summer of 2022, the

study period of interest, the RMSE is even smaller and therefore the

hydrodynamic model was deemed reliable for this study (Figure 6).

The performance of the hydrodynamic model is good primarily

due to the reliability of the model in the Chesapeake Bay mainstem

(Supplementary Figure S1) as well as the refinement of the model

grid for the York River. Compared to Ye et al. (2018), the saltwater

intrusion in the York River was better resolved (supplemental

Supplementary Figure S2). Grid refinement in the York River,

especially for the deeper part of the river channel, enhances the

saltwater intrusion.
Particle-tracking model performance

With multiple high-quality satellite images, we were able to

assess the performance of the particle tracking model. Taking the

particle release on 27 August 2022 (near the bloom peak) as an

example, the model appropriately captures the spatial distributions

of theM. polykrikoides bloom. One particularly notable comparison

was on 31 August 2022 (4 days after particle release), when the

model nearly perfectly captures the bloom distribution, with a high

concentration of Chl-a in the middle deep channel downstream of

the York River bridge and on the northern side of the estuary

upstream of the bridge. The match between the model and observed

satellite imagery is also notable from the high TPP and TNP values.

On 31 August 2022, TPP was 0.84 while TNP was 0.90. The model

also accurately captured the overall spatial pattern even 9 days (i.e.,

on 05 September 2022) after particle release (Figure 7). For instance,

both the model and satellite image showed the bloom concentrated

along the south side of the York River, while the bloom location

appears to move with the incoming and outgoing tide. TPP values

are consistently high throughout the 10 days following particle

release, with a value >0.72, indicating the majority of the bloom

locations with Chl-a >10 ug L-1 were captured by the model.

The high model performance is consistent for almost all release

experiments. Due to cloud cover, not every release experiment has

corresponding satellite imagery to compare and validate the model

for a specific number of days after particle release. Taking a 3-day

prediction as an example, there were 20 model runs which had

corresponding satellite imagery that could be used for model-

observation comparisons (Figure 8). Overall, the model generally

captured HAB spatial distribution well, with median TPP and TNP

values of 0.50 and 0.96 for the 3-day prediction, respectively, and a

median RMSE of 23 ug L-1. Note that the large RMSE is partially

due to the large magnitude of chlorophyll concentration during the

bloom period. Comparisons for days 1, 2, 4, and 5 can be found in

the supplemental materials (Supplementary Figures S3-S6).

However, the model skill typically diminishes for longer

prediction time periods (>5 days). The decreasing model

performance could be due to multiple factors including error in

the modeled hydrodynamic field, limited field nutrient data for
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model calibration, uncertainty in biogeochemical processes, and

inherent uncertainty in the Lagrangian model (e.g., diffusion). We

also found that the bloom distribution pattern was altered when

considering different swimming behaviors. In addition, sensitivity

tests conducted during this study (Figure 9; more details in the

Discussion Section), demonstrated that including subsurface

aggregation improved model performance.
Discussion

Overall, results show a good match between model predictions

and available satellite observations suggesting the success of the

coupled satellite imagery-particle tracking model framework. To

further advance model results, we also conducted a series of

sensitivity tests to better parameterize algal biological behaviors,

especially vertical swimming. In the following sections, we will

discuss the sensitivity of model performance to different

parameterizations of M. polykrikoides swimming behavior

including maximum swimming depth and subsurface aggregation

depth. Finally, we discuss how this coupled model framework could
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be applied to provide short-term (1-3 day) forecasts of M.

polykrikoides bloom intensity and location within the lower York

River Estuary and the wider lower-Chesapeake Bay to provide

advanced warning of potential HAB impacts to coastal resource

managers, shellfish operators, and the general public.
Model sensitivity to M. polykrikoides
swimming parameterization

While the diel vertical migration is well known as one key

behavior of M. polykrikoides (Park et al., 2001), there is still

uncertainty about their potential swimming speed. Field

measurements and lab experiments suggest a range of 10-70 m

d-1, depending on chain length, life-cycle stage (Sohn et al., 2011)

and external environmental conditions such as water temperature,

salinity and light conditions (Lim et al., 2022). Field measurement

in Lafayette River, a sub-tributary of the Chesapeake Bay, estimated

a mean swimming speed of 31 m d-1, with a maximum of 60 m d-1

(Clayton et al., 2024). Using a holography system, Sohn et al. (2011)

measured the swimming speed of M. polykrikoides and found a
FIGURE 6

Modeled and observed salinity, temperature, and water level in the lower York River. Note the different e x-axis limits in (c) compared to
(a, b). Vertical lines in (a, b) mark the period of August-September, the bloom period in 2022. RMSE (root mean square error) and R2 (coefficient of
determination) for the entire-year comparison between model and observation are shown at the top of each panel.
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mean swimming speed of 33 m d-1 for solitary cells and 73 m d-1 for

8-cell chains. Additionally, in their modeling study, Xiong et al.

(2023) demonstrated how different swimming speeds affected the

spatial distribution of M. polykrikoides in the James River.

In addition to swimming speed, estuarine hydrodynamics also

influence the vertical distribution of phytoplankton in the water

column and throughout the estuary. For example, due to estuarine

circulation and stratification, phytoplankton cells at the surface can be

advected out of the estuary while cells in the bottom waters are

transported into the estuary at depth. To take advantage of this

estuarine circulation and to maximize light and nutrient uptake, it is

generally assumed that phytoplankton, including M. polykrikoides,

aggregate near the surface during the day and swim down to the

deeper waters at night (Erga et al., 2015). Depending on the water

column depth, pycnocline depth, and phytoplankton swimming

speed, phytoplankton may take hours to swim to the surface from

different depths. For instance, with a swimming speed of 20 m d-1 and

a maximum depth of 15 m, it would take ~18 hours for phytoplankton
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in the bottom waters to reach the surface. If swimming starts near

dawn, the phytoplankton will reach the surface at dusk, thus missing

the favorable solar radiation conditions during the day, which is

unfavorable for phytoplankton growth. However, for shallower

regions (e.g., 5 m depth), a swimming speed of 20 m d-1 could be

adequate for phytoplankton to swim from the bottom waters to the

surface in a reasonable amount of time. To assess the impact of

swimming speed on the distribution of M. polykrikoides cells, we

tested different swimming speeds (10-40 m d-1), within the range of

reported lab and field studies, which had limited effect on the model

results. This may be due to the shallow depth of most of the estuary

(<5 m) (Figure 3b).

In addition to swimming speed, we also wanted to test a

maximum swimming depth to further parameterize M.

polykrikoides vertical migration. Therefore, we examined how

setting a maximum depth (e.g., 5 m and 15 m) affects

M. polykrikoides vertical and horizontal distribution. The difference

in model results is notable when using different maximum depths
FIGURE 7

Comparison between modeled and satellite-observed Chl-a in lower York River. The model results are from experiments with particles released on
27 August 2022. The first and third rows are from the model, while the second and fourth rows are satellite data. TPP, TNP, and RMSE values are
shown in the text. There were no high-quality satellite images for 03 September 2022 or 04 September 2022.
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(Figure 9). With a smaller maximum depth, M. polykrikoides cells

tend to aggregate at the surface and be subject to stronger flushing

forces, leading to a higher concentration downstream. Following this

sensitivity test, we used a maximum swimming depth of 5 m to

further constrain M. polykrikoides vertical migration.

In addition, subsurface aggregation of M. polykrikoides could

also affect the vertical and horizontal distribution of cells.

Phytoplankton may not always settle to the bottom but aggregate
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at a certain depth. Subsurface aggregation is also common in the

open ocean, where maximum phytoplankton concentrations are

often found at subsurface depths near the nutricline (Cullen, 2015;

Baldry et al., 2020; Masuda et al., 2021). The subsurface aggregation

is typically weak in nearshore environments where turbidity is often

higher (Lu et al., 2010). Depending on light conditions, the

subsurface aggregation (or subsurface chlorophyll maximum)

could also occur in coastal waters with low turbidity (Lim et al.,
FIGURE 8

Modeled and observed Chl-a 3 days after model initialization from 34 particle tracking model runs. The first, third, fifth, and seventh rows are day-3
results from multiple model runs; corresponding satellite images are shown in the second, fourth, sixth and eighth rows. TPP, TNP, and RMSE are
displayed in the model run panels.
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2022). For instance, Lim et al. (2022) found the highest density of

M. polykriokoides at a depth of 3-6 m during the day off the

southern coast of Korea, concluding that M. polykrikoides may

have used subsurface aggregation to avoid a heat wave which

coincided with the field survey (water temperatures exceeding

29°C). Measurements by VECOS in the lower York River also

suggest subsurface aggregation of phytoplankton at depths of 1-3 m

in early August of 2011 and 2012 (see Supplementary Figures S7,

S8). In coastal waters, subsurface phytoplankton aggregation could

be used as a strategy to avoid high solar radiation and elevated water

surface temperatures during the summer, however, the underlying

mechanisms are yet to be investigated. Considering the potential

subsurface aggregation, we also carried out model sensitivity tests

regarding the impact of a subsurface aggregation depth on M.

polykrikoides distribution. We choose 2 m as the subsurface

aggregation depth considering the observed aggregation in York

River (Supplementary Figures S7, S8). In this case, the biomass of

the top 2 m was calculated to compare with the satellite image, in

contrast to previous model tests where the top 1 m biomass

was calculated.

Our model sensitivity tests suggested that a subsurface

aggregation of 2 m and maximum depth of 5 m best captured the

spatial distribution of the M. polykrikoides bloom (Figures 9, 10).

For example, when releasing particles on 17 September 2022, the

model with both the maximum swimming depth constraint and

subsurface aggregation gave the best match between the model and

satellite images on 22 September 2022, 3 days after particle release.

The maximum swimming depth led to higher phytoplankton

biomass on the southern side of the river, while the base case (i.e.,

maximum depth = 15 m) showed much higher concentrations

along the northern side of the river. With the subsurface

aggregation depth constraint, the modeled M. polykrikoides

distribution was more aligned with the satellite image (Figure 9).

We carried out sensitivity tests for all the satellite available days and

the results of 170 model runs (5 settings for 34 release days) are

shown in Figure 10. The best model performance in terms of TPP

was from the model runs with both subsurface aggregation (2 m)

and a maximum depth of 5 m, with median TPP increased to 0.70
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from 0.50 in the base case (without subsurface aggregation and with

a maximum depth of 15m). Interestingly, the two best settings are

with a maximum depth of 5 m with and without subsurface

aggregation. For those with a maximum depth of 15 m (i.e., no

maximum depth limitation since the estuary is<15 m), the model

performance increases when increasing the subsurface aggregation

from 0 m to 2 m. These model sensitivity tests suggest M.

polykrikoides likely uses a subsurface aggregation depth, similar to

what was observed by Lim et al. (2022). Additional field studies are

needed to confirm this hypothesis.
Model limitations

Overall, the model reasonably produced the variability during

the summer 2022M. polykrikoides bloom in the York River Estuary.

However, uncertainties between the observations (satellite imagery)

and model exist. For example, a) the model tends to have a longer

high-Chl-a feature stretching into the upper York River, which was

not observed in the satellite imagery; b) high values of Chl-a are also

more concentrated along the middle deep channel in the model; and

c) the model tends to overestimate the Chl-a concentrations at the

mouth of the York River, especially 5+ days after particle release.

The bias is also notable from the TNP. When TNP is<0.8 (e.g., on

05 September 2022 in Figure 8), the model is generally thought to

over-predict the bloom region. Below, we discuss key limitations of

this modeling approach.

First, there is limited availability of nutrient data (i.e., 6 locations

measured monthly in York River). Therefore, there are substantial

uncertainties in the nutrient field used in the model prior to and during

the bloom. Linear interpolation (as used in this study) with the

monthly data tends to neglect realistic variations. Second, nutrient

consumption and speciation were not considered in the particle

tracking model. Further studies looking at the role of nutrient

speciation on the growth and limitation of M. polykrikoides could

help to further refine the model. In addition, lacking the dynamic

balance between nutrient availability and phytoplankton uptake tends

to overestimate the growth rate, especially during the bloom peak.
FIGURE 9

(a) Satellite image on 21 September 2022 and (b-d) results from the model sensitivity tests (3 days after particles released on 18 September 2022).
Sensitivity tests included subsurface aggregation (no subsurface aggregation or 2m subsurface aggregation) and a maximum depth set to 15 m or 5 m.
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Ideally, the biomass should be included as a parameter when

determining the nutrient limitation function. Finally, we did not

include species competition or succession. As the in situ

phytoplankton data shows, there can be a succession of M.

polykrikoides to Alexandrium monilatum (A. monilatum) in the late

summer to fall (Supplementary Figure S9). However, the mechanisms

responsible for the shift fromM. polykrikoides to A. monilatum are not

well understood and were not included in this modeling effort.

In addition to nutrient dynamics, small-scale hydrodynamics

may be not well resolved with the setting of the current

hydrodynamic model, as the model is currently using the

atmospheric product, North American Regional Reanalysis

(NARR), which has a resolution of ~28 km. The transport and

mixing processes within a small, river-dominated estuary, like the

York River, are especially sensitive to the wind field. Considering

the width of York River (2-5 km), using the NARR to drive the

model will inevitably over-smooth the hydrodynamic field and miss

small-scale variability in water currents within the estuary.

Finally, using satellite Chl-a imagery for bloom initiation and

validation may also introduce errors. For instance, overestimates in

bloom concentration may occur when other Chl-a containing

phytoplankton co-occur. Simultaneously, underestimates may

occur during wind mixing events, as the bloom is mixed to the
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subsurface (Li et al, 2020). Additional samples of M. polykrikoides

distribution and other co-occurring phytoplankton species

throughout the water column are necessary. In addition, a direct

correlation between satellite chlorophyll to cell concentrations for

the RE10 algorithm is still being investigated. Wynne et al. (2022)

demonstrated that the absolute error in field Chl-a to satellite Chl-a

was 36%. While absolute concentrations of M. polykrikoides

from satellites have inherent error, relative changes in bloom

concentrations identified by satellite remote sensing are reliable in

providing useful information to managers in the region.
Conclusion

In this study, we demonstrate the use of a coupled satellite imagery-

numerical modeling approach, as an effective way to simulate and

eventually forecast the distribution of HABs in the York River. The

model framework presented here shows great potential in predicting

bloommovement and location over 1-5 days in the future. In addition,

we highlight the important role ofM. polykrikoides swimming behavior

to appropriately model the biomass distribution vertically and

horizontally, particularly the subsurface aggregation, which has not

been considered in previous modeling efforts.
FIGURE 10

TPP and TNP values for different parameterization of M. polykrikoides swimming behavior. The error bar indicates one standard deviation. In the
base run (black color), there was no subsurface aggregation and the maximum depth was set to 15 m, which is often deeper than the depth of the
York River Estuary.
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Ultimately, this study serves as an example of a ‘data-assimilative’

HAB forecasting effort, which can be used to provide useful guidance

for: 1) supporting local tourism and recreation including recreational

fishing; 2) guiding state sampling of bloom location on a daily basis;

and 3) providing short-term forecasts to the aquaculture community

to aid management decisions such as the movement of shellfish, and

treatment of incoming water for shellfish hatcheries.

With the successful test in the York River, the modeling framework

can be applied to other coastal systems. Efforts are currently underway

to expand the modeling domain for the entire lower Chesapeake Bay

whereM. polykrikoides blooms occur andmove towards an operational

forecast system in the region. For instance, in 2023 a bloom was

initiated off Tangier Sound on the eastern shore bordering Maryland

and Virginia following identification in near-real time satellite imagery.

The bloom was confirmed by the Virginia Department of Health and

the MD Department of the Environment to be M. polykrikoides.

Preliminary results (not shown) indicate that the model successfully

predicted the transport of the bloom across the Bay to the mouth of the

Rappahannock River, while underestimating bloom concentration at

the surface. Therefore, adjustments in the ecological parameterizations

will be necessary to accurately account for bloom concentration at the

surface. With the proper parameterization, next steps will also focus on

applying a similar modeling approach to other HAB species in lower

Chesapeake Bay, such as Alexandrium monilatum.
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