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Coastal zones are experiencing notable changes attributed to natural and

anthropogenic effects. This study investigates the potential of machine learning

(ML) in predicting shoreline changes, a developing field still in its early exploration

phase. Traditional methods, while insightful, have faced challenges in terms of

adaptability, accuracy, and computational demands. ML, as a data-driven

approach, potentially offers flexibility, computational efficiency, and can avoid

the constraints associated with physics-based models. This study aims to

evaluate various machine learning models’ efficacy in predicting shoreline

changes using synthetic data. Through comprehensive testing across one

complex shoreline evolution scenario, this research identifies the ConvLSTM

model—trained on 2D gridded data— as the optimal machine learning approach

suited for addressing specific shoreline complexities and evolution patterns. This

approach can learn shoreline evolution, predict it, and serve as a foundational

component of a proposed method for probabilistic shoreline position prediction.

Additionally, the study shows that the choice of ML model depends on the

complexity of shoreline evolution and the desired level of accuracy.
KEYWORDS

shoreline dynamics, machine learning, probabilistic forecasting, shoreline evolution,
shoreline prediction, shorelineS model, uncertainty quantification, coastal engineering
1 Introduction

Coastal zones, which support rich biodiversity and a large portion of the global

population, are experiencing significant transformations due to both natural and human

influences (He and Silliman, 2019). Predicting shoreline changes is crucial for coastal

managers and policymakers, enabling informed decisions on land use, coastal defense, and

climate adaptation (Nicholls et al., 2007). The urgency of this task has grown with climate
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change, as rising sea levels and intensified storms are expected to

reshape coastlines dramatically (Nicholls and Cazenave, 2010).

Traditionally, shoreline predictions have relied on numerical

models and data-driven approaches. While these models offer

valuable insights, they come with limitations (Mutagi et al., 2022).

Numerical process-based models simulate physical coastal

processes such as wave action and sediment transport, capturing

complex dynamics. However, they are computationally intensive

and require extensive data for calibration and validation (Roelvink

et al., 2009). Examples include one-line models like Pelnard-

Considère (1956), GENESIS (Hans, 1989), LITPACK (Kristensen

et al., 2016), UNIBEST (Tonnon et al., 2018), and ShorelineS

(Roelvink et al., 2020), as well as process-based models such as

Delft3D (Roelvink et al., 2009), DHI MIKE (DHI Group, 2020),

PMO Dynamics (PMO, 2013), and CoastalFOAM (Royal

Haskoning, 2020). While these models enhance understanding of

coastal processes, they are constrained by computational demands,

data availability, and reliance on predefined equations, limiting

their scalability for large-scale or real-time predictions.

In recent years, ML, a branch of artificial intelligence, has

emerged as a powerful tool for coastal modelling by identifying

patterns in data and making predictions. ML techniques enable

rapid modelling, early warning systems, and probabilistic

forecasting (Goldstein et al., 2019). Applications in coastal science

include detecting coastal features from satellite imagery, modelling

storm surges, predicting beach erosion, and estimating wave heights

from ocean images (Tsiakos and Chalkias, 2023).

Several studies have demonstrated the potential of ML in coastal

prediction. Hashemi et al. (2010)used an Artificial Neural Network

(ANN) to forecast seasonal beach profile changes using SWAN

model wave data, achieving good accuracy, though limited to

historical data. Grimes et al. (2015) found that nonlinear

dynamics govern coastal morphology, making external forces less

influential and improving shoreline profile predictions. Iglesias et al.

(2010) applied ANNs to predict headland-bay-beach system

morphologies, while Gutierrez et al. (2011) employed Bayesian

networks to model long-term shoreline changes due to sea level

rise. Other applications include storm erosion modelling using

Bayesian networks (Plomaritis et al., 2018; Poelhekke et al., 2016)

and feature detection in video imagery (Choi et al., 2020; Kingston

et al., 2000).

The integration of ML into coastal engineering offers a

promising alternative to traditional methods, addressing the

spatial and temporal complexities of shoreline changes. This

study explores the potential of ML for probabilistic shoreline

evolution modelling by comparing it with a process-based

numerical approach.

The ShorelineS model (Roelvink et al., 2020) is used as a

representative numerical approach, simulating shoreline evolution

based on physical parameters such as wave height, direction, tidal

range, and sediment characteristics. The model is applied to a

Gaussian-shaped coastline under directional wave forcing over one

year. The generated synthetic data is then used to train various ML

models, which are compared in terms of data preprocessing,

complexity, training time, and predictive accuracy. Ultimately, the
Frontiers in Marine Science 02
best-performing ML algorithm is utilized to develop an “Adaptive

Model Selector” for probabilistic shoreline modelling.
2 Methodology

2.1 Introduction to the process-based
model (ShorelineS)

As previously mentioned, the ShorelineS numerical model

(Roelvink et al., 2020) is used in this study as an illustrative tool

to investigate the proposed methodology. ShorelineS is a free-form

coastline model designed to simulate and predict coastal evolution

by accurately representing large-scale transformations, including

features like spits, barriers, salients, and tombolos. It accounts for

factors such as wave characteristics, sediment properties, and

coastal structures, making it an efficient tool for predicting coastal

changes and assessing human impacts (Roelvink et al., 2020).

ShorelineS was chosen for this study due to its validation

through field studies, ensuring reliable results; and its

computational efficiency While other models such as Delft3D,

MIKE21, and 1D models like GENESIS and LITPACK offer

detailed process-based simulations, ShorelineS provides a fast and

cost-effective alternative, making it well-suited for our comparative

analysis of numerical and machine learning models.

In this study, ShorelineS is used to generate synthetic data for

training ML models. We treat its output as “true” data and aim to

replicate it using ML. The ML methods are then compared with

each other and their relative performance is discussed. Once the

best-performing model is identified, it is used to develop a

probabilistic method investigating the added value of using ML in

addressing uncertainties in the forcing
2.2 Machine learning models

ML involves computer algorithms that enhance automatically

through experience and data usage. These ML algorithms develop

models using sample data, termed “training data”, enabling them to

make decisions or predictions without prior specific programming.

ML methods have proven successful for various applications,

including breakthroughs in the natural sciences, where the aim is

to derive new scientific insights from observed or simulated data

(Roscher et al., 2020).

In essence, ML allows computers to execute tasks without being

directly coded for them. They learn from provided data to

accomplish specific functions. While basic tasks can be manually

coded for machines, complex tasks become burdensome. As a

result, teaching machines through algorithms is often more

practical than hardcoding every procedure (Mirtaheri and

Shahbazian, 2022).

In the world of ML, numerous techniques enable computers to

execute tasks when a perfect algorithm is not available. One strategy

involves using labelled correct answers (Truth data) to distinguish

the right responses among various possibilities. Such labelled data
frontiersin.org
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then serves as a training tool for refining algorithms (Mirtaheri and

Shahbazian, 2022).

In this study, we focus primarily on ML models classified as

Deep Learning (DL) methods due to their ability to learn and

address complex processes and problems. We believe that shoreline

evolution, particularly when involving the formation of spits, lakes,

and islands, typically occurs through intricate processes that require

advanced ML models to be mimicked. DL methods are well-suited

for capturing these complexities. The DL methods utilized in this

article include Deep Neural Networks (DNNs), Convolutional

Neural Networks (CNNs), Long Short-Term Memory Networks

(LSTMs), and Convolutional Long Short-Term Memory Networks

(ConvLSTMs). While we provide a brief overview of these models

in the Supplementary Material, an in-depth investigation of their

mechanisms is beyond the scope of this study. Readers are

encouraged to explore additional resources for a deeper

understanding of these and other machine learning models.
2.3 Synthetic data generation

ML models often require large datasets for good performance,

but obtaining high-quality real-world data can be challenging,

expensive, or impractical. Synthetic data, artificially generated to

mimic real-world characteristics, offers an alternative for training

ML models when real data is scarce or unavailable (Lu et al., 2023).

The key advantage of synthetic data, and the reason for its use in

this study, is the ability to control specific conditions and

parameters. This allows for fine-tuned experiments under

scenarios that may be rare or absent in real-world datasets

(Goodfellow et al., 2014). Synthetic data is generated using

mathematical models that simulate real-world processes. For

example, in climate science, equations describing atmospheric
Frontiers in Marine Science 03
conditions can generate synthetic weather data (Warner, 2010).

In our case, the ShorelineS numerical model simulates how a

shoreline evolves under known environmental forces.

2.3.1 Selected shoreline shape and environmental
conditions

The data for this study is generated from a numerical model.

The first step involves creating a comprehensive dataset

representing various shoreline morphologies under different wave

conditions. As we mentioned before, we are going to use the fast and

flexible ShorelineS model (Roelvink et al., 2020) to generate

required synthetic data. Given computational limitations, we will

focus on a manageable range of shoreline shapes and environmental

forces, defining constraints on wave height, direction, period,

spreading factor and sediment characteristics to simplify

the problem.

In this study, the shape of the initial shoreline is a Gaussian

hump shape with 600 meters width and 180 meters height shown in

Figure 1, and its evolution under the following environmental

conditions is investigated:
• Significant Wave Height = 1 m

• Wave Period = 5 seconds

• Wave direction = 45 deg.

• Directional Spreading = 50 deg.

• Sediment size d50 = 2×10-4 m d90 = 3×10-4 m
Based on the mentioned wave conditions, the waves will

propagate between 20 and 70 degrees. which only will cover one

side of the Gaussian hump. We chose the specific wave conditions

and the described Gaussian hump shape for our study to increase

the likelihood of creating spits, lakes, and islands in our model.

These features often appear during the complex evolution of
FIGURE 1

Selected shoreline shape (Gaussian hump) with 600 meters width and 180 meters height.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1562504
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Adeli et al. 10.3389/fmars.2025.1562504
shorelines which predicting them in ML models is challenging due

to their nature.

To ensure accuracy in our numerical model, we used the “Sand

Engine” calibrated model from Roelvink et al. (2020). Only the

coastline shape and environmental conditions were modified, while

all other parameters remained consistent with the original model.

Briefly, it can be stated that the calibrated “Sand Engine”model has

been used as a virtual laboratory environment to generate the

required synthetic data for this research.

2.3.2 Base model results
As discussed, we need data to train and evaluate our ML

models, which is generated synthetically from the ShorelineS

numerical model. This section presents the final output from the

ShorelineS model under the specified environmental conditions.

The outputs include a shoreline position matrix (covered in the next

section) and visual representations showing shoreline changes over

time. Although the model calculates results for all 365 timesteps

(one timestep per day of simulation, as defined for the model), we

focus on reporting and evaluating results at timesteps 60, 120, 180,

240, 300, and 365 for clarity. Figure 2A–F illustrate the visual

outputs for these selected timesteps.
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2.4 Data pre-processing

Raw data is often messy and unsuitable for direct use in ML

models, requiring pre-processing to clean and convert it into a

usable format. This step is essential for building reliable models, as

data forms the foundation of ML. Raw data typically contains noise,

outliers, and missing values, which can lead to unreliable

predictions if not addressed (Thambawita et al., 2021).

Consequently, before pre-processing, it is important to

understand the data. In this section, we will first discuss the

features and characteristics of the extracted data from the

ShorelineS model, followed by the methods developed for pre-

processing and preparing this data for our ML models. The most

important part of ShorelineS model outputs for us is the x and y

coordinates matrix. While these two matrixes (x and y) have the

same size, since ShorelineS uses a flexible free-form string of grid

points, this size is varying during the simulation based on the

number of grid points in the shoreline vector at each time step.

In other words, the initial number of x and y coordinates might

be 100 each, this number may increase or decrease throughout the

simulation, though x and y will always have the same number of

points at each timestep. As a result, the final x and y matrices will
FIGURE 2

ShorelineS model output for the designed scenario at time steps 60, 121, 182, 244, 305, and 365, labelled as panel (A–F) respectively.
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have dimensions of [maximum grid points during the simulation

(e.g. 150) × number of outputs timesteps (e.g. 365)], but not all

timesteps will used the maximum grid points, and “NaN” values

filling the gaps.

If islands or lakes form during the simulation, their coordinates

are added to the end of the main shoreline coordinates and

separated by a “NaN” value. Each element in the x and y matrices

has two indices: the row number, representing the coordinate, and

the column number, representing the timestep.

x =

x0,0 ⋯ x0,9 ⋯ x0,366

x1,0 ⋯ x1,9 ⋯ x1,366

j j j
nan ⋯ nan ⋯ x49,366

nan ⋯ x50,9 ⋯ x50,366

nan ⋯ x51,9 ⋯ x51,366

nan ⋯ x52,9 ⋯ x52,366

nan ⋯ j ⋯ nan

nan ⋯ x150,9 ⋯ nan

2
666666666666666666664

3
777777777777777777775
150�366

 y =

y0,0 ⋯ y0,9 ⋯ y0,366

y1,0 ⋯ y1,9 ⋯ y1,366

j j j
nan ⋯ nan ⋯ y49,366

nan ⋯ y50,9 ⋯ y50,366

nan ⋯ y51,9 ⋯ y51,366

nan ⋯ y52,9 ⋯ y52,366

nan ⋯ j ⋯ nan

nan ⋯ y150,9 ⋯ nan

2
666666666666666666664

3
777777777777777777775
150�366

The complexities in ShorelineS output representation has the

same problem of real-world shoreline observations, the number of

coordinate points can vary, similar to the model’s output. When

lakes or islands are present, the real-world shoreline can be

represented like the model’s output, making this method

applicable to sequential shoreline observations.

However, two issues need to be addressed before using the x and

y matrices as input for ML models. First, “NaN” values cannot be

processed by ML models. Masking them in the first layer won’t

work, as “NaN” values would propagate through the coordinate

vectors, resulting in an output filled with “NaN.” Yet, these “NaN”

values are important for separating islands and lakes from the main

shoreline. Second, the length of all x and y vectors must be

consistent and only contain real values. Currently, “NaN” values

are added to make each vector the same length as the longest output

vector up to that timestep. To resolve these issues, we developed

methods to reshape the original data into suitable formats for our

ML models, which we will describe next.

2.4.1 Data interpolation
In this approach, we divide the x and y coordinate vectors into

segments based on the location of “NaN” values, effectively breaking

them into continuous sections. For example, an array like [1, 2, 3,

NaN, 4, 5, NaN, 6, 7] is split into [1, 2, 3], [4, 5], and [6, 7]. Each

segment is then proportionally resampled to a new length. After

resampling, we record the length of each segment, which indicates

the positions of the “NaN” values that separate islands or lakes from

the main shoreline. The resampled sections are then concatenated

into a single vector, which is used to train the ML model. After

predictions are made, “NaN” values are restored into the coordinate

vectors based on the recorded segment lengths. This process is

illustrated in Figure 3.

In this approach, interpolation transfers the data into a new

fixed grid system. ShorelineS calculates shoreline positions on a
Frontiers in Marine Science 05
free-form vector grid, but the grid length changes over time. To

address this, we transform the grid to a constant length for all

timesteps, allowing the ML models to identify spatial and temporal

relationships more effectively. Determining the best grid size for this

transformation is key. The ideal value is the length of the longest

vector in the ShorelineS output. This minimizes changes in the grid

system, reducing computational complexity and helping the ML

models better capture spatial-temporal relationships. Although grid

interpolation may cause slight shifts, this method ensures minimal

data loss and optimized computational efficiency. Figure 4

illustrates how the x and y coordinates of grid point 75 shift over

time, showing the grid’s movement that the ML models need to

learn. Figure 5 compares the original and new grid systems for

timestep 240, demonstrating minimal movement between grids

using this interpolation method.
2.4.2 Optimal data representations for different
ML models

ML models are highly sensitive to the shape and format of their

input data, making it a critical factor in determining the model’s

performance and accuracy. Therefore, careful attention must be

given to the preparation and structure of the input data. In our case,

we use sequential timesteps of [x] and [y] coordinate vectors, which

can be arranged in various formats depending on the type of ML

model being employed. This study explores several data

representation methods, including One-row Array Representation

(Row Vector), Two-row Array Representation, Image Data, and 2D

Gridding Data. Detailed descriptions and the specific shapes of

these representations are provided in the Supplementary Material of

this article.

The shape and format of data should be chosen based on the

machine learning architecture, the nature of the data, and the

specific tools or frameworks (libraries) being used. For spatial

coordinate data that varies over time, experimenting with

different representations is essential for optimal performance. In

this study, we evaluated various data representation methods to

identify the most suitable options for the MLmodels employed. The

selected representations, shown in bold in Table 1, have been

chosen for further analysis. A comprehensive explanation of the

selection process is provided in the Supplementary Material.

2.4.3 Data splitting for training, validation and
test

Ensuring reliable model performance is crucial for its future

applications. While a trained model’s accuracy on training data is

important, its performance on unseen test data truly matters.

Overfitting is when a model performs exceptionally well on the

training data but poorly on new data (James et al., 2013). This

occurs because the model captures not just the underlying patterns

in the data, but also its noise or random fluctuations. Hence, before

starting with model training, we should always split the data into

training, validation (cross-validation), and test sets. This ensures

that we have a set of data to test the model’s performance on unseen

data. Sequential data are time series and, in our case, which is a time
frontiersin.org
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series of coordinates, they have an inherent temporal ordering that

needs to be preserved during splitting. This approach ensures that

the training, validation, and test sets are representative of the data.

k-fold method is one of the best methods for cross-validation,

but it is not ideal for our dataset. Because it randomly splits the data,

which can cause data leakage and does not respect the time

component of the data. Instead, it is recommended to use

“TimeSeriesSplit” from the “scikit-learn” python library

(Pedregosa et al., 2011). This method is a variation of k-fold

cross-validation that takes time order into account. At each split,

the train set remains fixed or increases in size, and the test set is a

fixed size. In this method, the validation sets are non-overlapping

and connected in terms of time. This means the data in the

validation set for one fold will not appear in the validation set for

another fold. For example, given a dataset of 10 points (labelled 1

through 10), we want to split it into 3 sets, with 4 data points for
Frontiers in Marine Science 06
training and 2 for validation in each split. Using the

“TimeSeriesSplit” method, the splits would look like this:
Original data = [1 2 3 4 5 6 7 8 9 10]

Train set 1 = [1 2 3 4] Validation set 1 = [5 6]

Train set 2 = [3 4 5 6] Validation set 2 = [7 8]

Train set 3 = [5 6 7 8] Validation set 3 = [9 10]
For the ShorelineS output with 365 timesteps, we reserved the

last 5 for testing (which the model does not see) and used the

remaining 360 for training and validation. We split the data into 58

segments, with each split containing 12 timesteps for training and 6

for validation. These values, 6 and 12, are hyperparameters that

need to be optimized along with the model structure (e.g., number

of layers and neurons). The optimization process was iterative, and

we experimented with various combinations to find the best values.
FIGURE 4

Grid position change for points 75 during progress in timesteps.
FIGURE 3

Process of “nan” value managing for the proposed interpolation method.
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In real-world scenarios, these hyperparameters may reflect the

underlying physics, such as seasonal cycles or tides. However,

since our synthetic data does not involve cyclic events, the

optimization process was more straightforward.
2.5 Models evaluation methods

Evaluating a machine learning model’s performance is a crucial

step in developing reliable data-driven solutions. There are several

methods that can be used to evaluate the performance of the ML

models. In the following sections, we will discuss some of these

methods that have been chosen or developed to evaluate the

performance of used ML models in this study.

2.5.1 Prediction quality index
One of the common methods for the evaluation of meteorology

models is the “Brier Skill Score” (BSS). This method has also been

used in the evaluation of the coastal morphodynamics models by

Brady and Sutherland (2001); van Rijn et al. (2003) and Sutherland

et al. (2004). Sutherland et al. (2004) introduced Equation 1 to

calculate the BSS for morphological models.

BSS = 1 −
< (Y − X)2 >
< B − X2 >

(1)
Frontiers in Marine Science 07
In the above formula, Y is a prediction, X is an observation, B is

a baseline or initial shape of the shoreline and “< >“ is an arithmetic

average. The BSS measures model performance by comparing its

predictions to a baseline. A BSS of 1.0 indicates a perfect match

between prediction and observation, while a BSS of 0 indicates the

model performs the same as the baseline. Negative BSS values

suggest the model performs worse than the baseline (Dastgheib,

2012); van Rijn et al. (2003) classified model performance based on

BSS values is presented in Table 2.

In this study, we work with data based on x and y coordinates.

To evaluate the model’s skill, we developed the “Prediction Quality

Index” (PQI), similar to the BSS. The PQI can be calculated using

Equation 2.

PQI = 1 −
< Dforcasts,X ,   Dforcasts,Y >

< Drefrence,X ,   Drefrence,Y >
(2)

In Equation 2, Dforcasts,X   and  Dforcasts,Y represent the averaged

differences between predictions and actual observations for x and y

coordinates, while Drefrence,X   and  Drefrence,Y represent the differences

between the baseline (initial shoreline) and actual observations. The

PQI formula is based on the root-mean-squared error (RMSE),

calculated as presented in Equations 3, 4.

Dforcasts =  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(p1 − a1)

2 +⋯+(pn − an)
2

n

r
(3)

Drefrence =  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(p1 − i)2 +⋯+(pn − i)2

n

r
(4)
TABLE 1 Appropriate data representational strategies for selected
machine learning models.

Data Representation

Model One-row Two-row Matrix Data

DNN Yes Not advisable Not advisable

CNN No
Not

advisable
Ideal (Images)

LSTM Yes Ideal Not advisable

ConvLSTM
Not

advisable
Yes Ideal (Images & 2D Gridded)
Bold text indicates the selected data representation method for our ML models.
TABLE 2 Classification for model’s skill base on BSS or PQI value.

Performance BSS or PQI Value

Excellent 0.8 ~ 1.0

Good 0.6 ~ 0.8

Reasonable 0.3 ~ 0.6

Poor 0 ~ 0.3

Bad <0
FIGURE 5

Comparison between original and new grid system (equally spaced) for timestep 240 using proposed interpolation method.
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In the formulas above, “p” represents the predicted value, “a”

is the actual observed value, “i” is the initial shoreline position,

and “n” is the number of observations. The PQI calculates the

ratio between the divergence of predicted and observed data and

the divergence of the observed data from its initial position. This

index is categorized similarly to the BSS into five performance

levels, as shown in Table 2. It is important to note that the PQI

should not be used to compare the performance of two models.

Instead, it is intended to assess a model’s accuracy at a specific

timestep, based on the changes that have occurred up to that

point. This allows for more acceptable errors during periods of

substantial change.
2.5.2 CC, RMSE and MAE metrics
Correlation Coefficient (CC), Root Mean Squared Error

(RMSE) and Mean Absolute Error (MAE) are commonly used

metrics for evaluating the performance of predictive models. In

the following section, we briefly introduce these metrics. These

metrics have been calculated for all 365-time steps across all the

studied machine learning models and will be compared in the

following sections. It is important to note that for models using

matrix data instead of coordinate data, the metric results will not

be reported separately for the x and y coordinates. Instead, the

metric values will be averaged across the entire surface of the data,

encompassing all values represented in the predicted result as

a matrix.

The CC measures the linear relationship between the predicted

values and the observed (actual) values and can be calculated from

Equation 5. CC can be between +1 and -1 (Solomatine, 2023).
Fron
• +1: Perfect positive linear relationship

• 0: No linear relationship

• -1: Perfect negative linear relationship
CC = on
i=1(xi − �x)(yi − �y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

on
i=1(xi − �x)2on

i=1(yi − �y)2
q (5)

In Equation 5, xi and yi are data points, and �x and �x   are the

means of x (predicted values) and y (observed values) respectively.

RMSE is the average difference between the predicted values

and the observed values. This metric helps to determine how close a

model’s predictions are to the real outcomes. The lower the RMSE,

the better the model’s predictions and this metric penalizes errors at

high values. This metric can be calculated from Equation 3

(Solomatine, 2023).

MAE is the average of the absolute differences between the

predicted and observed values and can be calculated from Equation 6.

This metric does not penalize high errors (Solomatine, 2023).

MAE =
1
no yi − ŷ ij j (6)

In the above formula, yi is the observed value, ŷ i is the predicted

value, and n is the number of observations.
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2.6 Machine learning models preparation
and training

For optimal training of ML models and to achieve the best

possible results, certain options and settings must be configured. In

this section, we describe the selected options, and their

corresponding settings used in the ML models for this study.

Unless stated otherwise, these settings remained unchanged

throughout the analysis.

To train all the mentioned ML models that work directly with

coordinate data, we apply normalization. Normalization,

specifically Min-Max Scaling, transforms features to a common

scale, typically within the range [0, 1]. This transformation is

essential because certain algorithms, particularly those relying on

distance calculations or gradient-based optimization, may

experience numerical instabilities or longer training times if the

feature scales vary significantly (Mirtaheri and Shahbazian, 2022).

In supervised learning, the goal is to adjust model parameters,

such as neural network weights, so predictions closely match

observed values. This is achieved by minimizing a loss function,

which quantifies the difference between predicted and actual values.

An optimizer efficiently finds the global minimum of this function.

In this study, we used Adaptive Moment Estimation (ADAM),

which combines the strengths of the Adaptive Gradient Algorithm

(AdaGrad) and Root Mean Square Propagation (RMSProp)

(Mirtaheri and Shahbazian, 2022). ADAM is computationally

efficient, memory-friendly, and well-suited for large datasets and

complex models, making it an ideal choice for our ML models.

The learning rate is a key hyperparameter that controls the step

size during each iteration as the model minimizes the loss function.

In gradient descent (here, ADAM), it determines how large each

update should be in the direction of the negative gradient. An

appropriate learning rate ensures efficient convergence: if too high,

the model may overshoot the minimum, causing oscillations or

divergence; if too low, convergence slows, requiring more iterations.

A slightly higher learning rate can also help escape local minima

and find a better or global minimum (Mirtaheri and Shahbazian,

2022). In this study, the learning rate decays exponentially rather

than remaining fixed. It starts at 0.001 and decreases over time,

multiplying by a decay rate of 0.9 every 100 steps. This approach

accelerates early convergence while later refining training as the

model nears the optimal solution.

An epoch is a full cycle in which the entire training dataset

passes forward and backward through the model. During each

epoch, the model makes predictions, calculates the difference

between predicted and actual values using a loss function, and

updates its weights through an optimization algorithm to minimize

the loss. The number of epochs is crucial for training duration.

More epochs can improve learning and accuracy but also increase

computational costs. Some models require more epochs to fully

converge, while others reach a point where additional training offers

little or no improvement (Mirtaheri and Shahbazian, 2022).

Training for too many epochs can cause overfitting, where the
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model performs well on training data but fails to generalize to new

data. This occurs when the model memorizes the training data

instead of learning meaningful patterns. A validation dataset is

typically used to assess performance at the end of each epoch. If

validation performance declines while training performance

improves, overfitting may be occurring (Solomatine, 2023).

To prevent this, early stopping can halt training when validation

performance deteriorates. This method monitors a chosen metric,

typically validation loss, and stops training once improvement

ceases. A patience parameter defines how many epochs to wait

before stopping after no further progress is observed. Instead of

training for a fixed, large number of epochs—which is

computationally expensive and time-consuming—early stopping

allows training to end sooner while maintaining efficiency. It also

ensures that the best-performing model, with the lowest validation

loss, is saved (Brownlee, 2018). In this study, we used early stopping

to prevent overfitting and optimize model performance.

Grid Search is a hyperparameter tuning method used to

optimize an ML model ’s structure and settings. Since

hyperparameters significantly impact performance, this study

focused on tuning key ones: the number of layers, neurons per

layer, activation function, and initial learning rate. The process

starts by defining a subset of the hyperparameter space,

systematically testing all possible combinations, and evaluating

performance on the validation set. The best-performing set is

selected, with minor adjustments made for structural consistency

before finalizing the configuration (Brownlee, 2018).
3 Results

In this section, we present and compare only the most

significant final results from our selected ML models, focusing on

cases with noteworthy points of discussion for the sake of brevity.

Additionally, at the end of this section, we compare the training and

prediction times of each ML model with our baseline model. It is

important to note that results not discussed here are provided in the

Supplementary Materials of this paper.
3.1 DNN model performance

In this section, we will evaluate the performance of the DNN

model when data from proposed interpolation method is fed into it.

Based on the methodology outlined in the previous section, the

optimal DNN model consists of three hidden layers with the

“ReLU” activation function, a “Sigmoid” activation function in

the output layer, and an initial learning rate of 0.001.The changes

in accuracy and loss over time for both the training and validation

datasets during the DNNmodel training process are provided in the

Supplementary Materials. Figure 6 illustrates the results of the PQI

in panel (A) and Comparison of the MAE for X and Y coordinates

at each timestep in panel (B). From this figure we can see, initially,

the ratio of prediction error to the amount of change is low, but this

improves over time. A low PQI value in the early timesteps does not
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necessarily indicate poor model performance or high error (see

Figure 6B). It can also suggest that the prediction error is small,

especially when the overall change in the model is minimal.

However, this indicates that the model’s performance in the early

timesteps is less reliable. From this figure, we can also observe a

sudden drop in the PQI value at certain time steps, such as 135, 212,

and 336. To ensure that this is not due to a miscalculation of the

PQI value or a minor error in prediction—where the magnitude of

change in the model is significantly smaller than the error as

described above—we have plotted the MAE values for the x and y

coordinates across all time steps in Figure 6B. At these exact time

steps, a sudden increase in the MAE is evident. Therefore, it is

necessary to investigate these anomalies further and determine what

is occurring at those time steps.

As shown in Figure 6, there are noticeable dips in model

performance at timesteps 135, 212, and 336. Figure 7 helps

explain these dips by tracking grid position changes for point 203

across all timesteps as an example. This figure reveals sudden shifts

in grid positions at these specific times, caused by the formation of

lakes in the numerical model as shown in Figure 8A–C. When the

lakes form, their coordinates are moved to the end of the coordinate

vector, which forces the new grid system to create jumps in the x

and y coordinates (Figure 7). These inconsistencies disrupt the

training process and complicate the ML model’s task, resulting in

increased errors and reduced model performance. The final results

from the trained DNN model at timesteps 60, 120, 180, 240, 300,

and 365 are provided in the Supplementary Materials.
3.2 CNN model performance

In this part, we will discuss the results of the CNN model, trained

on, “Two-Row data” and “Image outputs” data. For both CNNmodels,

we also employed the Early Stopping method mentioned before.

3.2.1 CNN performance on two rows data
Based on the grid search analysis, the best CNN model for our

Two-Row data array consists of four 1-dimensional convolutional

layers with 128, 64, 32, and 16 features in each layer, respectively, all

using the “ReLU” activation function. This is followed by a Flatten

layer that reshapes the multi-dimensional input into a single long

vector. This layer is typically used when transitioning from a

convolutional layer to a dense layer within a network.

Subsequently, a Dense layer with a “Sigmoid” activation function

is added to the structure; this fully connected layer produces the

desired output. Finally, a Reshape layer is incorporated to adjust the

network’s results to match the shape of the input data. The PQI

performance of the model trained on this data structure (Figure 9)

shows an improvement compared to previous results. While the

final outcomes for this ML model are considered acceptable, sudden

jumps in PQI values still occur due to the formation of islands and

the resulting shifts in shoreline position coordinates, as discussed in

the previous section. For brevity, the model’s performance and the

alignment between true and predicted results are provided in the

Supplementary Materials.
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3.2.2 CNN performance on image data
The optimal 2-dimensional CNN model for our Image data

includes four 2-dimensional convolutional layers. These layers

generate feature maps with 40, 20, 10, and 1 channels, respectively.

The first three layers employ the “ReLU” activation function, while the

last layer uses the “Sigmoid” activation function. The model maintains

the spatial dimensions, equivalent to the input image size across all

convolutional layers to preserve the spatial information of the input

data. This can be particularly useful for tasks where the spatial structure

of the input is crucial. The final results for ML model trained on image

data are significantly better compared to using two rows of data as

input. While this approach effectively eliminates sudden jumps in PQI

values, leading to a substantial improvement in the final outcomes, it is

not without flaws. In some cases, the model may learn and reproduce
Frontiers in Marine Science 10
features from the image that are unrelated to the shoreline evolution.

This issue occurred during one of our tests using a CNN model to

predict shoreline evolution for a test case. In this test case, the

numerical model incorrectly plotted the shoreline position at one

timestep by adding an extra line. Consequently, this error was

learned and replicated exactly in the CNN prediction results, as

illustrated in Figure 10B.
3.3 LSTM model performance

3.3.1 LSTM performance on one row data
In this study, while we attempt to train an LSTMmodel on One-

Row data, we observed no improvement during the training
FIGURE 7

Grid position changes (movements or jumps) for grid point 203 in the X and Y coordinates over time.
FIGURE 6

PQI at each timestep, labelled as panel (A) and comparison of the Mean Absolute Error (MAE) for X and Y coordinates at each timestep, labelled as panel (B).
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process. Consequently, the training was automatically stopped due

to the “Early Stopping” option. The underlying issue was that the

LSTM model could not effectively learn from the One-Row data

structure (½x1, x2,⋯, xn−1, xn, y1, y2,⋯, yn−1, yn�), as the model

inherently expects sequential input. The positioning of the y array

after the x array disrupts this expected sequence, confusing the

model during training.

After identifying the best possible structure for the LSTMmodel

using Two-Row data (next section), we applied this optimal

structure to the LSTM model with One-Row data. We also

removed the early stopping from this model and trained it for the

same number of epochs as the Two-Row data model to observe the

final results. Although we cannot consider the outcomes of this

model as valid, we reported them in the Supplementary Material for

the sake of transparency.
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3.3.2 LSTM performance on two rows data
The optimal LSTM model for our Two-Row data includes four

LSTM layers, each having 10 features. After the data is processed

through these recurrent layers, the model transitions to a fully

connected Dense layer. This Dense layer outputs sequences

including 224 units, each with 2 features, thus replicating the

same data format that was the input of the model. This

transitional layer uses a “Sigmoid” activation function.

The PQI and the comparison between observed and predicted

results from both LSTM models showed neither significant

agreement nor an acceptable range based on the definition of PQI

and error values. For clarity, these results are presented in the

Supplementary Material of this paper. It is important to note that

the first approach (using One-Row data) was unsuccessful, and the

second approach (using Two-Row data) did not produce promising
FIGURE 9

PQI for each timestep for CNN model trained on Two-row data array.
FIGURE 8

Creation of lakes in the ShorelineS model and the ML model: Reasons for jumps at timesteps 135, 212, and 336. Panel (A) timestep134 to 135; Panel
(B) timestep 211 to 212; Panel (C) timestep 335 to 336.
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results, particularly in modelling the spit head and lakes compared

to other ML models. Additionally, training these models was time-

consuming, especially when considering their performance relative

to other tested models. The training time for each model is

discussed further in another section.
3.4 ConvLSTM model performance

This section presents the performance of ConvLSTMmodels on

three data types: Two-Row array data, Image data and 2D

Gridded data.

3.4.1 ConvLSTM performance on two rows data
The optimal structure, derived from the grid search results and

slightly manually enhanced for structural consistency, consists of a

model with three ConvLSTM2D layers. Each layer has 100 feature

maps or channels and uses a “Tanh” activation function. The

“TimeDistributed” wrapper is also used to apply a layer to every

temporal slice of an input. When we use the “TimeDistributed”

wrapper, it allows us to apply a specific layer to every temporal slice

(or timestep) of an input sequence. Each timestep is processed

independently, effectively enabling simultaneous calculations for all

timesteps. It ensures that the same operation (or layer) is applied in

the same way across every timestep in the sequence. It should be

noted that, as with all other models, this model also employs the

“Early Stopping” method to prevent overfitting and ensure

optimal performance.

The final results of the trained ConvLSTM model while using

two rows data representation is presented in the Supplementary

Material of this article. As evident, the model’s understanding of the

shoreline evolution process is not particularly accurate for lakes and

islands. This inaccuracy may stem from the LSTM component of

the ConvLSTM model, as we observed similar issues with pure

LSTM models previously. However, the process of evolution of the

main shoreline is well-understood and represented accurately.

3.4.2 ConvLSTM performance on image data
The optimal structure, derived from the grid search results and

enhanced manually for structural consistency for our ConvLSTM

model working on image data, includes nine ConvLSTM2D layers

interspersed with Batch Normalization and Dropout layers. All

these layers use the “Tanh” activation function, except for the final

Conv3D layer, which employs a “Sigmoid” activation function. The
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number of filters for these layers is as follows: 64, 32, 16, 8, 1, 8, 16,

32, and 64 for the ConvLSTM2D layers, and 1 for the Conv3D layer.

The changes in model accuracy and loss as well as the PQI

performance of the mode and the final predicted results are

reported in the Supplementary Material of this paper. Overall, the

performance of the model trained on image data has improved

compared to the previous approach. However, the model remains

sensitive to defective input images, which can result in inaccurate

predictions as we discussed before.

3.4.3 ConvLSTM performance on 2D gridded data
In this section, we will evaluate the model’s performance using

“2D Gridded Data”. We will use the optimized ConvLSTM model

from the previous section (ConvLSTM for Image Data) as a

reference for this evaluation. The PQI in this case demonstrates

strong model performance. However, at the early timesteps, some

predictions exhibit lower PQI values. This occurs because the

changes in the model at these timesteps are relatively small

compared to the prediction error. The accuracy and loss plots for

the training and validation datasets during the ConvLSTM model

training with “2D Gridded Data”, along with the PQI plot, are

provided in the Supplementary Material.

The comparison between the final replicated and predicted

results of the ConvLSTM model in this case and the actual values

(output of the ShorelineS model) is illustrated in Figure 11A–F. As

can be seen, the model’s performance is very promising and reliable.

It is important to note that the smallest change that can be predicted

is determined by the resolution used to convert the input data into

2D gridded data. In this case, a resolution of 2 meters was used,

meaning the smallest detectable change in shoreline position with

our ML model is 2 meters.
3.5 Comparing ML models and methods

In previous sections, we evaluated the performance of different

ML models on various data structures. Here, we compare the

training time and output generation time for these algorithms. By

“generation”, we mean the time taken to produce prediction results

for all 365 timesteps (for both seen and unseen data) after training.

Except for models using Image and 2D Gridded data, which

require more memory, all models were trained on a standard

personal computer. For consistency, however, we trained and

generated outputs for all models using Google Colaboratory’s A2
FIGURE 10

Recreation of plotting error in CNN model output. Panel (A) numerical model output; Panel (B) CNN model output.
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accelerator-optimized machine with NVIDIA Tesla A100 GPUs.

The system specifications are as follows (Google Co, 2023):
Fron
• GPU: 1 GPU - NVIDIA Tesla A100

• Available vCPUs: 12 vCPUs

• Local SSD supported: Yes

• GPU memory: 40 GB HBM2

• Available memory: 85 GB
For the ShorelineS model, it was not possible to run it on Google

Colaboratory, so we ran it on a laptop with the following

system specifications:
• Model: HP ProBook 450 G8 Notebook PC

• Memory: 8GB DDR4

• Graphics Card: Intel(R) Iris(R) Xe Graphics

• Processor: Intel Core i5-1135G7

• Storage: Kingston 500GB SSD

• Operating System: Windows 10 Enterprise
The recorded times for running ShorelineS and training all ML

models are reported in Table 3. In ShorelineS, results are saved

while calculating each timestep, so we report this as “training

duration” in this table. We can see that generally, as ML models

become more complicated, the required time for training them

increases. It is worth noting that some models, while taking

considerable training time, did not deliver acceptable

performance, such as the LSTM models. Models working on

Matrix data typically require more training time due to the

volume of data within the matrix, but their final results are

generally superior to other models.
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To enable a more detailed comparison of model performance,

the exact metrics for timesteps 60, 120, 180, 240, 300, and 365 are

also investigated (reported in the Supplementary Material). Models

in Table 3 (and table of calculated metrics in the Supplementary

Material) can be categorized into two groups: those that work with

coordinate data (models number 2, 3, 5, 6, and 7) and those that

work with matrix data (models number 4, 8, and 9). In the first

group, training times are fairly consistent across models, except for

the LSTM models, which took significantly longer. However, both

LSTM models performed poorly for shoreline prediction. The

LSTM with “One-Row Data” produced unreliable results, while

the “Two-Row Data” LSTM required long training times and

delivered less accurate results compared to other models. Among

the models processing coordinate data, the CNN model performed

best, followed by ConvLSTM with “Two-Row Data”, DNN with

“Two-Row Data”, and DNN with “One-Row Data”.

For the second group of models (using matrix data), based

solely on the raw metrics and ignoring factors like training time,

possible image defects, and resolution (the smallest detectable

change), the CNN model using “Image Data” performed best,

followed by ConvLSTM with “Image Data” and ConvLSTM with

“2D Gridded Data”.

To make an informed model selection, we assigned scores from

0 to 5 to each model based on various constraints. This scoring

allows for a comprehensive comparison to identify the best model

for the designed scenario. The criteria and scoring are as follows:
• Training time: Models lose points with increasing training

time. The most efficient model receives a score of 5.

• Image defects: If there’s a possibility of image defects, the

model is penalized with 0. If not, it receives a score of 5.
FIGURE 11

Replication of shoreline evolution and its prediction by the trained ConvLSTM model at timesteps 60 (A), 120 (B), 180 (C), 240 (D), 300 (E), and 365
(F) on 2D gridded data.
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Fron
• Control over prediction details: Models gain more points

with increased control over prediction details.

• Accuracy: Models with higher accuracy earn more points.
For the models using matrix data, the final result of scoring and

comparison is shown in Table 4. From this table, it becomes evident

that the ConvLSTM model, when used with “2D Gridded data”, is

the optimal choice for our scenario.
4 Using ML for probabilistic prediction
of shoreline changes

In this section, we build on the findings of the previous section to

explore how our best ML model can be used as a probabilistic tool for

studying and addressing uncertainties in shoreline position modelling.
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Shoreline development and final positions are influenced by

various uncertainties, one of the main sources being the variability

in wave directions during simulations (Kamphuis, 2010). In

process-based models like ShorelineS, when a wave climate is

used as input a chronologically random wave height and

direction are generated as model forcing. The implementation of

different time series generated from the same wave climate can

change the evolutionary path of the coastline.

For example, Figure 12A, shows the evolution of an initial

Gaussian hump-shaped shoreline after one year of simulation for

two runs with identical inputs. Despite using the same wave height

and directional spreading, the model internally generates different

wave direction sequences based on the mean direction and

spreading factor (Figure 12B), resulting in different final

shoreline positions.

To further investigate the effect of the spreading factor on the

final shoreline position, we ran ShorelineS 1000 times and recorded

the shoreline position at the end of each simulation, as shown in

Figure 13A. This value balances capturing the model’s full

variability and maintaining a feasible computational cost. In

Monte Carlo approaches, increasing the number of runs reduces

sampling error and improves statistical reliability. We observed

that, beyond approximately 1,000 runs, improvements became

marginal, while fewer runs risked missing important variations.

Therefore, 1,000 runs provide a sufficiently large sample for robust

statistical estimates while keeping computational costs manageable.

Using this data, we generated a probability plot of the outputs. In

this plot, each time a shoreline passes through a pixel, that pixel’s

value increases by 1, starting from an initial value of 0. Each pixel

represents an area of 2×2 meters. We repeated this process for all

1000 final results. The probability plot is then created by dividing

each pixel’s value by the maximum pixel value within the

domain (Figure 13B).

In previous sections, we examined ML models that effectively

learn shoreline evolution and demonstrated their ability to recreate

shoreline positions at the end of simulations. Now, we aim to use

these models to manage uncertainties in numerical modelling.

Specifically, we will use our best-performing model from the

previous section, the ConvLSTM model with 2D gridded data, to

predict shoreline changes under different wave directions in a

probabilistic way.

To do this, we introduce a simple method called the “Adaptive

Model Selector”. While it’s inspired by the ensemble model (Zhou,

2012) concept, which typically combines multiple models to

improve prediction accuracy, however our method works

somewhat differently. Instead of combining models, it selects and

combines predictions from pre-trained models, each trained for a

specific wave direction with no directional spreading. By using a

Monte Carlo method to generate wave directions timeseries, the

adaptive model selects the most suitable models at each time step to

make prediction.

We combine the Monte Carlo simulation method with the

“Adaptive Model Selector” to predict 1000 possible shoreline

positions and estimate the probability of shoreline existence at

various points on a 2D grid. To achieve this, we generate 11 sets of
TABLE 3 Duration of training and output generation for ShorelineS and
various ML models.

Num.
Model
Name

Training
Duration
[sec.]

Output Creation
Duration [sec.]

1
ShorelineS
Model

379.02 –

2
DNN: One-
Row Data

14.11 0.15

3
CNN: One-
Row Data

116.12 0.28

4
CNN:

Image Data
55.28 0.34

5
LSTM: One-
Row Data

635.43 2.34

6
LSTM: Two-
Row Data

2476.61 1.22

7
ConvLSTM:

Two-Row Data
273.91 0.65

8
ConvLSTM:
Image Data

763.51 1.64

9
ConvLSTM: 2D
Gridded Data

516.82 1.23
TABLE 4 Scoring models based on defined constraints.

Model CNN ConvLSTM

Value Image Data Image Data 2D Gridded

Tinning Time 5 2 3

Defected image 0 0 5

Control
on details

3 3 5

Accuracy 5 3 2

Total Points 13 8 15
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FIGURE 12

Top Panel: Comparison of the final position of the shoreline after running the ShorelineS numerical model two times, labelled as (A); Bottom Panel:
Comparison of wave directions between the first and second ShorelineS model runs, labelled as (B).
FIGURE 13

Top Panel: All shoreline positions at final timestep for 1000 ShorelineS model runs, labelled as (A); Bottom Panel: Probability plot for all shoreline
positions at final timestep for 1000 ShorelineS model runs, labelled as (B).
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synthetic gridded data, each representing a different shoreline

evolution scenario using the ShorelineS numerical model. For

each scenario, we train a ConvLSTM model with the same

structure as before. These 11 models, each trained for a specific

wave direction, will serve as sub-models within the adaptive model

selector, helping to account for changes in wave direction.

In these 11 scenarios, the only difference is the wave direction,

which ranges from 20 to 70 degrees in 5-degree increments. By

setting the spreading factor to 0 in each scenario, we eliminate the

uncertainty that ShorelineS would introduce if the spreading factor

were included. This approach turns our general study into 11 more

specific sub-scenarios, each with a clear and stable output.

The Adaptive Model Selector is designed to address differences

in wave direction between the Monte Carlo-generated wave

directions and those used to train the models. When a new wave

direction is generated, the method selects the two trained models

closest to that direction and uses them to predict two possible

shoreline positions. This gives us two possible outcomes for the next

timestep. we use weighted averaging to combine the two predicted

shorelines, giving more weight to the model that is closer to the

current wave direction.

Afterward, we apply a filtering step to refine the final prediction

for each timestep. Pixels with values of 0.5 or higher are assigned a

value of “1,” while those below 0.5 are assigned “0.” This filtering is

necessary because our ConvLSTM model works with 2D gridded

data and expects binary input. It helps maintain high-probability

pixels across timesteps, preventing the shoreline from “vanishing”

over time. The filtering also removes low-probability pixels,

reducing prediction errors and ensuring they don’t negatively

impact future predictions.

Once the adaptive model selector is set up, we generate a

random series of wave directions over 365 timesteps, using the

Monte Carlo method. We start by providing the model with the

initial shoreline position (in a Gaussian hump shape) and the first
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wave direction from this series. The model then predicts the

shoreline position for the next timestep. This process continues

for each of the 365 timesteps until the final prediction is reached.

This final prediction will represent the shoreline position after 365

timesteps, equivalent to the result from numerical modelling for the

same period on simulation. We repeat this entire process 1000 times

to generate probability plots, showing the likelihood of shoreline

positions based on the model’s predictions. The overall method for

predicting shoreline existence probability using machine learning is

illustrated in Figure 14.

As in the previous sections, the training and prediction of all

ML models took place on Google Colaboratory servers, while the

ShorelineS numerical model ran on a personal computer. The

required time for completing the proposed method and obtaining

1000 final output from our numerical model and the final result are

presented in Table 5 and Figure 15. As illustrated in Figure 13B and

Figure 15, the probability plots are largely similar across most of the

shoreline, except for specific areas like the lake on the lower right

side. Major sections of the shoreline show consistent evolution

probabilities. The slight differences in the lower right lake’s

positioning may be due to low confidence in the model’s

predictions. If predicted shoreline pixels are not well-aligned,

those with lower probabilities may be removed during the

filtering step. Additionally, the final results from the ShorelineS

numerical model do not show high certainty, particularly around

features like the head of the generated spit, even after multiple runs.

In contrast, the Adaptive Model Selector method offers more

coherent and better-correlated results for predicting shoreline

positions in future timesteps, providing a clearer understanding of

potential shoreline evolution.

When comparing the runtime of the ShorelineS numerical

model and the Adaptive Model Selector method, both run 1000

times to project future shoreline positions, the proposed method

significantly reduces the required runtime by almost 95%.
FIGURE 14

Flowchart of the proposed method combining pre-trained machine learning (adaptive model selector) and Monte Carlo simulation to generate the
probability plot for shoreline positions.
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5 Discussion

The results of this study demonstrate the efficacy of various ML

models in predicting shoreline evolution with different input data

structures. A key takeaway is the trade-off between computational

efficiency and prediction accuracy when selecting an ML model.

While simpler models like DNN can provide reliable predictions for

relatively straightforward shoreline evolutions, more complex

models such as ConvLSTM are necessary for capturing intricate

shoreline behaviours, including island and lake formation.

A significant observation is the variation in prediction

performance depending on the data structure used. Models

trained with coordinate-based data generally performed well for

cases without complex morphological changes. However, models

trained on image or 2D gridded data exhibited superior predictive

capabilities, particularly for scenarios involving shoreline features

such as spits and islands. The ConvLSTM model trained on 2D

gridded data emerged as the most robust, effectively balancing

prediction accuracy and computational cost.

The DNN model demonstrated a reasonable ability to predict

shoreline positions but struggled with cases involving significant
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morphological changes. Similarly, the LSTMmodel faced difficulties

in learning from coordinate-based data, particularly when using a

one-row representation. Even with a two-row representation, the

LSTM model did not perform as well as expected, especially in

capturing the evolution of complex features such as islands and

spits. These results suggest that LSTM models may not be well-

suited for this problem, as their sequential nature does not

effectively capture the spatial dependencies necessary for accurate

shoreline prediction.

CNN models, when trained on two-row data, provided more

reliable predictions than LSTM models. However, the CNN model

trained on image-based data significantly improved prediction

quality by leveraging spatial relationships within shoreline

evolution. One drawback of this approach is the sensitivity to

input defects, which can introduce unintended artifacts in the

predictions. Nonetheless, CNN models trained on image data

proved to be a practical choice, particularly for cases where

shoreline changes are more spatially complex.

ConvLSTM models further refined prediction accuracy,

particularly when trained with 2D gridded data. Unlike the

standard LSTM model, the ConvLSTM model effectively captured

both temporal and spatial dependencies, making it the best-

performing model in our study. The ability of the ConvLSTM

model to handle structured data representations enabled it to

provide highly accurate predictions, even for shoreline evolutions

involving dynamic morphological changes.

Overfitting is a critical challenge in machine learning

applications, as it hampers the model’s ability to generalize

beyond the training data, leading to poor predictive performance

on unseen shoreline conditions. In our study, we addressed this

issue by implementing early stopping, a widely used regularization

technique that monitors validation loss during training and halts

the process when no further improvement is observed. This

approach ensures that the model does not continue training

beyond the point of optimal generalization, preventing it from

memorizing noise and fluctuations in the training data.

While ML models offer a substantial reduction in

computational time compared to traditional numerical models,

certain challenges remain. One key issue is the sensitivity of ML
FIGURE 15

Probability plot for all shoreline positions at final timestep using adaptive model selector.
TABLE 5 Comparison of required time for analysing shoreline
existence probability.

Step
ShorelineS
Model

ML model

1000 ShorelineS Model Runs
105 hours &
10 minutes

–

11 ShorelineS Model Runs
for Scenarios

–
1 hour &
9 minutes

ML training Duration –
1 hour &
35 minutes

Probability Calculation 1.5 minutes –

1000 Predictions &
Probability Calculation

–
2 hours &
43 minutes

Total
105 hours &
11.5 minutes

5 hours &
27 minutes
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models to anomalies in the dataset. As demonstrated in the CNN

results, incorrect shoreline representations in the training data can

lead to the model replicating these errors in predictions. Addressing

this challenge requires careful preprocessing of training data and

potential refinement of the ML pipeline to detect and correct

such anomalies.

A novel contribution of this study is the application of ML for

probabilistic shoreline evolution prediction. By using Monte Carlo

simulations and a developed Adaptive Model Selector approach, we

developed a probabilistic framework that estimates the likelihood of

shoreline positions over time. The probability plots generated from

the ConvLSTM model closely resemble those obtained from

traditional numerical models, confirming the reliability of our ML-

based probabilistic prediction method. Additionally, the ability of the

Adaptive Model Selector to dynamically select appropriate pre-

trained ML models based on wave direction improves prediction

accuracy while maintaining computational efficiency.

The comparison of computational efficiency between ML models

and traditional numerical models reveals significant advantages in

using ML for shoreline evolution prediction. The ConvLSTM model

with 2D gridded data achieved a near 95% reduction in runtime

compared to the ShorelineS numerical model while maintaining

comparable accuracy. This drastic reduction in computational time

makes ML models a viable alternative for large-scale shoreline

prediction studies where computational cost is a concern.

While more complex ML models generally improve prediction

accuracy, they also come with increased computational requirements

during the training phase. The results indicate that model selection

should consider both prediction accuracy and computational

constraints. For relatively simple shoreline changes, a DNN or CNN

model offers a good balance between accuracy and efficiency. For

complex cases involving the formation of shoreline features,

ConvLSTM with 2D gridded data is the best choice.
6 Conclusions

This study evaluated machine learning models for shoreline

evolution prediction, A main finding is that ConvLSTM trained on

2D gridded data provided the most accurate predictions, effectively

capturing both general shoreline evolution and complex

morphological features such as spits and lakes. While simpler

models like DNN performed well for basic shoreline changes,

more advanced architectures such as CNN and ConvLSTM

demonstrated superior predictive capabilities for detailed and

dynamic shoreline structures. However, this improvement came

at the cost of increased training times due to the larger data volumes

required for processing spatial and temporal dependencies.

The study also highlighted the trade-off between model

complexity and computational cost. While deep learning models

require longer training times than traditional numerical models, they

can make rapid predictions once trained. Notably, models using

matrix-based data, such as CNN and ConvLSTM, outperformed

those relying on simpler two-row data representations.
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To address uncertainties in shoreline position prediction, the

Adaptive Model Selector was introduced. This method dynamically

selects and combines predictions from pre-trained models,

specifically leveraging the strengths of ConvLSTM trained on 2D

gridded data, to improve accuracy across varying wave conditions.

When integrated with Monte Carlo simulations, this approach

accounted for wave-driven variability while significantly reducing

computational time—achieving a 95% reduction compared to

traditional methods.

In conclusion, this research demonstrates that machine

learning, particularly ConvLSTM with 2D gridded data, provides

a robust and efficient framework for shoreline evolution modeling.

By leveraging ML-based approaches, coastal researchers and

engineers can achieve higher accuracy in shoreline predictions

while drastically reducing computational costs, making ML a

promising alternative compare to traditional methods.
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